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Abstract We prove several inequalies for symmetric postive semidefinite, general M -

matrices and inverse M -matrices which are generalization of the classical Oppenheim’s

Inequality for symmetric positive semidefinite matrices.
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For simplicity we denote the set of all n×n positive semidefinite, symmetric positive semidef-

inite, nonsingular M -matrices, general M -matrices, inverse M -matrices by P ,SP ,M,M,M−1,

respectively; denote the Hadamard product of A, B by A ◦ B; dneote the (n − 1) th leading

principal submatrix of the n × n matrix A by A(n).

The following inequality is known as Oppenheim’s inequality:

Theorem OPP ([2],Theorem 7.8.6)) If A, B ∈ SP , then

(detA)
n∏

i=1

bii = b11 · · · bnn ≤ detA ◦ B. (1)

We shall establish several inequalities which generalize Oppenheims inequality. First we

give some lemmas.

Lemma 1 A, B ∈ Mn(R) satisfy inequality (1) if and only if for arbitrary positive diagonal

matrices D1, D2, Â = D1A, B̂ = BD2 satisfy (1).

Proof Suppose that the real matrices A, B satisfy inequality (1). Then

(detÂ)(b̂11 · · · b̂nn) = (detD1)(detA)(b11 · · · bnn)(detD2) ≤ (detD1)(detA ◦ B)(detD2)

= det(D1A) ◦ (BD2)) = detÂ ◦ B̂
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as desired. Since A = D−1
1 Â, B = D−1

2 B̂ with D−1
1 , D−1

2 being positive diagonal, the converse

part also holds.

Lemma 2 If A ∈ M∪M−1, then there is a positive diagonal matrix D such that AD +

DAT ∈ P .

Proof When A ∈ M, the result is well known (see Theorem 2.5.3. of [3]).

If A ∈ M−1, then A−1 ∈ M and for some positive diagonal matrix D we have A−1D +

DA−T ∈ P from which DAT + AD ∈ P follows.

Lemma 3 For any n × n real matrix A, H(A) = A + AT ∈ P implies detA > 0.

Proof Let F (A) = {x ∗ Ax : x ∈ Cn, x ∗ x = 1}, σ(A) be the field of values of A (see

chapter 1 of [3]) and the spectrum of A, respectively. Then σ(A) ⊂ F (A) ⊂ {z ∈ C : Re(z) > 0}
by properties 1.2.5 and 1.2.6 of [3] which imply A is positive stable, then detA > 0 by observation

2.1.4 of [3].

Definition[3] An n × n real matrix A is strictly row diagonally dominant if

|aii| ≥
n∑

j �=i

|aij |;

A is strictly diagonally dominant of its column entries if |ajj | > |aij |, ∀i 	= j.

Proposition 1 (i) if A is strictly row diagonally dominant, then detA > 0 and A−1 is

strictly diagonally dominant of its column entries. (ii) if A ∈ M, then there is a positive diagonal

matrix D such that AD is strictly row diagonally dominant. (iii) if A ∈ M−1, then there exist

positive diagonal matrices D1, D2 such that D1AD2 = (αij) satisfy αii = 1, ∀i; αij < 1, ∀i 	= j.

Proof (i) and (ii) are known (see Chapter 2 of [3]); and (iii) can be easily deduced from

(i) and (ii).

Lemma 4 If A ∈ P ∪M and B ∈ P ∪M∪M−1, then det(A ◦ B) > 0.

Proof If A, B ∈ P , then A ◦ B ∈ P by Schur product theorem (Theorem 7.5.3 of [2]),

hence det(A ◦ B) > 0 as desired.

If A ∈ P , B ∈ M∪M−1, then there is a positive diagonal matrix D such that BD+DBT ∈ P
by Lemma 2 and A ◦ (BD) + (A ◦ (BD))T = A ◦ (BD + DBT ) ∈ P by Schur product theorem.

Therefore det(A ◦ (BD)) > 0 holds by Lemma 3. Now we have

det(A ◦ B)detD = det((A ◦ B)D) = det(A ◦ (BD)) > 0.

Since detD > 0, the desired conclusion follows.

If A ∈ M, B ∈ M∪M−1, then from Propsotion 1 and Lemma 1 we may assume, without

loss of generality, that A is strictly row diagonally dominant and B is strictly row diagonally


