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Abstract

In this paper, we develop, analyze, and test a new alporithm for nonlinear least—sguares problema,
The algorithm uses a BFGS update of the Ganss—Newton Hessian when some heuristics indicate that
the Gauss-Newton method may not make a good step. Some important elements are that the secant or
quasi—-Newion equations considered are not the obvious ones, and the method does not build up a
Hessian approximation over several steps. The algorithm can be implemented easily as a modification
of any Gauss-Newton code, and it seems to be useful for large residual problems.

§ 1. Introduction

Nonlinear least-squares problems are frequently encountered in practical
optimization, and they are also of interest to the algorist because of their highly
structured nature. In this paper, we suggest another way to use this structure in an
attempt to increase the efficiency of the trust-region—Gauss—Newton or Levenberg—
Marquardt algorithm ([6], [8]).

The algorithm presented here is ingpired by NL2SOL ([3], [4]), in that it
chooses at each iteration whether t0 use a Gauss—Newton quadratic model or a
variable metric augmentation of the Gauss-Newton model to define the next iterate.
The difference is that the variable metrio augmentation used here requires less
storage, less algebra, and less code than NL2SOL. However, it seems to have no
better theoretical justification than the Gauss—Newton method. Still, it seems to use
fewer residual and Jacobian computations than the Gauss—Newion for some large
residual problems and to require little additional arithmetic at each iferation.
Conversation with NL2SOL users encouraged us to undertake this research, and we
publish it now in hopes that they will find it helpful and that our colleagues will
hind it an interesting use of secant updating ideas. |
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Section 2 explains the augmented local model in its various forms, and points
out some overlap between our ideas and those of Al-Baali and Fletcher™. Section
8 contains a unified local convergence proof under standard Gauss-Newion-type
assumptions for all combinations of the methods presented here, Section 4 describes
a model-switching sirategy and the resuliing hybrid algorithm that adaptively
decides whether to use the Gauss—Newton model or an augmentation at each
itoration. Section 5 compares an experimental implementation of the algorithms
guggested here to the LMDER implementation of the Ganss—Newton method and the
NL281 routine from NL2SOL.

§ 2. The Augmented Model

Let F: QC R*—>R" be continuously differentiable, and congider the nonlinear
least—squares problem of finding a local minimizer «, for

$(a) =1 F@)F(0) —5 D(fa)™ 2.

The classical algorithm for this problem is the Gauss—Newton method which can be

thought of in two ways:
First, we can linearize #(z)— F (x,) about the current paramefer vector z, 10

obtain the local affine model for F(z),
F(m) ﬁF(fﬂg) +J¢(m*—$¢.),

where J,=J (,) =F'(x,) = ?; ; (m.;}). Then we can seek to improve z, by iaking

the next estimate x, to be the value of the parameter vector that solves the linear
least—squares problem defined by the local affine model.
The sum-of-squares—of-residuals of this model ig

%[F(mg)+Jn(m—mc)]T[F(%) +oJ o(2 o) ], (2.2)

and it can be viewed as a local quadratic model of ¢(z) of the form
b (2) HmP (2) = (20) + Vb () (2 —0) + 5 (@—a) T o(z—2).  (2.8)

A second way is t0 view this local quadratio model ag an approximation to the
Newton model

m; (@) =P (@,) +Vip ()" (@ — ) + %—(m-%) Vi (w,) (2 — ) _(2 4)

where -
V2 (@0) — T o= fi(20) V2 1(20) =8 (o) (2.5)

is approximated by the zero matrix. It is easy to reason from either derivation that

the difference between the two models depends on the size of the residuals F(x,)

and on how nearly affine # is in a neighborhood of . |

| Aside from the obvious advantage that the Gauss-Newton method bas of not
having to compute or make assumptions about the n p X p Hesgiang V2f;(2,), 4 =1,--+,




