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Abstract

We present a semi—coarsening procedure, i. e., coarsening in one space direction, to
improve the convergence rate of the multigrid solver presented in {5] for solving the 2D
steady Navier-Stokes equations in primitive variables when the aspect ratio of grid celle
is not equal to 1, i. e., when h./h, > 1 or € 1, where h, is the grid step in z direction
and h, the grid step in y direction, z and y represent the Cartesian coordinates.

Introduction

In numerical simulation of fluid flows we encounter frequently situations in which physical
quantities (pressure, velocity, etc.) change at different scales in different space directions.
When there is a main flow’ direction, where the change of physical quantities is much smaller
along the flow direction than in the direction orthogonal to the main flow, different grid steps
in different directions are often used. For dealing with these problems, it is essential to have
a solver of the discrete system whose convergence rate is not very sensitive to the ratio of
grid steps.

In (5], we have presented a multigrid solver for solving the 2D steady Navier—Stokes
equations in primitive variables on rectangular regions. It is based on second-order up-
wind differencing for the discretization of the convection terms and the SCGS relaxation
procedure (this procedure was originally proposed by S.P. Vanka[3| as smoothing operator
for his multigrid solver based on hybrid differencing) and has been observed to have good
convergence rate for Reynolds numbers up to 10000*.

If we denote by h, the grid step in z direction and h, the grid step in y direction, the

convergence rate of the above M.G. solver depends on the ratio p L h, [fhy. The best

convergence rate is obtained when p = 1 while the convergence rate is significantly slowed
down when p € 1 or p » 1, a8 can be seen through Figure 1, which shows the total

residual of the approximate solution with regard to the number of multigrid iterations. In
this example, the computational region is the rectangle (0, A) x (0, B) and the grid is the
32 X 32 uniform grid, so p = A/B. The four curves are obtained with A =1and B =1, 4,
8, 16, respectively and the following test zolution :

u(z,y)=Asin() cos( ).

v(z, y)=—B cos(~) sin( ),
zy
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The V-cycle is used with 2 pre-—relaxations, 1 post-relaxation in the multigrid solver and
the relaxation parameter § = 0.8. The multigrid procedure converges when p geql/4 but

* Received J anuary 20, 1989,
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the convergence is very slow when p = 1/4 and it even diverges when p < 1/8 (we can get
convergence when p > 1/8 by using smaller relaxation parameter § but the convergence is

always very slow).
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Figure 1: Convergence rate of the MG solver for the test problem (R = 100)
with different values of p :
o:p=1 o:p=1/4 *x:p=1/8 o:p=1/16

The convergence rate of multigrid solvers depends essentially on the smoothing properties
of the relaxation procedure (also called smoothing operator). The SCGS relaxation has
better smoothing properties when grid cells are nearly square. An easy way to improve the
convergence rate when p 3> 1 or p < 1 is to use coarse grids obtained by increasipg only
one grid step in one space direction, instead of increasing the grid steps in all directions,
in the multigrid procedure {this approach was also proposed by Hackbusch(2] for solving
anisotropic problems). The object of this study is to investigate the efficiency of the semi-
coarsening in multigrid solution of steady Navier-Stokes equations.

In the present paper, we will first recall briefly the multigrid solver presented in [5].
Then we give details of the implementation of the coarsening procedure and corresponding
numerical results.

Remark. Vanka has also done some numerical experiments with the second—order upwind
differencing. Contrast to our conclusions given in [1] and [5|, he has observed very slow
convergence of his multigrid solver combined with the second—order upwind differencing and
no improvement in the precision of approximation with regard to the hybrid scheme, when
Reynolds number is greater than or equal to 600 (see [4]). There are several differences
between his scheme and the ours which may be the cause of slow convergence and poor

precision of his acheme :

1. He wrote the convection terms discretized by second—order upwinding finite differences
as the corresponding first—order upwinding discretization multiplied by a constant plus a



