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Abstract. The purpose of this paper is to solve some of the trouble spots of the clas-
sical SPH method by proposing an alternative approach. First, we focus on the prob-
lem of the stability for two different SPH schemes, one is based on the approach of
Vila [25] and another is proposed in this article which mimics the classical 1D Lax-
Wendroff scheme. In both approaches the classical SPH artificial viscosity term is re-
moved preserving nevertheless the linear stability of the methods, demonstrated via
the von Neumann stability analysis. Moreover, the issue of the consistency for the
equations of gas dynamics is analyzed. An alternative approach is proposed that con-
sists of using Godunov-type SPH schemes in Lagrangian coordinates. This not only
provides an improvement in accuracy of the numerical solutions, but also assures that
the consistency condition on the gradient of the kernel function is satisfied using an
equidistant distribution of particles in Lagrangian mass coordinates. Three different
Riemann solvers are implemented for the first-order Godunov type SPH schemes in
Lagrangian coordinates, namely the Godunov flux based on the exact Riemann solver,
the Rusanov flux and a new modified Roe flux, following the work of Munz [17]. Some
well-known numerical 1D shock tube test cases [22] are solved, comparing the numer-
ical solutions of the Godunov-type SPH schemes in Lagrangian coordinates with the
first-order Godunov finite volume method in Eulerian coordinates and the standard
SPH scheme with Monaghan’s viscosity term.
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1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method was originally introduced by Lucy
[11], Gingold and Monaghan [5]. It is one of the earliest particle methods in compu-
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tational mechanics and it was devised to simulate a wide variety of problems in astro-
physics. Like many meshfree methods, the SPH scheme is based on the Lagrangian ap-
proach and it is able to handle problems characterized by large deformations, moving
discontinuities and critical mesh distortions.

In the SPH scheme, the generic continuum, such as a fluid, is discretized by a finite
set of discrete values defined at observation points, the so-called particles. Each point is
not fixed on a mesh, but it moves with the velocity of the fluid and the interactions of
each other are determined by a local function, the smoothing kernel. This function is the
essential feature of the SPH scheme and it assigns the weights of each particles based on
the reciprocal positions of the interpolating points.

Different smoothing functions have been used in the SPH method as seen in the liter-
ature [9]. The most widely used kernel functions in the SPH simulations are the Gaussian
and the cubic B−spline of Monaghan and Lattanzio [15]. In spite of the interesting math-
ematical properties of the Gaussian function, most practical work relies on the mono-
tone splines [1]. In fact, using the splines and consequently a smaller support, one can
obtain more accurate numerical solutions and more efficiency, from the computational
point of view. Unfortunately, even the choice of a spline function can not assure us that
the consistency conditions on the kernel are always satisfied [9], because the accuracy of
the numerical solution depends also on the distribution of the observation points inside
the compact support. This effect is emphasized near the boundaries, when the kernel
support leaves the numerical domain and thus the distribution of the particles is unbal-
anced, but it can be also significant within the computational domain, when the particles
are placed irregularly. To solve this issue, a new approach is proposed, which is based on
an uniform distribution of the particles in the Lagrangian mass coordinates.

Moreover, the classical SPH method suffers from several well-known numerical prob-
lems, such as particle interpenetration in high Mach number flows [13] or the so-called
tensile instability [14]. Generally one deals with these issues using various artificial pres-
sure and viscosity terms as introduced by Monaghan [12] in the motion and thermal
energy equations, but it does not solve all the issues. In fact, a von Neumann analysis
was carried out by Balsara [1] on the SPH method with Monaghan’s artificial viscosity
term. Unfortunately, only a small range of ratios of smoothing length to particle distance
for a specified choice of kernel function leads to stable continuum behavior. Based on
that finding we deduce that none of the currently used SPH kernels represents a particu-
larly good choice using Monaghan’s viscosity term [1]. In spite of that, up to this day the
viscosity term proposed by Monaghan has been mostly used.

An alternative approach has been recently proposed by Vila [25] and by Moussa and
Vila [16], who studied the convergence of SPH using approximate Riemann solvers in-
stead of the artificial viscosity. Moreover, Parshikov et al. [18], according to Godunov
schemes in the Finite Volume method, use the result of the Riemann problem in the cal-
culation of the numerical flux. Good results have been also obtained by Cha and Whit-
worth [3], who have applied the Riemann solver of van Leer [23, 24] to isothermal hy-
drodynamics. A recent improvement of the order of accuracy of SPH comes from Inut-


