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BROWNIAN MOTION AND ENTROPY GROWTH ON
IRREGULAR SURFACES

C. CHEVALIER AND F. DEBBASCH

Abstract. Many situations of physical and biological interest involve diffusions
on manifolds. It is usually assumed that irregularities in the geometry of these
manifolds do not influence diffusions. The validity of this assumption is put
to the test by studying Brownian motions on nearly flat 2D surfaces. It is
found by perturbative calculations that irregularities in the geometry have a
cumulative and drastic influence on diffusions, and that this influence typically
grows exponentially with time. The corresponding characteristic times are
computed and discussed. Conditional entropies and their growth rates are

considered too.
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1. Introduction

Stochastic process theory is one of the most popular tools used in modelling time-
asymmetric phenomena, with applications as diverse as economics ([21, 22]), traffic
management ([20, 15]), biology ([16, 2, 10, 8]), physics ([23]) and cosmology ([5]).
Many diffusions of biological interest, for example the lateral diffusions ([4, 17]), can
be modelled by stochastic processes defined on differential manifolds ([12, 13, 9, 18]).
In practice, the geometry of the manifold is never known with infinite precision,
and it is common to ascribe to the manifold an approximate, mean geometry and
to assume irregularities in the geometry have, in the mean, a negligible influence
on diffusion phenomena ([4, 1, 3, 6, 19]). The aim of this article is to investigate if
this last assumption is indeed warranted.

To this end, we fix a base manifold M and focus on Brownian motion. We intro-
duce two metrics on M. The first one, g, represents the real, irregular geometry of
the manifold; what an observer would consider as the approximate, mean geometry
is represented by another metric, which we call g; to keep the discussion as general
as possible, both metrics are allowed to depend on time.

We compare the Brownian motions in the approximate metric g to those in the
real, irregular metric g by comparing their respective densities with respect to a
reference volume measure, conveniently chosen as the volume measure associated
to g. Explicit computations are presented for diffusions on nearly flat 2D sur-
faces whose geometry fluctuates on spatial scales much smaller than the scales on
which these diffusions are observed. We investigate in particular if the densities
generated by Brownian motions in the real, irregular metric g coincide on large
scales with the densities generated by Brownian motions in the approximate metric
g. We perform a perturbative calculation and find that, generically, these densi-
ties differ, even on large scales, and that the relative differences of their spatial
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Fourier components grow exponentially in time; on a given surface, the character-
istic time 7 at which the perturbative terms become comparable (in magnitude) to
the zeroth order terms depends on the amplitude € of the irregularities and on the
large scale wave vector k at which diffusions are observed; we find that 7 generally
scales as — (v 2 1n(6/1/1/2)) x (1/] K* |? x), where x is the diffusion coefficient
and v =| k| / | K* |, K* being a typical wave-vector characterizing the metric
irregularities. Our general conclusion is that geometry fluctuations have a cumu-
lative effect on Brownian motion and that their influence on diffusions cannot be
neglected.

2. Brownian motions on a manifold

2.1. Brownian motion in a time-independent metric. Let M be a fixed real
base manifold of dimension d. Let g be a time-independent metric on M. This
metric endows M with a natural volume measure which will be denoted hereafter
by dVol,. If C is a chart on M with coordinates x = (z%),i = 1,...,d, integrating
against dVol, comes down to integrating against \/detgijddw, where the g;;’s are
the components of g in the coordinate basis associated to C.

There is a canonical definition of a Brownian motions on M equipped with metric
g ([14, 9, 11, 18]). Quite intuitively, these Brownian motions are defined through
the diffusion equation obeyed by their densities n with respect to dVol,. Given an
arbitrary positive diffusion constant y, this equation reads:

(1) On = xAgn,

where A, is the Laplace-Beltrami operator associated to g ([7]); given a chart C
with coordinates z, one can write:

1
Vdetgy

where 0; represents partial derivation with respect to z’ and the ¢“’s are the
components of the inverse of g in the coordinate basis associated to C. Observe that
one of the reasons why this definition makes sense is that the diffusion equation (1)
conserves the normalization of n with respect to dVol,.

(2) Agn = 0; ( detgg; g”@ﬂl) ,

2.2. Brownian motion in a time-dependent metric. The preceding definition
of Brownian motion cannnot be used in this case because the diffusion equation (1)
does not conserve the normalization of n(t) with respect to the volume measure
dVol, ;) associated to a time-dependent metric. To proceed, we introduce an arbi-
trary, time-independent metric v on M, denote by iy, the density of dVolgy
with respect to dVol,, and define the Brownian motion in the time-dependent met-
ric g(t) as the stochastic process whose density n with respect to dVoly ) obeys the
following generalized diffusion equation:

(3)

O (Hgt)4M) = XADg)n-
Lo t( g(t)ly ) g(t)

Given an arbitrary coordinate system (z), equation (3) transcribes into:

(4) Oy (\/detgkm) = x0; ( detgp; gijajn> ,



