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Abstract. The integral equation method for the simulation of the diffraction by opti-
cal gratings is an efficient numerical tool if profile gratings determined by simple cross-
section curves are considered. This method in its recent version is capable to tackle
profile curves with corners, gratings with thin coated layers, and diffraction scenarios
with unfavorably large ratio period over wavelength. We discuss special implemen-
tational issues including the efficient evaluation of the quasi-periodic Green kernels,
the quadrature algorithm, and the iterative solution of the arising systems of linear
equations. Finally, as an example we present the simulation of echelle gratings which
demonstrates the efficency of our approach.
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1 Introduction

For the numerical simulation of diffraction by optical gratings, several methods have been
proposed, among them differential and integral methods, methods based on Rayleigh or
eigenmode expansions, finite element or finite difference methods and methods of analytical
continuation (cf., e.g., the Rigorous Coupled Wave Analysis [19], the C-Method [6], and the
Finite Element Methods [2,3,8,27]). However, if the cross section of the grating geometry
can be described by a small number of interface curves, then the approximation of the
scattered electromagnetic field by an integral equation method is recommended. Integral
equation methods are robust, reliable, and efficient. Such methods for calculating field
components and efficiencies have been developed by e.g. Maystre, Pomp, Chen, Friedman,
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Prather et.al., Popov et.al., Yeung, Barouch, Goray, Sadov, and Kleemann (cf. [5, 12, 13,
18,20,22,23,29]).

Integral equation methods are well suited for the simulation of profile gratings with
profile curves of arbitrary shape (cf. [13]). The grating materials can be dielectric or
conducting, and profile gratings with coated layers can be treated as well (cf. [12, 20, 22]
and the treatment of large numbers of layers in [11]). If the integrals occurring in the
method are approximated by properly chosen quadrature rules, then coated layers with
extremely small thickness are admissible. Even corners in the profile curve do not cause
serious problems as long as the singular behavior of the electromagnetic field at the corner
points is taken into account by the right discretization of the integral equations. More
challenging is the treatment of gratings with large ratios period (grating constant) over
wavelength. Such examples usually require numerical algorithms with large numbers of
degrees of freedom, i.e., long computing times and huge storage capacities. Note, however,
that surprisingly good results have been reported for the unconventional Modified Integral
Method by Goray [10].

Integral equation methods can be considered as a special case of the so-called boundary
element methods applied to boundary value problems for the elliptic Helmholtz equation.
Consequently, the standard boundary element techniques can be utilized for the grating
problems as well. This includes the choice of the discretization scheme and the quadrature
rules and the adaption to corners and thin layers. Unfortunately, high ratios period over
wavelength result in large wavenumbers which makes the fast iterative solution of the
arising linear systems of equations or the implementation of fast methods like fast multipole
or wavelet algorithms difficult. Though to our knowledge no attempt has been made to
apply the fast boundary element techniques, we believe that they will be useful to design
faster integral equation methods for gratings. Finally, let us stress one particularity of
the grating problems in comparison to other boundary elements. The kernel functions are
quasi-periodic Green’s functions represented as infinite sums or integrals. Therefore, the
kernel evaluation consumes a lot of computing time, and a fast but accurate evaluation
algorithm is often the essential point in an efficient realization of the integral equation
method (cf. the contributions by Sadov [25] and Linton [15]).

The subject of the present paper is to describe the recent improvements in the im-
plementation of the integral equation package IESMP of the Carl Zeiss AG in Germany.
These improvements enables IESMP to treat gratings with large ratios period over wave-
length illuminated under large angles of incidence. Efficiencies of the reflected light in
high orders can be determined. In addition, edges (corners of the profile curve in the cross
section) and thin dielectric layers can be treated. For example, aluminum echelle gratings
with aluminum oxide layers can be simulated. Following Pomp [20], we describe the inte-
gral equations for coated gratings and the numerical method in Section 2. In particular,
section 2.4 contains some comments on the improved numerical scheme including a mesh
grading at the corners. In Section 3.1 we present a new efficient way for the evaluation
of the kernel functions inspired by Linton [15]. The new quadrature algorithm is given in
Section 3.2, and the iterative solution of the discretized integral equations is discussed in


