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Abstract. In this paper we develop an efficient meshless method for solving inhomo-
geneous elliptic partial differential equations. We first approximate the source function
by Chebyshev polynomials. We then focus on how to find a polynomial particular so-
lution when the source function is a polynomial. Through the principle of the method
of undetermined coefficients and a proper arrangement of the terms for the polyno-
mial particular solution to be determined, the coefficients of the particular solution
satisfy a triangular system of linear algebraic equations. Explicit recursive formulas
for the coefficients of the particular solutions are derived for different types of elliptic
PDEs. The method is further incorporated into the method of fundamental solutions
for solving inhomogeneous elliptic PDEs. Numerical results show that our approach
is efficient and accurate.
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1 Introduction

We consider the boundary value problem,

Lu(x,y)= f (x,y) , (x,y)∈Ω,

Bu(x,y)= g(x,y) , (x,y)∈∂Ω, (1.1)
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where Ω⊂ R2 is a simply connected domain whose boundary is a simple closed curve
∂Ω, L and B are the differential operators on u over the interior of Ω and the boundary
∂Ω respectively. We assume that the operator L is of elliptic type. Efficient and accurate
solution techniques for the elliptic boundary value problem can easily find applications
in diverse problems in mechanics, gravitation, electricity, and magnetism.

In the framework of boundary methods, a widely used approach is to split the solu-
tion of Problem (1.1) into a particular solution up(x,y) that satisfies

Lup(x,y)= f (x,y) , (x,y)∈Ω, (1.2)

and its associated homogeneous solution uh (x,y) that satisfies

Luh(x,y)=0, (x,y)∈Ω,

Buh(x,y)= g(x,y)−Bup(x,y) , (x,y)∈∂Ω. (1.3)

Once a particular solution up is known, the influence on the solution by the inhomo-
geneous term f has in fact been transferred to the boundary, giving rise to Problem (1.3)
involving the homogeneous elliptic equation subject to a new boundary condition. The
solution of Problem (1.3) can then be found by standard boundary techniques [15–17].
The solution u of Problem (1.1) is then obtained as u=up+uh.

Following this approach we face the challenge of approximating f in such a way that
also allows us to find a particular solution. For general differential operators, the method
of particular solution (MPS) [17] has been used to overcome the difficulties of evaluat-
ing up. It allows for the decoupling of the original given problem (1.1) into a particular
solution and a homogeneous solution. In the framework of the MPS, a variety of basis
functions can be used to approximate the source function. Most commonly, the source
function is approximated by a series of radial basis functions (RBFs). For example, Par-
tridge et al. in [25] and Muleshkov et al. in [22] used the RBF approximation for the
Laplacian and Helmholtz-type operators, respectively. Despite the important interpo-
lating properties of RBFs, one of their drawbacks is that it is difficult to obtain rapidly
convergent RBF interpolants. As a consequence, one often has to use a large number of
interpolating points, which could lead to a large, dense and highly ill-conditioned system
of equations.

Other classes of approximations, such as trigonometric [1] and polynomial [6, 13, 18]
ones, have been considered to overcome the difficulties encountered in the use of RBFs
in the MPS. Chen et al in [6] obtained particular solutions in analytical form for the 2-D
Poisson equation when the source function f is a homogeneous polynomial. Golberg
et al. in [18] implemented the MPS when they used Chebyshev interpolants in their
approach. In [18], particular solutions in analytical form for 2-D and 3-D Helmholtz-
type equations when the source function is a monomial and for the 3-D Poisson equation
when the source function is a homogeneous polynomial are obtained. Symbolic software
packages such as Maple and Mathematica can be used for the implementation of the al-
gorithm to get particular solutions. However, after the source function f is approximated


