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Abstract

A numerical method for singnlarly perturbed semilinear boundary value prob-
lems is given. The method uses the fourth order Hermite scheme on a special
discretization mesh. Its stability and convergenice are mnvestigated in the discrete
L! norm.

§1. Introduction

We shall consider the following singularly perturbed boundary value problem:
T o= i clz,u) =0, z € I={0,1],

u(0) = u(1) = 0, (1)

where € € (0,¢] (usually £* << 1). Throughout the paper we shall assume:
c € C°(I x IR), (2.a)
cu(z,u) > 7%, (z,u) e Ix IR, v > 0. (2.b)

These conditions guarantee that the problem (1) has a unique solution u,, v, € CP (I x
IR), which exhibits two boundary layers at the endpoints of I. In particular, the
following estimates hold, see [22]:

ul¥)(2)] < M1 + e *(exp(—vz/e) + exp(y(z ~ 1)/e))], z € I, k=0(1)6, (3)

where M does not depend on «.

Because of such a behaviour of u, it is necessary to use special methods to sclve
the problem numerically. We shall use a finite-difference scheme on a special non-
equidistant discretization mesh which is dense in the layers. The mesh will guarantee
that the local truncation errors of the scheme will be uniform (by “uniform” we shall
always mean “uniform in ¢”); hence the discretization will be uniformly consistent
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with the continuous problem. Then the uniform convergence (the convergence of the
numerical solution towards the restriction of U, on the mesh) will follow if we show
that our discretization is uniformly stable. Usually, as in Doolan, Miller, Schilders (7],
Herceg, Vulanovié [13], Herceg [8, 9, 10], Herceg, Petrovi ¢ 112], Herceg, Vualnovi¢,
Petrovi¢ [14], Vulanovié, Herceg, Petrovié [26], Vulanovi ¢ [21, 22, 23], the stability
18 shown in the maximum norm; hence the pointwise uniform convergence follows. The
order of the convergence depends on the scheme used. Higher order convergence was
Proved in Vulanovié, Herceg, Petrovié [26], Herceg, Vulanovié | Petrovi é (14] and
Herceg [9], while Herceg [10], and Herceg, Petrovi¢ [12] used higher order schemes
in the layers only. These Papers, as well as Vulanovié [22], Herceg, Vulanovié [13]
and Vulanovié [23], use the approach of special discretization meshes. The concept of
exponential fitting was used in Doolan, Miller, Schilders [7], Herceg [8], Vulanovi ¢ (21],
and Vulanovié [23]. The method from [3] is based on piecewise linear interpolation,
and for the use of spline-difference schemes see Surla [16, 17, 18, 19]. For other papers
which deal with the numerical solution of the problem (1), see Herceg [9].

In this paper we shall use a discretization of the same type as in Herceg [9], Herceg,
Vulanovié, Pétrovié [14). Basically, the Hermite scheme is used, but at some mesh
points it is replaced by the standard central scheme. Such a switch is used in order to
Prove the uniform stability. For the same reason Herceg [9] and Herceg, Vulanovié .
Petrovi¢ [14] have a restriction on the nonlinearity of ¢(z,u). Essentially, the following
1S required:

cu(z,u) <T, 2 €1, u€IR; 5y? -2l > 0. (4)

Obviously, such an assumption is unpleasant, and our aim here will be to avoid it. We
shall prove the uniform stability in the discrete L! norm (cf. Vulanovié [24], [25] where
this norm was used for discretizations of quasilinear singular perturbation problems)
and for this (4) is not needed. Such a result was announced in Herceg [9] and Herceg,
Vulanovi¢, Petrovié [14].

Thus we shall obtain the uniform convergence in the discrete L! norm. The L!-error
will be estimated by

Mlen=% 4 n~1 exp(—pn)]

where n is the number of mesh steps, p is a positive constant independent of n and ¢,
and throughout the paper M denotes a positive generic constant independent of 1 and
¢. From this we shall get that

Mn=3 4 g1 exp(—pn)]

iIs the upper bound for the maximal pointwise error. This is worse than Mn~* from
Herceg [9]. However, we point out that the numerical method which will be given here
1s essentially the same as the method from Herceg [9] (the deferent pointwise error.
estimates result from the different norms used); hence we might expect the uniform
fourth order pointwise convergence to be still present. Qur numercical experiments

confirm that.



