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Abstract

The system of generalized absolute value equations (GAVE) has attracted more and

more attention in the optimization community. In this paper, by introducing a smoothing

function, we develop a smoothing Newton algorithm with non-monotone line search to solve

the GAVE. We show that the non-monotone algorithm is globally and locally quadratically

convergent under a weaker assumption than those given in most existing algorithms for

solving the GAVE. Numerical results are given to demonstrate the viability and efficiency

of the approach.
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1. Introduction

The system of generalized absolute value equations (GAVE) is to find a vector x ∈ R
n such

that

Ax +B|x| − b = 0, (1.1)

where A ∈ R
n×n and 0 6= B ∈ R

n×n are two known matrices, b ∈ R
n is a known vector, and |x|

denotes the componentwise absolute value of x ∈ R
n. In the literature, GAVE also occurs in

the form of Ax−B|x| = b. In this paper, we do not make a distinction between it and (1.1) and
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put it down to GAVE (1.1). To the best of our knowledge, GAVE (1.1) was first introduced by

Rohn in [34] and further investigated in [12,15,21,27,29,30] and references therein. Obviously,

when B = −I with I being the identity matrix, GAVE (1.1) becomes the system of absolute

value equations (AVE)

Ax− |x| − b = 0, (1.2)

which is the subject of numerous research works, see, e.g. [4, 11, 22, 25, 48, 49] and references

therein.

GAVE (1.1) and AVE (1.2) have attracted considerable attention in the field of optimization

for almost twenty years, and the primary reason is that they are closely related to the linear

complementarity problem (LCP) [25,30] and the horizontal LCP (HLCP) [27], which encompass

many mathematical programming problems and have many practical applications [7, 28]. In

addition, GAVE (1.1) and AVE (1.2) are also bound up with the system of linear interval

equations [33].

Due to the combinatorial character introduced by the absolute value operator, solving

GAVE (1.1) is generally NP-hard [21, Proposition 2]. Moreover, if GAVE (1.1) is solvable,

checking whether it has a unique solution or multiple solutions is NP-complete [30, Propo-

sition 2.1]. Recently, GAVE (1.1) and AVE (1.2) have been extensively investigated in the

literature, and the main research effort can be summarized to the following two aspects.

On the theoretical side, one of the main branches is to investigate conditions for existence,

non-existence and uniqueness of solutions of GAVE (1.1) or AVE (1.2), see, e.g. [12, 13, 25, 27,

30,34,43–45] and references therein. Specially, the following necessary and sufficient conditions

that ensure the existence and uniqueness of solution of GAVE (1.1) can be found in [27,45] (see

Section 2 for the definition of the column W-property).

Theorem 1.1 ([27, Theorem 1]). The following statements are equivalent:

(i) GAVE (1.1) has a unique solution for any b ∈ R
n.

(ii) {A+B,A−B} has the column W-property.

(iii) For arbitrary nonnegative diagonal matrices D1, D2 ∈ R
n×n with D1 +D2 > 0,

det [(A+B)D1 + (A−B)D2] 6= 0.

(iv) A+B is nonsingular and {I, (A+B)−1(A−B)} has the column W-property.

Theorem 1.2 ([45, Theorem 3.2]). GAVE (1.1) has a unique solution for any b ∈ R
n if and

only if matrix A+BD is nonsingular for any diagonal matrix D = diag(di) with di ∈ [−1, 1].

It is easy to conclude that Theorems 1.1 and 1.2 imply that {A+B,A−B} has the column

W-property if and only if matrix A+BD is nonsingular for any diagonal matrix D = diag(di)

with di ∈ [−1, 1] (see Lemma 2.3 for more details). Throughout the theoretical analysis of this

paper, we let the following assumption hold.

Assumption 1.1. Let matrices A and B satisfy {A+B,A−B} has the column W-property.

On the numerical side, there are various algorithms for solving AVE (1.2) or GAVE (1.1).

For example, Mangasarian proposed concave minimization method [22], generalized Newton

method [23], and successive linear programming method [24] for solving AVE (1.2). Zamani
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and Hlad́ık [48] proposed a new concave minimization algorithm for AVE (1.2), which solves

a deficiency of the method proposed in [22]. Zainali and Lotfi [47] modified the generalized

Newton method and developed a stable and quadratic convergent method for AVE (1.2). Cruz

et al. [3] proposed an inexact semi-smooth Newton method for AVE (1.2). Shahsavari and

Ketabchi [36] proposed two types of proximal algorithms to solve AVE (1.2). Haghani [11]

introduced generalized Traub’s method for AVE (1.2). Ke and Ma [19] proposed an SOR-like

iteration method for AVE (1.2). Caccetta et al. [4] proposed a smoothing Newton method for

AVE (1.2). Saheya et al. [35] summarized several systematic ways of constructing smoothing

functions and proposed a unified neural network model for solving AVE (1.2). Zhang and Wei

[49] proposed a generalized Newton method which combines the semismooth and the smoothing

Newton steps for AVE (1.2). Lian et al. [20] further considered the generalized Newton method

for GAVE (1.1) and presented some weaker convergent conditions compared to the results

in [15,23]. Wang et al. [42] proposed modified Newton-type iteration methods for GAVE (1.1).

Zhou et al. [51] established Newton-based matrix splitting methods for GAVE (1.1). Jiang

and Zhang [17] proposed a smoothing-type algorithm for GAVE (1.1). Tang and Zhou [40]

proposed a quadratically convergent descent method for GAVE (1.1). Hu et al. [15] proposed

a generalized Newton method for absolute value equations associated with second order cones

(SOCAVE), which is an extension of GAVE (1.1). For more numerical algorithms, one can refer

to [1, 5, 8, 10, 18, 26, 46] and references therein.

By looking into the mathematical format of GAVE (1.1), non-differentiability is caused by

the absolute value operator. Smoothing algorithms have been successfully applied to solve

GAVE (1.1) [17, 40]. However, monotone line search techniques were used in the methods

proposed in [17,40]. Recently, great attention has been paid to smoothing algorithms with non-

monotone line search, see, e.g. [16,38,39,52] and references therein. Non-monotone line search

schemes can improve the likelihood of finding a global optimum and improve convergence speed

in cases where a monotone line search scheme is forced to creep along the bottom of a narrow

curved valley [50]. It is therefore interesting to develop non-monotone smoothing algorithms

for solving GAVE (1.1). This motivates us to develop a non-monotone smoothing Newton

algorithm for solving GAVE (1.1). Our work here is inspired by recent studies on weighted

complementarity problem [39, 41].

The rest of this paper is organized as follows. In Section 2, we provide some concepts and

results used throughout the paper. In Section 3, we develop a non-monotone smoothing Newton

algorithm for solving GAVE (1.1), while Section 4 is devoted to discussing the convergence.

Numerical experiments are given in Section 5. Finally, Section 6 concludes this paper.

Notation. R
m×m is the set of all m × m real matrices, Rn = R

n×1, and R = R
1. R+

and R++ denote the nonnegative and positive real number, respectively. In (or simply I if its

dimension is clear from the context) is the n × n identity matrix. The superscript “·⊤” takes

transpose. For X ∈ R
m×n, Xi,j refers to its (i, j)-th entry, |X | is in R

m×n with its (i, j)-th

entry |Xi,j |. Inequality X ≤ Y means Xi,j ≤ Yi,j for all (i, j), and similarly for X < Y . We

use t ↓ 0 to denote the case that a positive scalar t tends to 0. We use α = O(β) to mean α/β

is bounded uniformly as β → 0. For any a ∈ R, we define

sgn(a) :=















1, if a > 0,

0, if a = 0,

−1, if a < 0.
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We denote the diagonal matrix whose i-th diagonal element is xi by diag(xi) and define D(x) :=

diag(sgn(xi)). The symbol ‖ ·‖ stands for the 2-norm. For a matrix P ∈ R
m×n, we use σmin(P )

and σmax(P ) to denote the smallest singular value and the largest singular value, respectively.

For a differentiable mapping G : V ⊂ R
n → R

n, we denote G′(x) by the Jacobian of G at x ∈ V

and ∇G(x) = G′(x)⊤ denotes the gradient of G at x. For x ∈ R
n, we also denote x by vec(xi).

det(X) denotes the determinant of the matrix X ∈ R
n×n.

2. Preliminaries

In this section, we collect some basic notions as well as corresponding assertions, which are

useful in this paper.

Definition 2.1 ([37]). Let M := {M,N} be a set of matrices M, N ∈ R
n×n. A matrix

R ∈ R
n×n is called the column representative of M if

R·j ∈ {M·j, N·j}, j = 1, 2, . . . , n,

where R·j,M·j and N·j denote the j-th column of R,M and N , respectively. M is said to have

the column W-property if the determinants of all column representative matrices of M are all

positive or all negative.

Definition 2.2 ([33]). An interval matrix AI is defined by

AI := [A, Ā] = {X : A ≤ X ≤ Ā}.

A square interval matrix AI is called regular if each X ∈ AI is nonsingular.

Definition 2.3 ([9]). The classic (one-sided) directional derivative of a function f : Rn → R

at x in the direction y is defined by

f ′(x; y) = lim
t↓0

f(x+ ty)− f(x)

t
,

provided that the limit exists. Accordingly,

F ′(x; y) =
[

F ′
1(x; y), · · · , F ′

m(x; y)
]⊤

denotes the directional derivative for the vector-valued function F : Rn → R
m.

Definition 2.4 ([9]). A vector-valued function F : Rn → R
m is said to be Lipschitz continuous

on a set S ⊂ R
n if there is a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, x, y ∈ S.

Moreover, F is called locally Lipschitz continuous on R
n if it is Lipschitz continuous on all

compact subsets S ⊂ R
n.

If F : Rn → R
m is locally Lipschitz continuous, by Rademacher’s Theorem, F is differen-

tiable almost everywhere [31]. Let DF be the set where F is differentiable, then the generalized

Jacobian of F at x in the sense of Clarke [6] is

∂F (x) = co
{

lim
x(k)∈DF , x(k)→x

∇F (x(k))
}

,

where “co” denotes the convex hull.
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Definition 2.5 ([32]). A locally Lipschitz continuous vector-valued function F : Rn → R
m is

called semismooth at x if limV ∈∂F (x+td′), d′→d,t↓0{V d′} exists for any d ∈ R
n.

Lemma 2.1 ([32]). Let F : Rn → R
m, then the directional derivative F ′(x; d) exists for any

d ∈ R
n if F is semismooth at x.

Lemma 2.2 ([32]). Suppose that F : Rn → R
m is semismooth at x. Then it is called strongly

semismooth at x if

V d− F ′(x; d) = O(‖d‖2)
for any V ∈ ∂F (x+ d) and d → 0.

It is known that, if Assumption 1.1 holds, GAVE (1.1) has a unique solution for any b ∈
R

n [27]. In addition, we have the following lemma, which is needed in the subsequent discussion.

Lemma 2.3. Assumption 1.1 holds if and only if matrix A+BD is nonsingular for any diagonal

matrix D = diag(di) with di ∈ [−1, 1], i = 1, 2, . . . , n.

Proof. The result can be straightly derived from Theorems 1.1 and 1.2. Indeed, it follows

from Theorem 1.1 that Assumption 1.1 holds if and only if

det[(A+B)D̄ + (A−B)D̃] 6= 0

for any nonnegative diagonal matrices D̄, D̃ ∈ R
n×n with D̄ + D̃ > 0, that is,

det[A+B(D̄ − D̃)(D̄ + D̃)−1] 6= 0 (2.1)

for any nonnegative diagonal matrices D̄, D̃ ∈ R
n×n with D̄ + D̃ > 0.

Let

D1 :=
{

D ∈ R
n×n : D = diag(di), di ∈ [−1, 1], i = 1, 2, . . . , n

}

,

D2 :=
{

D ∈ R
n×n : D = (D̄ − D̃)(D̄ + D̃)−1, D̄ = diag(d̄i) ≥ 0,

D̃ = diag(d̃i) ≥ 0, D̄ + D̃ > 0
}

.

Then, on one hand, for any D ∈ D2, we have

|Di,i| =
|d̄i − d̃i|
|d̄i + d̃i|

≤ 1.

Thus, D2 ⊆ D1. On the other hand, for any D = diag(di) ∈ D1, di ∈ [−1, 1] can be expressed

by di = (d̄i − d̃i)/(d̄i + d̃i) with






















d̄i > 0 and d̃i = 0, if di = 1,

d̄i = 0 and d̃i > 0, if di = −1,

d̄i =
(1 + di)d̃i
1− di

and d̃i > 0, if di ∈ (−1, 1).

Hence, D1 ⊆ D2. It follows from the above discussion that D1 = D2. Then (2.1) is equivalent to

det(A+BD) 6= 0

for any D = diag(di) with di ∈ [−1, 1], i = 1, 2, . . . , n. This completes the proof. �
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Remark 2.1. For symmetric matricesA and B, under the assumption that σmin(A)>σmax(B),

the authors in [2, Lemma 1] proved the nonsingularity of A + BD for any diagonal matrix D

whose elements are equal to 1, 0 or −1. We should mentioned that the symmetries of the

matrices A and B can be relaxed there and our result here is more general than theirs.

Remark 2.2. In [17], the authors used the assumption that σmin(A) > σmax(B), while in [40],

the authors used the assumption that the interval matrix [A − |B|, A + |B|] is regular. The

interval matrix [A − |B|, A + |B|] is regular is weaker than σmin(A) > σmax(B) and examples

can be found in [49, Examples 2.1, 2.3]. In addition, it is easy to prove that [A− |B|, A+ |B|]
is regular implies that Assumption 1.1 holds, but the reverse is not true. For instance, let

A =

[

1001 −496

−994 501

]

, B =

[

999 −494

−995 499

]

,

then {A + B,A − B} has the column W-property [27] while [A − |B|, A + |B|] is not regular.

Indeed, there exists a singular matrix

[

2 −2

−2 2

]

∈ [A− |B|, A+ |B|].

In conclusion, our Assumption 1.1 here is weaker than the assumptions used in [17, 40].

3. The Algorithm

In this section, we develop a non-monotone smoothing Newton algorithm for solving GAVE

(1.1). To this end, we first consider an equivalent reformulation of GAVE (1.1) by introducing

a smoothing function for the absolute value operator.

3.1. A smoothing function for |x| with x ∈ R

In this subsection, we consider a smoothing function for |x| with x ∈ R and discuss some of

its properties, which lay the foundation of the next subsection.

Since |x| is not differentiable at x = 0, in order to overcome the hurdle in analysis and

application, researchers construct numerous smoothing functions for it [35]. In this paper, we

adopt the following smoothing function φ : R2 → R, defined by

φ(µ, x) =
√

µ2 + x2 − µ, (3.1)

which can be derived from the perspective of the convex conjugate [35].

In the following, we give some properties related to the smoothing function (3.1).

Proposition 3.1. Let φ be defined by (3.1), then we have

(i) φ(0, x) = |x|.

(ii) φ is continuously differentiable on R
2 \ {(0, 0)}, and when (µ, x) 6= (0, 0), we have

∂φ

∂µ
=

µ
√

µ2 + x2
− 1,

∂φ

∂x
=

x
√

µ2 + x2
.
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(iii) φ is a convex function on R
2, i.e.

φ
(

α(µ̄, x̄) + (1 − α)(µ̃, x̃)
)

≤ αφ(µ̄, x̄) + (1 − α)φ(µ̃, x̃)

for all (µ̄, x̄), (µ̃, x̃) ∈ R
2 and α ∈ [0, 1].

(iv) φ is Lipschitz continuous on R
2.

(v) φ is strongly semismooth on R
2.

Proof. The proofs of (i) and (ii) are trivial. Now we turn to the result (iii). For any

(µ̄, x̄), (µ̃, x̃) ∈ R
2 and α ∈ [0, 1], we have

φ
(

α(µ̄, x̄) + (1− α)(µ̃, x̃)
)

− αφ(µ̄, x̄)− (1− α)φ(µ̃, x̃)

=
√

[αµ̄+ (1 − α)µ̃]2 + [αx̄+ (1 − α)x̃]2 − αµ̄− (1− α)µ̃

− α
√

µ̄2 + x̄2 + αµ̄− (1 − α)
√

µ̃2 + x̃2 + (1 − α)µ̃

=
√

[αµ̄+ (1 − α)µ̃]2 + [αx̄+ (1 − α)x̃]2 − α
√

µ̄2 + x̄2

− (1− α)
√

µ̃2 + x̃2. (3.2)

On one hand,
(

√

[αµ̄+ (1− α)µ̃]2 + [αx̄+ (1− α)x̃]2
)2

= α2(µ̄2 + x̄2) + (1− α)2(µ̃2 + x̃2) + 2α(1− α)(µ̄µ̃+ x̄x̃). (3.3)

On the other hand,
[

α
√

µ̄2 + x̄2 + (1 − α)
√

µ̃2 + x̃2
]2

= α2(µ̄2 + x̄2) + (1− α)2(µ̃2 + x̃2) + 2α(1 − α)
√

(µ̄2 + x̄2)(µ̃2 + x̃2)

≥ α2(µ̄2 + x̄2) + (1− α)2(µ̃2 + x̃2) + 2α(1 − α)|µ̄µ̃+ x̄x̃|. (3.4)

Then the result (iii) follows from (3.2)-(3.4).

Consider the result (iv). For any (µ̄, x̄), (µ̃, x̃) ∈ R
2, we have

|φ(µ̄, x̄)− φ(µ̃, x̃)| =
∣

∣‖(µ̄, x̄)‖ − µ̄− ‖(µ̃, x̃)‖+ µ̃
∣

∣

≤
∣

∣‖(µ̄, x̄)‖ − ‖(µ̃, x̃)‖
∣

∣+ |µ̄− µ̃|
≤ ‖(µ̄− µ̃, x̄− x̃)‖+ ‖(µ̄− µ̃, x̄− x̃)‖
= 2‖(µ̄− µ̃, x̄− x̃)‖.

Hence, φ is Lipschitz continuous with Lipschitz constant 2.

Finally, we prove the result (v). It follows from the result (iii) that φ is semismooth on R
2

[32]. Note that φ is arbitrarily many times differentiable for all (µ, x)∈R2 with (µ, x)6=(0, 0) and

hence strongly semismooth at these points. Therefore, it is sufficient to show that it is strongly

semismooth at (0, 0). For any (µ, x) ∈ R
2\{(0, 0)}, φ is differentiable at (µ, x), and hence,

∂φ(µ, x) = ∇φ(µ, x) =

[

∂φ(µ, x)

∂µ
,
∂φ(µ, x)

∂x

]⊤

.

In addition, by Lemma 2.1, the classic directional derivative of φ at (0, 0) exists and

φ′
(

(0, 0); (µ, x)
)

= lim
t↓0

φ
(

(0, 0) + t(µ, x)
)

− φ(0, 0)

t
= φ(µ, x),
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from which we have

φ(µ, x)−
[

∂φ(µ, x)

∂µ
,
∂φ(µ, x)

∂x

] [

µ

x

]

=
√

µ2 + x2 − µ−
(

µ
√

µ2 + x2
− 1

)

µ− x
√

µ2 + x2
x

= 0 = O
(

‖(µ, x)‖2
)

.

Then the result follows from Lemma 2.2. �

3.2. The reformulation of GAVE (1.1)

In this subsection, based on the earlier subsection, we will give a reformulation of GAVE (1.1)

and explore some of its properties.

Let z := (µ, x) ∈ R× R
n, we first define the function H : R× R

n → R× R
n as

H(z) :=

[

µ

Ax+BΦ(µ, x) − b

]

, (3.5)

where Φ : Rn+1 → R
n is defined by

Φ(µ, x) :=











φ(µ, x1)

φ(µ, x2)
...

φ(µ, xn)











with φ being the smoothing function given in (3.1). According to Proposition 3.1(i), it holds

that

H(z) = 0 ⇔ µ = 0 and x is a solution of GAVE (1.1). (3.6)

Then it follows from (3.6) that solving GAVE (1.1) is equivalent to solving the system of

nonlinear equations H(z) = 0. Before giving the algorithm for solving H(z) = 0, we will give

some properties of the function H .

Proposition 3.2. Let H be defined by (3.5), then we have

(i) H is continuously differentiable on R
n+1\{0}, and when µ = 0 and xi 6= 0 for all i =

1, 2, . . . , n or µ 6= 0, the Jacobian matrix of H is given by

H ′(z) =

[

1 0

BV1 A+BV2

]

(3.7)

with

V1 =





















µ
√

µ2 + x2
1

− 1

µ
√

µ2 + x2
2

− 1

...
µ

√

µ2 + x2
n

− 1





















, V2 =





















x1
√

µ2 + x2
1

0 0 0

0
x2

√

µ2 + x2
2

0 0

...
...

. . .
...

0 0 0
xn

√

µ2 + x2
n





















. (3.8)

(ii) H is strongly semismooth on R
n+1.
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Proof. The result (i) holds from Proposition 3.1(ii). Now we turn to prove the result (ii).

SinceH is strongly semismooth on R
n+1 if and only if its component functionHi, i = 1, 2, . . . , n,

are [32], and the composition of strongly semismooth functions is a strongly semismooth function

[9, Theorem 19], the result (ii) follows from Proposition 3.1(v) and the fact that a continuously

differentiable function with a Lipschitz continuous gradient is strongly semismooth [14]. �

3.3. The non-monotone smoothing Newton algorithm for GAVE (1.1)

Now we are in position to develop a non-monotone smoothing Newton algorithm to solve

the system of nonlinear equations H(z) = 0, and so is GAVE (1.1).

Let H(z) be given in (3.5) and define the merit function M : R× R
n → R+ by

M(z) := ‖H(z)‖2.

Clearly, solving the system of nonlinear equationsH(z) = 0 is equivalent to solving the following

unconstrained optimization problem

min
z∈Rn+1

M(z)

with the vanished objective function value. We now propose a non-monotone smoothing Newton

algorithm to solve H(z) = 0 by minimizing the merit function M(z), which is described in

Algorithm 3.1.

Remark 3.1. The development of Algorithm 3.1 is inspired by the non-monotone smooth-

ing Newton algorithm for the weighted complementarity problem [39] and the non-monotone

Levenberg-Marquardt type method for the weighted nonlinear complementarity problem [41].

Before ending this section, we will show that Algorithm 3.1 is well-defined. To this end, we

need the following lemma.

Lemma 3.1. Let H ′(z) be defined by (3.7) and (3.8). If Assumption 1.1 holds, then H ′(z) is

nonsingular at any z = (µ, x) ∈ R++ × R
n.

Proof. From (3.7), we need only to show that A+BV2 is nonsingular. Since Assumption 1.1

holds and |xi/
√

x2
i + µ2 | < 1, i = 1, 2, . . . , n, the result immediately follows from Lemma 2.3.

The proof is complete. �

Then we have the following theorem.

Theorem 3.1. If Assumption 1.1 holds, Algorithm 3.1 is well defined and either terminates in

finitely many steps or generates an infinite sequence {z(k)} satisfying M(z(k)) ≤ C(k), µ(k) > 0

and β(k) < µ(k) for all k ≥ 0.

Proof. We will prove it by mathematical induction. Suppose that M(z(k)) ≤ C(k), µ(k) > 0

and β(k) < µ(k) for some k. Since µ(k) > 0, it follows from Lemma 3.1 that H ′(z(k)) is

nonsingular. Hence, ∆z(k) can be uniquely determined by (3.9). If ‖H(z(k))‖ = 0, then

Algorithm 3.1 terminates. Otherwise, ‖H(z(k))‖2 = M(z(k)) ≤ C(k) implies that C(k) > 0, from

which and the second equation in (3.12) we have β(k) = γC(k) > 0. In the following, we divide

our proof into three parts.



10 C.R. CHEN, D.M. YU, D.R. HAN AND C.F. MA

Algorithm 3.1: A Non-Monotone Smoothing Newton Algorithm (NSNA) for

GAVE (1.1).

1 Choose θ, δ ∈ (0, 1) and z(0) := (µ(0), x(0)) ∈ R++ × R
n. Let C(0) := M(z(0)). Choose

γ ∈ (0, 1) such that β(0) = γC(0) < µ(0) and γµ(0) < 1. Set k := 0.

2 If ‖H(z(k))‖ = 0, then stop. Else, compute the search direction

∆z(k) = (∆µ(k),∆x(k)) ∈ R× R
n by solving the perturbed Newton system

H ′(z(k))∆z(k) = −H(z(k)) + β(k)e(1), (3.9)

where e(1) = [1, 0]⊤ ∈ R× R
n. If ∆z(k) satisfies

‖H(z(k) +∆z(k))‖ ≤ θ‖H(z(k))‖, (3.10)

then set z(k+1) := z(k) +∆z(k) and go to step 4. Otherwise, go to step 3.

3 Let α(k) be the maximum of the values 1, δ, δ2, · · · such that

M(z(k) + α(k)∆z(k)) ≤ C(k) − γ‖α(k)∆z(k)‖2. (3.11)

Set z(k+1) := z(k) + α(k)∆z(k) and go to step 4.

4 Compute M(z(k+1)) = ‖H(z(k+1))‖2 and set

C(k+1) :=
(C(k) + 1)M(z(k+1))

M(z(k+1)) + 1
, β(k+1) := γC(k+1). (3.12)

5 Set k := k + 1 and go to step 2.

Firstly, we will show that µ(k+1) > 0. On one hand, if z(k+1) is generated by step 2, it

follows from (3.9) that

µ(k+1) = µ(k) +∆µ(k) = µ(k) + (−µ(k) + β(k)) = β(k) > 0.

On the other hand, if z(k+1) is generated by step 3, we first show that there exists at least

a nonnegative integer l satisfying (3.11). On the contrary, for any nonnegative integer l, we

have

M(z(k) + δl∆z(k)) > C(k) − γ‖δl∆z(k)‖2,

which together with M(z(k)) ≤ C(k) gives

M(z(k) + δl∆z(k))−M(z(k))

δl
+ γδl‖∆z(k)‖2 > 0.

Since M is differentiable at z(k) and δ ∈ (0, 1), by letting l → +∞ in the above inequality, we

have

M′(z(k))∆z(k) ≥ 0. (3.13)

In addition, from (3.9) we have

M′(z(k))∆z(k) = 2H(z(k))⊤H ′(z(k))∆z(k)
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= −2‖H(z(k))‖2 + 2µ(k)β(k)

= 2µ(k)(β(k) − µ(k))− 2‖Ax(k) +BΦ(µ(k), x(k))− b‖2. (3.14)

Since µ(k) > 0 and β(k) < µ(k), (3.14) implies that M′(z(k))∆z(k) < 0, which contradicts

to (3.13). Therefore, there exists α(k) ∈ (0, 1] such that

z(k+1) = z(k) + α(k)∆z(k)

in step 3. In this case, it follows from (3.9) that

µ(k+1) = (1− α(k))µ(k) + α(k)β(k) > 0.

Secondly, we will show that M(z(k+1)) < C(k+1). Indeed, if z(k+1) is generated by step 2,

then it follows from θ ∈ (0, 1) and (3.10) that

M(z(k+1)) ≤ θ2M(z(k)) < M(z(k)) ≤ C(k).

Otherwise, by step 3, we can also obtain M(z(k+1)) < C(k). In fact, β(k) < µ(k) implies that

∆z(k) 6= 0. Thereby, (3.11) implies that M(z(k+1)) < C(k). Consequently, M(z(k+1)) < C(k)

and the first equation in (3.12) imply

C(k+1) =
(C(k) + 1)M(z(k+1))

M(z(k+1)) + 1
>

(M(k+1) + 1)M(z(k+1))

M(z(k+1)) + 1
= M(z(k+1)).

Finally, we will show that µ(k+1) > β(k+1). As mentioned earlier, we have µ(k+1) = β(k) by

step 2 and

µ(k+1) = (1 − α(k))µ(k) + α(k)β(k)

by step 3, respectively. For the latter, since α(k) ∈ (0, 1] and µ(k) > β(k) > 0,

µ(k+1) = (1 − α(k))µ(k) + α(k)β(k) ≥ (1− α(k))β(k) + α(k)β(k) = β(k).

In a word, µ(k+1) ≥ β(k). In addition, it follows from M(z(k+1)) < C(k) and the first equation

in (3.12) that

0 ≤ C(k+1) =
C(k)M(z(k+1)) +M(z(k+1))

M(z(k+1)) + 1
<

C(k)M(z(k+1)) + C(k)

M(z(k+1)) + 1
= C(k),

from which and γ > 0 we obtain

µ(k+1) ≥ β(k) = γC(k) > γC(k+1) = β(k+1).

The proof is completed by letting M(z(0)) ≤ C(0), µ(0) > 0 and β(0) < µ(0). �

Remark 3.2. We should mention that the equation (3.14) plays the key role in the proof of

Theorem 3.1. This equation motivates us to develop the algorithm with the property β(k)<µ(k),

which is slightly different from that given in [39] (β(k) ≤ µ(k) was proved there).
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4. Convergence Analysis

In this section, we will analyze the convergence of Algorithm 3.1. In what follows, we assume

that ‖H(z(k))‖ 6= 0 for all k ≥ 0. To establish the global convergence of Algorithm 3.1, we need

the following lemmas.

Lemma 4.1. Suppose that Assumption 1.1 holds. Let {z(k) = (µ(k), x(k))} be the iteration

sequence generated by Algorithm 3.1. Then C(k) > C(k+1) and µ(k) > µ(k+1) for all k ≥ 0.

Proof. The proof of C(k) > C(k+1) for all k ≥ 0 can be found in the proof of Theorem 3.1.

It follows from Theorem 3.1 that µ(k) > β(k) for all k ≥ 0. Then, by step 2, we have µ(k+1) =

β(k) < µ(k). By step 3,

µ(k+1) = (1− α(k))µ(k) + α(k)β(k) < (1− α(k))µ(k) + α(k)µ(k) = µ(k).

The proof is complete. �

Lemma 4.2. If Assumption 1.1 holds, then {z(k)} generated by Algorithm 3.1 is bounded.

Proof. We first prove that the level set

L(Λ) := {z = (µ, x) ∈ R
n+1 : ‖H(z)‖ ≤ Λ}

is bounded for any Λ > 0. On the contrary, there exists a sequence {z̄(k) = (µ̄(k), x̄(k))} such

that limk→∞ ‖z̄(k)‖ = ∞ and ‖H(z̄(k))‖ ≤ Λ, where Λ > 0 is some constant. Since

‖H(z̄(k))‖2 = (µ̄(k))2 +
∥

∥Ax̄(k) +BΦ(µ̄(k), x̄(k))− b
∥

∥

2
, (4.1)

we can conclude that {µ̄(k)} is bounded. It follows from this and the unboundedness of

{(µ̄(k), x̄(k))} that limk→∞ ‖x̄(k)‖ = ∞. Since the sequence {x̄(k)/‖x̄(k)‖} is bounded, it has

at least one accumulation point x̂. Then, there exists a subsequence {x̄(k)}k∈K such that

limk∈K,k→+∞(x̄(k)/‖x̄(k)‖) = x̂ with K ⊂ {0, 1, 2, . . .}. It follows from the continuity of the

2-norm that ‖x̂‖ = 1. In the following, we remain k ∈ K. From (4.1), we have

Λ2

‖x̄(k)‖2 ≥ ‖H(z̄(k))‖2
‖x̄(k)‖2

=
(µ̄(k))2

‖x̄(k)‖2 +

∥

∥

∥

∥

A
x̄(k)

‖x̄(k)‖ +B
Φ(µ̄(k), x̄(k))

‖x̄(k)‖ − b

‖x̄(k)‖

∥

∥

∥

∥

2

. (4.2)

Since

√

(µ̄(k))2 + (x̄
(k)
i )2 − µ̄(k)

‖x̄(k)‖ =

√

√

√

√

(

µ̄(k)

‖x̄(k)‖

)2

+

(

x̄
(k)
i

‖x̄(k)‖

)2

− µ̄k

‖x̄(k)‖ , i = 1, 2, . . . , n,

from the boundedness of {µ̄(k)}, we have

lim
k→∞

√

(µ̄(k))2 + (x̄
(k)
i )2 − µ̄(k)

‖x̄(k)‖ =
√

x̂2
i = |x̂i|.
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Hence, by letting k → ∞ in (4.2), we have Ax̂ + B|x̂| = 0, i.e. [A + BD(x̂)]x̂ = 0. Since

D(x̂) ∈ [−I, I], it follows from Lemma 4.3 that A + BD(x̂) is nonsingular. Thus, we have

x̂ = 0, which contradicts to the fact that ‖x̂‖ = 1.

If {z(k)} is generated by Algorithm 3.1, then ‖H(z(k))‖ ≤
√
C(0) for all k ≥ 0. Hence, {z(k)}

is bounded based on the aforementioned discussion. �

Remark 4.1. The proof of Lemma 4.2 is inspired by that of [40, Theorem 2.3], which was

considered in the case that the interval matrix [A− |B|, A+ |B|] is regular. In addition, similar

to the proof of [17, Lemma 4.1], the boundedness of {z(k)} can be derived under the assumption

that σmin(A) > σmax(B). Our result here seems more general than those in [17, Lemma 4.1].

Now we show the global convergence of Algorithm 3.1.

Theorem 4.1. Assume that Assumption 1.1 holds. Let {z(k) = (µ(k), x(k))} be the iteration

sequence generated by Algorithm 3.1. Then any accumulation point z∗ of {z(k)} satisfies

H(z∗) = 0,

i.e. z∗ = (0, x∗) and x∗ is a solution of GAVE (1.1).

Proof. Lemma 4.2 implies the existence of the accumulation point of {z(k)} generated by

Algorithm 3.1. Let z∗ be any accumulation point of {z(k)}, then there exists a subsequence of

{z(k)} converging to z∗. For convenience, we still denote the subsequence by {z(k)}.
By Lemma 4.1, {C(k)} is convergent because it is monotonically decreasing. Thus, there

exists a constant C∗ ≥ 0 such that limk→+∞ C(k) = C∗. As M(z(k)) = ‖H(z(k))‖2 ≤ C(k) for all

k ≥ 0, limk→+∞ ‖H(z(k))‖ = 0 provided that C∗ = 0. Then, from the continuity of H(z) we

have H(z∗) = 0. In the following, we assume that C∗ > 0 and derive a contradiction.

According to the first equation in (3.12), we have

lim
k→+∞

M(z(k+1)) = lim
k→+∞

( C(k+1)

1 + C(k) − C(k+1)

)

= C∗ > 0. (4.3)

By the fact that β(k) = γC(k), we have

β∗ = lim
k→+∞

β(k) = γC∗ > 0.

Based on Theorem 3.1 and Lemma 4.1, we have

µ∗ = lim
k→+∞

µ(k) ≥ lim
k→+∞

β(k) = β∗ > 0.

Since µ∗ > 0, H ′(z∗) is nonsingular and M is continuously differentiable at z∗.

Let

N :=
{

k : ‖H(z(k) +∆z(k))‖ ≤ θ‖H(z(k))‖
}

.

We claim that N must be a finite set. In fact, if N is an infinite set, then

‖H(z(k) +∆z(k))‖ ≤ θ‖H(z(k))‖,

i.e.

M(z(k+1)) ≤ θ2M(z(k))
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holds for infinitely many k. By letting k → +∞ with k ∈ N , we have C∗ ≤ θ2C∗. This leads to

a contradiction due to θ ∈ (0, 1) and C∗ > 0. Hence, we can suppose that there exists an index

k̄ > 0 such that

‖H(z(k) +∆z(k))‖ > θ‖H(z(k))‖, ∀ k ≥ k̄.

Then, for all k ≥ k̄, z(k+1) = z(k) + α(k)∆z(k) (generated by step 3) satisfies

M(z(k+1)) ≤ C(k) − γ‖α(k)∆z(k)‖2,

i.e.

γ‖α(k)∆z(k)‖2 ≤ C(k) −M(z(k+1)),

from which and (4.3) we have

lim
k→+∞

α(k)‖∆z(k)‖ = 0.

On one hand, if 1 ≥ α(k) = δlk ≥ ̺ > 0 for all k ≥ k̄ with ̺ being a fixed constant, then

∆z∗ = lim
k̄≤k→+∞

∆z(k) = 0,

which implies that

M′(z∗)∆z∗ = 0. (4.4)

Here and in the sequel, ∆z∗ is the unique solution of

H ′(z∗)∆z∗ = −H(z∗) + β∗e(1).

On the other hand, {α(k)}k≥k̄ has a subsequence converging to 0. Without loss of generality,

we may assume that limk̄≤k→+∞ α(k) = 0. Let α̂(k) := δlk/δ, then limk̄≤k→+∞ α̂(k) = 0.

Moreover, for all k ≥ k̄, it follows from the definition of α(k) and Theorem 3.1 that

M(z(k) + α̂(k)∆z(k)) > C(k) − γ‖α̂(k)∆z(k)‖2 ≥ M(z(k))− γ‖α̂(k)∆z(k)‖2.

Thus,
M(z(k) + α̂(k)∆z(k))−M(z(k))

α̂(k)
+ γα̂(k)‖∆z(k)‖2 > 0.

By letting k → +∞ in the above inequality, we have

M′(z∗)∆z∗ ≥ 0. (4.5)

Since µ∗γ ≤ γµ(0) < 1, it follows from (3.9) and (4.3) that

1

2
M′(z∗)∆z∗ = H(z∗)⊤H ′(z∗)∆z∗ = −M(z∗) + µ∗β∗

= −C∗ + µ∗γC∗ = (µ∗γ − 1)C∗ < 0,

which is contrary to (4.4) and (4.5). The proof of the theorem is complete. �

Under Assumption 1.1, GAVE (1.1) has a unique solution and thus Lemma 4.2 and The-

orem 4.1 imply that the sequence generated by Algorithm 3.1 has a unique accumulation z∗

and limk→+∞ z(k) = z∗. In the following, we will discuss the local quadratic convergence of

Algorithm 3.1.
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Lemma 4.3. Assume that Assumption 1.1 holds and z∗ = (0, x∗) is the accumulation point of

the sequence {z(k)} generated by Algorithm 3.1. We have

(i) ∂H(z∗) ⊆
{

V : V=

[

1 0

B vec(κi − 1) A+B diag(χi)

]

, κi, χi ∈ [−1, 1], i=1, 2, . . . , n

}

.

(ii) All V ∈ ∂H(z∗) are nonsingular.

(iii) There exists a neighborhood N (z∗) of z∗ and a constant C > 0 such that for any z :=

(µ, x) ∈ N (z∗) with µ > 0, H ′(z) is nonsingular and ‖H ′(z)−1‖ ≤ C.

Proof. A direct computation yields the result (i). The result (ii) follows from (i) and

Lemma 2.3, and the result (iii) follows from [31, Lemma 2.6]. �

Owing to Proposition 3.2(ii) and Lemma 4.3, we can obtain the following local quadratic

convergence theorem of Algorithm 3.1. The theorem was well known in the application of

smoothing-type Newton methods. The theorem as a whole can be implied by [39, Theorem 8]

and thus we omit the proof here.

Theorem 4.2. Assume that Assumption 1.1 holds and z∗ is the accumulation point of the

sequence {z(k)} generated by Algorithm 3.1. Then the whole sequence {z(k)} converges to z∗ with

‖z(k+1) − z∗‖ = O
(

‖z(k) − z∗‖2
)

.

5. Numerical Results

In this section, we will present two numerical examples to illustrate the performance of

Algorithm 3.1. Three algorithms will be tested, i.e. Algorithm 3.1 (denoted by “NSNA”),

the monotone smoothing Newton algorithm proposed by Jiang and Zhang [17] (denoted by

“JZ-MSNA”) and the monotone smoothing Newton algorithm proposed by Tang and Zhou [40]

(denoted by “TZ-MSNA”). All experiments are implemented in MATLAB R2018b with a ma-

chine precision 2.22× 10−16 on a PC Windows 10 operating system with an Intel i7-9700 CPU

and 8 GB RAM.

We will apply the aforementioned algorithms to solve GAVE (1.1) arising from HLCP. Given

M,N ∈ R
n×n and q ∈ R

n, HLCP is to find a pair (z, w) ∈ R
n × R

n such that

Mz −Nw = q, z ≥ 0, w ≥ 0, z⊤w = 0. (5.1)

The equivalent relationship between GAVE (1.1) and HLCP (5.1) can be found in [27, Propo-

sition 1]. The following two examples are frequently used in the literature.

Example 5.1. Consider HLCP (5.1) with M = Â+ ξI and N = B̂ + ζI [28], where

Â =





















S −I

−I S −I

−I S −I
. . .

. . .
. . .

−I S −I

−I S





















, B̂ =





















S

S

S
. . .

S

S





















,
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S =





















4 −1

−1 4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4





















.

Example 5.2. Consider HLCP (5.1) with M = Â+ ξI and N = B̂ + ζI [28], where

Â =





















S −0.5I

−1.5I S −0.5I

−1.5I S −0.5I
. . .

. . .
. . .

−1.5I S −0.5I

−1.5I S





















, B̂ =





















S

S

S
. . .

S

S





















,

S =





















4 −0.5

−1.5 4 −0.5

−1.5 4 −0.5
. . .

. . .
. . .

−1.5 4 −0.5

−1.5 4





















.

In Examples 5.1 and 5.2, we define q = Mz∗ −Nw∗ with

z∗ = (0, 1, 0, 1, · · · , 0, 1)⊤, w∗ = (1, 0, 1, 0 · · · , 1, 0)⊤.

In addition, four sets of values of ξ and ζ are used, i.e. (ξ, ζ) = (0, 0), (ξ, ζ) = (0, 4), (ξ, ζ) = (4, 0)

and (ξ, ζ) = (−0.5,−0.5). When ξ, ζ ≥ 0, matrices M and N in Example 5.1 are symmetric

positive definite while the corresponding matrices in Example 5.2 are nonsymmetric positive

definite and both {M,N} in Examples 5.1 and 5.2 have the column W-property [28]. Hence,

for Examples 5.1 and 5.2 with ξ, ζ ≥ 0, HLCP (5.1) has a unique solution for any q ∈ R
n [37,

Theorem 2]. Correspondingly, GAVE (1.1) with A = M + N and B = M − N satisfies

Assumption 1.1 and has a unique solution for any b = q ∈ R
n.

For NSNA, we set θ = 0.2, δ = 0.8, µ(0) = 0.01 and choose

γ := min

{

µ(0)

C(0) + 1
,

1

µ(0) + 1
, 10−12

}

such that γC(0)<µ(0), γµ(0)<1 and γ∈(0, 1). For JZ-MSNA, we set δ=0.8, σ=0.2, µ(0)=0.01,

p = 2 and choose β := max{100, 1.01 ∗ (τ (0))2/µ0} to satisfy the conditions needed for this

algorithm [17] (we refer to [17] for the definition of τ (0)). For TZ-MSNA, as in [40], we set

σ = 0.2, δ = 0.8, γ = 0.001 and µ(0) = 0.01. For all methods, x(0) = (2, 2, · · · , 2)⊤ and methods

are stopped if

Res = ‖Ax(k) +B|x(k)| − b‖ ≤ 10−7

or the maximum number of iteration step it max = 2000 is exceeded. We use the symbol “−−”

to denote the latter case.
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We first report the results in the case that ξ, ζ ≥ 0. For Example 5.1, numerical results

are shown in Tables 5.1-5.3, from which we can find that NSNA is better than JZ-MSNA

and TZ-MSNA in terms of Iter (the number of iterations) and Cpu (the elapsed CPU time

in seconds). Fig. 5.1 plots the convergence curves of the tested methods, from which the

monotone convergence properties of all methods are shown1) . For Example 5.2, numerical

results are shown in Tables 5.4-5.6, from which we can also find that NSNA is superior to JZ-

MSNA and TZ-MSNA in terms of Iter and Cpu. Fig. 5.2 plots the convergence curves of the

tested methods, from which the monotone convergence properties of JZ-MSNA and TZ-MSNA

are shown and the nonmonotone convergence property of NSNA occurs.

Table 5.1: Numerical results for Example 5.1 with ξ = ζ = 0.

Method
n

256 1024 2304 4096

NSNA

Iter 5 5 6 6

Cpu 0.0044 0.0619 0.3364 0.9985

Res 1.1392 × 10−14 5.7894 × 10−14 2.8847 × 10−13 1.5603 × 10−12

JZ-MSNA

Iter 6 6 8 7

Cpu 0.0052 0.0724 0.4497 1.2020

Res 2.3488 × 10−11 4.9355 × 10−10 1.4026 × 10−11 9.4826 × 10−11

TZ-MSNA

Iter 6 6 7 7

Cpu 0.0049 0.0664 0.3860 1.1631

Res 1.1147 × 10−14 2.2960 × 10−14 3.4131 × 10−14 4.6847 × 10−14

Table 5.2: Numerical results for Example 5.1 with ξ = 0 and ζ = 4.

Method
n

256 1024 2304 4096

NSNA

Iter 5 6 7 7

Cpu 0.0035 0.0745 0.3975 1.3254

Res 2.9913 × 10−14 7.8455 × 10−13 4.8343 × 10−12 2.3106 × 10−11

JZ-MSNA

Iter 7 8 8 9

Cpu 0.0055 0.1102 0.4676 1.6890

Res 6.4061 × 10−11 1.7803 × 10−9 4.4746 × 10−8 7.1534 × 10−8

TZ-MSNA

Iter 6 7 8 8

Cpu 0.0039 0.0862 0.4599 1.5145

Res 1.7297 × 10−14 3.4071 × 10−14 5.3415 × 10−14 6.7748 × 10−14

We then report the results for (ξ, ζ) = (−0.5,−0.5). Numerical results for Example 5.1 with

n = 162 and Example 5.2 with n = 242 are reported in Table 5.7 and Fig. 5.3, from which we

find that NSNA can find a solution of the GAVE (1.1) in Example 5.1 while JZ-MSNA and

TZ-MSNA fail and NSNA is better than JZ-MSNA and TZ-MSNA for solving GAVE (1.1) in

Example 5.2. The results further illustrate the superior performance of NSNA.

In conclusion, under our setting, NSNA is a competitive method for solving GAVE (1.1).

1) For JZ-MSNA and TZ-MSNA, ‖H(z(k))‖ is defined as in (3.5) with φ(a, b) = (|a|p + |b|p)1/p.
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Fig. 5.1. Convergence history curves for Example 5.1 with n = 322. The plots in the first column are

for NSNA, the plots in the second column are for JZ-MSNA and the plots in the third column are for

TZ-MSNA, respectively. The plots in the first row are for ξ = ζ = 0, the plots in the second row are

for ξ = 0 and ζ = 4 and the plots in the third row are for ξ = 4 and ζ = 0, respectively.

Fig. 5.2. Convergence history curves for Example 5.2 with n = 322. The plots in the first column are

for NSNA, the plots in the second column are for JZ-MSNA and the plots in the third column are for

TZ-MSNA, respectively. The plots in the first row are for ξ = ζ = 0, the plots in the second row are

for ξ = 0 and ζ = 4 and the plots in the third row are for ξ = 4 and ζ = 0, respectively.
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Table 5.3: Numerical results for Example 5.1 with ξ = 4 and ζ = 0.

Method
n

256 1024 2304 4096

NSNA

Iter 3 3 3 3

Cpu 0.0021 0.0361 0.1536 0.5444

Res 2.0696 × 10−13 5.8026 × 10−12 4.2044 × 10−11 1.7292 × 10−10

JZ-MSNA

Iter 4 4 5 5

Cpu 0.0035 0.0477 0.2846 0.9388

Res 2.5682 × 10−11 1.1439 × 10−11 2.1336 × 10−11 3.0094 × 10−11

TZ-MSNA

Iter 4 4 4 4

Cpu 0.0024 0.0458 0.2293 0.7017

Res 1.7786 × 10−14 3.4123 × 10−14 5.2927 × 10−14 6.8855 × 10−14

Table 5.4: Numerical results for Example 5.2 with ξ = ζ = 0.

Method
n

256 1024 2304 4096

NSNA

Iter 4 5 6 6

Cpu 0.0031 0.0642 0.3332 1.0440

Res 1.0500 × 10−14 5.9914 × 10−14 2.9611 × 10−13 1.6331 × 10−12

JZ-MSNA

Iter 5 6 8 7

Cpu 0.0036 0.0774 0.4503 1.2214

Res 4.1569 × 10−11 2.7899 × 10−10 1.4829 × 10−11 6.0501 × 10−9

TZ-MSNA

Iter 5 6 7 7

Cpu 0.0035 0.0679 0.3776 1.2130

Res 1.1200 × 10−14 2.0773 × 10−14 3.1480 × 10−14 4.2238 × 10−14

Table 5.5: Numerical results for Example 5.2 with ξ = 0 and ζ = 4.

Method
n

256 1024 2304 4096

NSNA

Iter 6 7 7 8

Cpu 0.0047 0.0869 0.4074 1.4394

Res 3.0087 × 10−14 7.9704 × 10−13 5.8680 × 10−12 2.4058 × 10−11

JZ-MSNA

Iter 8 9 10 11

Cpu 0.0075 0.1225 0.5793 1.9709

Res 1.4866 × 10−11 2.0476 × 10−9 1.3748 × 10−8 7.0290 × 10−8

TZ-MSNA

Iter 7 8 9 9

Cpu 0.0050 0.0945 0.5193 1.6262

Res 1.6717 × 10−14 3.3155 × 10−14 5.1814 × 10−14 9.2842 × 10−14
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Fig. 5.3. Convergence history curves for Example 5.1 (the above plots) and Example 5.2 (the below

plots) with ξ = ζ = −0.5. The plots in the first column are for NSNA, the plots in the second column

are for JZ-MSNA and the plots in the third column are for TZ-MSNA, respectively.

Table 5.6: Numerical results for Example 5.2 with ξ = 4 and ζ = 0.

Method
n

256 1024 2304 4096

NSNA

Iter 3 3 3 3

Cpu 0.0024 0.0388 0.1623 0.5437

Res 2.1175 × 10−13 5.8378 × 10−12 4.2243 × 10−11 1.7356 × 10−10

JZ-MSNA

Iter 4 4 5 5

Cpu 0.0030 0.0500 0.2979 0.8752

Res 2.5874 × 10−11 1.1674 × 10−11 2.1543 × 10−11 3.0534 × 10−11

TZ-MSNA

Iter 4 4 4 4

Cpu 0.0029 0.0493 0.2448 0.7257

Res 1.7719 × 10−14 3.3493 × 10−14 4.6185 × 10−14 6.7869 × 10−14

Table 5.7: Numerical results for ξ = ζ = −0.5.

Example NSNA JZ-MSNA TZ-MSNA

Example 5.1

Iter 203 −− −−

Cpu 0.3295 −− −−

Res 4.3355 × 10−11 −− −−

Example 5.2

Iter 89 1299 1074

Cpu 1.0028 19.4337 10.0706

Res 2.0768 × 10−14 1.0891 × 10−9 1.7962 × 10−14

6. Conclusions

In this paper, a non-monotone smoothing Newton method is proposed to solve the system

of generalized absolute value equations. Under a weaker assumption, we prove the global and
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the local quadratic convergence of our method. Numerical results demonstrate that our method

can be superior to two existing methods in some situations.
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