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Abstract. In this work we improve and extend a technique named recursive doubling
procedure developed by Yuan and Lu [J. Lightwave Technology 25 (2007), 3649-3656]
for solving periodic array problems. It turns out that when the periodic array contains
an infinite number of periodic cells, our method gives a fast evaluation of the exact
boundary Robin-to-Robin mapping if the wave number is complex, or real but in the
stop bands. This technique is also used to solve the time-dependent Schrödinger equa-
tion in both one and two dimensions, when the periodic potential functions have some
local defects.
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1 Introduction

Nowadays periodic structure problems arise quite often in many modern application
areas like semiconductor nanostructures (e.g. quantum dots and nanocrystals), semi-
conductor superlattices [6, 36], photonic crystal (PC) structures [5, 25, 29], meta materi-
als [31] or Bragg gratings of surface plasmon polariton (SPP) waveguides [18, 32].

The most interesting property of these periodic media, especially in optical applica-
tions, is the capability to select the ranges of frequencies of the waves that are allowed to
pass or blocked in the waveguide (’frequency filter’). Waves in (infinite) periodic media
only exist if their frequencies lie inside these allowed continuous bands separated by for-
bidden gaps. This fact corresponds mathematically to the gap structure of the differential

∗Corresponding author. Email addresses: ehrhardt@wias-berlin.de (M. Ehrhardt), hhan@math.tsinghua.
edu.cn (H. Han), czheng@math.tsinghua.edu.cn (C. Zheng)

http://www.global-sci.com/ 849 c©2009 Global-Science Press



850 M. Ehrhardt, H. Han and C. Zheng / Commun. Comput. Phys., 5 (2009), pp. 849-870

operator having so-called pass bands and stop bands. Numerical simulations are necessary
for the design, analysis and finally optimization of the waveguiding periodic structures.

In many cases these wave propagation problems are modeled by periodic partial dif-
ferential equations (PDEs) on unbounded domains and for solving these equations nu-
merically one has to confine the spatial domain to a bounded computational domain (in
a neighborhood of the region of physical interest). Artificial boundaries are thus necessary
to be introduced and adequate boundary conditions should be imposed. Note that even
in the case of a bounded but large domain, it is a common practice to reduce the original
domain to a smaller one by introducing artificial boundaries, for example, see [27].

The ideal boundary conditions at the artificial boundaries should not only lead to
well-posed problems, but also mimic the perfect absorption of waves leaving the compu-
tational domain through the artificial boundaries. Moreover, these boundary conditions
should allow for an easy implementation. These boundary conditions are usually called
absorbing (or transparent, non-reflecting in the same spirit) in the literature. We refer
the interested reader to a couple of review papers [3, 14, 16, 17, 35] on this fundamental
research topic.

Though absorbing boundary conditions (ABCs) for wave-like equations have been a
hot research issue for many years and many developments have been made on their
designing and implementing, the issue of exact ABCs for periodic structure problems
is still not fully-resolved. Some progresses can be found in the recent research arti-
cles [9, 10, 12, 13, 23, 30, 33, 34, 38–40] and [42]. For a review on the theory of waves in
locally periodic media including a survey on physical applications we refer the reader
to [15].

In the existing literature frequency domain methods (FDMs) are usually considered for
wave problems with periodic structures [22]. These methods are able to exploit the
special geometric structure and are based on an eigenmode expansion in every longi-
tudinally uniform cell. Frequently, the FDMs are used in conjunction with the perfectly
matched layer (PML) [7] technique for dealing with unbounded domains. Afterwards the
bidirectional beam propagation methods (BiBPMs) [20] were introduced. Like the FDMs, they
can utilize the periodic geometry but additionally they (and also the eigenmode expansion
methods in [7] and [20]) are able to resolve the multiple reflections at the longitudinal
interfaces.

The methods of Jacobsen [21] and Yuan & Lu [38] were developed to be more efficient
than the eigenmode expansion methods, because it turns out that solving the eigenmodes
in each segment is quite time consuming. More recently, a DtN mapping method [37] was
developed by Yuan and Lu that is more accurate than the BiBPMs, since this approach
works (mostly) without any approximation. In [39] the efficiency of this sequential DtN
approach was further improved by a recursive doubling process for the DtN map.

In this paper we study a numerical method for the Helmholtz equation

−∆u(x)+Vu(x)+zn2u(x)= f (x). (1.1)

Here z is a complex parameter, V = V(x) and n = n(x) are two sufficiently smooth real


