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Abstract. This paper presents a new version of the upwind compact finite difference
scheme for solving the incompressible Navier-Stokes equations in generalized curvi-
linear coordinates. The artificial compressibility approach is used, which transforms
the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux differ-
ence splitting can be applied. The convective terms are approximated by a third-order
upwind compact scheme implemented with flux difference splitting, and the viscous
terms are approximated by a fourth-order central compact scheme. The solution al-
gorithm used is the Beam-Warming approximate factorization scheme. Numerical so-
lutions to benchmark problems of the steady plane Couette-Poiseuille flow, the lid-
driven cavity flow, and the constricting channel flow with varying geometry are pre-
sented. The computed results are found in good agreement with established analytical
and numerical results. The third-order accuracy of the scheme is verified on uniform
rectangular meshes.
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1 Introduction

The incompressible Navier-Stokes (N-S) equations are fundamental equations in fluid
mechanics. Accurate numerical solution to these equations plays an important role in
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many applications. In the development of appropriate computational approaches to
tackle challenging areas like direct numerical and large-eddy simulation of turbulence,
high-order methods are preferable over standard second-order formulations. In the cat-
egory of high-order methods, the compact difference scheme represents an attractive
choice because it uses smaller stencils and gives better resolution at high wave-numbers
than non-compact schemes of the same order [1–4].

The compact schemes can generally be classified into two categories: central and up-
wind. Central compact schemes are non-dissipative, and using central compact schemes
on non-staggered meshes for convection terms might cause numerical oscillations even
for flows without discontinuities. Reducing or removing such oscillations requires the
use of artificial dissipation or filtering [5]. On the other hand, upwind compact schemes
with dissipative properties are more stable. Fu and Ma [6, 7], and among others [8–10]
have developed some upwind compact schemes. Using these schemes for convective
terms can provide grid-scale linkage for each variable to avoid odd-even decoupling,
and in principle can prevent non-physical oscillations in smooth regions.

We note that one advantage of the upwind compact scheme by Fu and Ma [6, 7] lies
in that, the implicit part involves only two points rather than more points as most other
upwind compact schemes do [10]. This will reduce the computational cost.

Upwind compact schemes for conservation laws require appropriate split fluxes be-
ing used. Flux vector splitting is most widely used. But fewer attempts have been made
to use flux difference splitting (FDS) [11] in conjunction with upwind compact schemes.
In fact, FDS is suitable for more general situations and is less dissipative than other gen-
eral splitting like Lax-Friedrichs splitting. It is applicable to incompressible flows when
the artificial compressibility (AC) approach is adopted. The equations for steady incom-
pressible viscous flows with the AC formulation are (see [12])
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where β is the artificial compressibility parameter and τ is a pseudo-time (or iteration
parameter). Since the inviscid version of the above equations are hyperbolic, upwind
differences can be applied. Corresponding solution methods can be time marching ones
borrowed from compressible solvers. As the solution converges, the time derivative of
pressure approaches zero and the incompressibility is satisfied.

One of the disadvantages of the AC approach is the selection of the artificial com-
pressibility parameter β. The optimum β for achieving fastest convergence is problem
dependent. Through trial runs on coarse meshes, the optimum β can be found, and
subsequent steady-state problems can be solved efficiently. But the AC approach is nei-
ther efficient nor accurate for time-dependent problems if sub-iteration is not converged
quickly and fully. In spite of the drawbacks, numerous studies which utilized the AC ap-
proach for solving steady-state and time-dependent incompressible flow problems were


