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Abstract
In this paper, a new method of boundary reduction is proposed, which re-
duces the biharmonic boundary value problem to a system of integro-differential
equations on the boundary and preserves the self-adjointness of the original prob-
lem. Moreover, a boundary finite element method based on this integro-differential
equations is presented and the error estimates of the numerical approximations are
given. The numerical examples show that this new method is effective.
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1. Introduction

We consider a homogeneous isotropic and linear elastic Kirchhoff plate under lateral
load distributed over the plate € x [f%, %] The domain Q € R? is bounded with the
smooth boundary I'. In the static equilibrium, we consider the free type boundary

condition on I'. Then the deflection wu satisfies the following problem:

A%y = %, in €,
M(z,n;)u =0, onT, (L.1)
T(z,ng)u=0, onT,
Eoh?® . : .
where D = m, is the bending stiffness of the plate with A being the plate
—v

thickness and Ey and v(0 < v < %) being the modulus and Poisson’s ratio respectively,
g denotes the lateral loading; the boundary differential operators M (z,n,), T(x,n,)
are given by:

M, =M (z,n;) = vA,
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T, =T (z,n,) = —

(1.3)

where n, = (nq(z),n2(z))” denotes the unit outer normal vector at z € I' and s, =
(—na(z),n1(x))T is the unit tangential vector at = € I'. For convenience, from now
on we suppose that the bending stiffness D has been normalized to D = 1. Because
the lateral loading ¢g(z) in (1.1) can always be eliminated by substracting a volume
potential, hence the problem (1.1) can be reduced to the following problem:
A%y =0 inQ,
Myu=m onTl, (1.4)
Tou =t on I
for given functions m(z), ¢(x) on the boundary I'. Let Q¢ = R?\(2, then we also consider
the boundary value problem on the unbounded domain €2¢:
(A?u=0 inQ°

Myu=m onl,

T,u=t onT, (1.5)
u(z) satisfies the linear - logarithmic growth condition
L (see [11], p468. (8.165)), when |z| — oc.

The operators M, and T, can be rewritten in the following form:

ok 0

M, =A; —(1—-v) 97 (1— V)w(x,nx)a—nw, (1.6)
0A, ok 0 0
To=-g.5 - (lfy)m—k(lfu)a—%[w(m,nx)a—%}, (1.7)
where w(z,n,) = nl(x)an(:r) - ng(:ﬁ)dnl(m).
ds ds,

T
We will reduce the problem (1.4) to a system of boundary integro-differential equa-
tions by an indirect method.
Let

u) = [ M,B.)fi)ds, + [ 1B fa)ds, +pile), seQ (L8)

be the solution of problem (1.4). Here p;(z) is an arbitrary polynomial of degree one,

1
E(z,y) = —71_7“2 log r, with r = |z —y| is a fundamental solution of biharmonic equation,

f1, fo are two unknown density functions.
For any z ¢ I, and an arbitrary unit vector n,, we have

Myu(@) = [ MoMyB(w.y) fids, + [ M, B(.9) fol0)ds,, €T, (19)
Tyu(z) = /FTwMyE'(:L‘,y)fl (y)ds, + ATwTyE(x,y)fg(y)dsy, z ¢gT. (1.10)



