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Abstract

Image restoration based on total variation has been widely studied owing to its edge-

preservation properties. In this study, we consider the total variation infimal convolution

(TV-IC) image restoration model for eliminating mixed Poisson-Gaussian noise. Based on

the alternating direction method of multipliers (ADMM), we propose a complete splitting

proximal bilinear constraint ADMM algorithm to solve the TV-IC model. We prove the

convergence of the proposed algorithm under mild conditions. In contrast with other

algorithms used for solving the TV-IC model, the proposed algorithm does not involve

any inner iterations, and each subproblem has a closed-form solution. Finally, numerical

experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.

Mathematics subject classification: 65K10, 68U10, 94A08.

Key words: Image restoration, Mixed Poisson-Gaussian noise, Alternating direction me-

thod of multipliers, Total variation.

1. Introduction

Image restoration is a major problem in image processing, and its primary goal is to restore

an original clean image from an observed image degraded by noise. Variational models are

an important research direction for image restoration, wherein the basic idea is to construct

an energy function according to a specific image restoration problem and minimize the energy

function to obtain the original clear image. Generally, variational models include two items:

a data fidelity item, which is established based on the probability distribution of noise, and

a regularization item, which reflects prior information of the original image. Owing to the

common influence of photon counting and thermal noise on the detector, observed images are

often corrupted by mixed Poisson-Gaussian noise. Over the past two decades, researchers have

extensively investigated the elimination of mixed Poisson-Gaussian noise. Consequently, the

results of these studies have been applied to several practical problems, such as fluorescence
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microscopy images, X-ray computed tomography, and hyperspectral images. For more exam-

ples, the interested readers are recommended to refer to [2,6,9,12,20–22,39] and the references

therein.

Compared with the problem of image restoration from single Gaussian noise or Poisson

noise, the removal of mixed Poisson-Gaussian noise removal is more complex, owing to the

need to establish a suitable data-fidelity term. Existing methods developed to address this

issue can be divided into two categories. The first category involves a certain transformation

in which the mixed Poisson-Gaussian noise is transformed into a single type of noise. Then,

either a mainstream Gaussian denoising algorithm or Poisson denoising algorithm is used to

denoise the image to obtain a clean image. Representative models include the generalized

Anscombe transform model [18, 19, 25, 31], reweighted L2 (WL2) model [14, 29], and shifted

Poisson model [10]. The advantage of such a type of model is that a large number of Gaus-

sian denoising algorithms or Poisson denoising algorithms are available for selection. See, for

example [1, 8, 30]. However, its biggest shortcoming is that the estimation of data fidelity in

this type of model is not sufficiently accurate. The other category involves establishing a model

directly based on the probability distribution of mixed Poisson-Gaussian noise. Based on the

maximum a posteriori (MAP) estimation framework, Chouzenoux et al. [7] proposed an exact

mixed Poisson-Gaussian model, in which a data fidelity term was established by combining

the statistical characteristics of both Poisson and Gaussian noise. Additionally, they proved

the convexity and gradient Lipschitz continuity of the data fidelity term. Simultaneously, the

author employed this property to solve the model using the primal-dual splitting method. How-

ever, the exact mixed Poisson-Gaussian model needs to solve the infinite sum problem of the

function term series; therefore, obtaining a numerically accurate solution is rather difficult. In

contrast, the authors of [5, 17] proposed a total variation infimal convolution model by using

the generalized joint MAP [17] estimation method. The TV-IC model has a simple formula-

tion and low computational complexity. Additionally, it provides a good estimate of the mixed

Poisson-Gaussian noise. Lanza et al. [17] proposed a primal-dual-based iterative algorithm to

solve the TV-IC model. However, the algorithm requires Newton iterations to solve a nonlinear

optimization subproblem, which significantly increases the amount of calculation required for

the outer loop. Moreover, the convergence of the algorithm is not certain. Calatroni et al. [5]

proposed a semi-smooth Newton algorithm to solve the TV-IC model. However, the algorithm

is constrained by the use of Newton iterations to solve the subproblem, which renders it highly

time-intensive. Zhang et al. [40] proposed a bilinear constraint-based ADMM (BCA) algorithm

to solve the TV-IC model. However, the BCA algorithm requires inner iterations while solving

subproblems. Besides, it is only suitable to denoise pure Poisson-Gaussian noise. Recently,

Toader et al. [35] proposed a primal-dual hybrid gradient (PDHG) algorithm to solve the TV-

IC model. However, this algorithm also involves a subproblem that must be solved using the

Newton iteration method.

In addition to these two types of methods, data-driven deep learning models have also been

applied to the mixed Poisson-Gaussian noise problem, and they have achieved good results.

For example, Remez et al. [28] implemented a denoising model based on a class-aware strategy

using a fully convolutional neural network. Although deep learning models exhibit superior

performance compared to traditional variational models in some cases, they involve certain

limitations in terms of network construction and model training. In particular, the generaliza-

tion ability of deep learning models depends on the choice of the training dataset.

To overcome the complications encountered by existing algorithms in solving the TV-IC
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model, we propose a proximal bilinear constraint-based ADMM (PBCA) algorithm. The sig-

nificant difference between the PBCA and BCA algorithms is the addition of proximal terms

while solving the u subproblem. This approach can help avoid inner iterations caused by the

BCA algorithm. Therefore, the proposed algorithm can be used to denoise and deblur with

mixed Poisson-Gaussian noise. Further, we prove the convergence of the proposed algorithm

under mild conditions. To demonstrate the efficiency and effectiveness of the proposed algo-

rithm, we compare its performance with that of other image restoration algorithms on mixed

Poisson-Gaussian noise.

The remainder of this paper is organized as follows. In Section 2, we briefly review the TV-IC

model and the BCA algorithm. In Section 3, we introduce the proposed PBCA algorithm and

prove its convergence. In Section 4, we present the results of numerical experiments conducted

to demonstrate the efficiency and effectiveness of the proposed algorithm. Finally, we provide

some concluding remarks in Section 5.

2. Review of the TV-IC Model and BCA Algorithm

In this section, first, we briefly review the TV-IC model proposed by [5,17]. We then discuss

the BCA algorithm [40].

2.1. Review of the TV-IC model

Let u ∈ Rm×n be an ideal image, H be a blur operator, and w be additive Gaussian noise

with zero mean and standard deviation σ. Suppose that the image u ∈ Rm×n is corrupted by

mixed Poisson-Gaussian noise, that is, the observed image f ∈ Rm×n is obtained by

v = Poisson(Hu),

f = v + w.

Based on the generalized joint MAP estimation method and Bayes’ rule [16, 32], we have

(u⋆, v⋆) = argmax
u,v

∏

i

P (ui, vi|fi)

= argmax
u,v

∏

i

P (fi|ui, vi)P (ui, vi)

P (fi)

= argmax
u,v

∏

i

P (fi|ui, vi)P (vi|ui)P (ui)

= argmax
u,v

∏

i

P (fi|vi)P (vi|ui)P (ui). (2.1)

By combining the Poisson noise intensity function

P (vi|ui) =
(Hu)vii e−(Hu)i

vi!
,

the Gaussian noise intensity function

P (fi|vi) = e−
|fi−vi|

2

2σ2 ,
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the prior density function P (ui) = e−λϕ(Lui), and by further computing the negative logarithm

of the general joint MAP estimate (2.1), we obtain

(u⋆, v⋆) = argmin
u,v

− ln

(

∏

i

P (fi|vi)P (vi|ui)P (ui)

)

= argmin
u,v

∑

i

(

− lnP (fi|vi)− lnP (vi|ui)− lnP (ui)
)

= argmin
u,v

1

2σ2

∑

i

(fi − vi)
2 +

∑

i

(

(Hu)i − vi ln(Hu)i + ln vi!
)

+ λ
∑

i

ϕ(Lui). (2.2)

Thereafter, using the standard Stirling [26,27] approximation of the logarithm of the factorial

function to vi, we obtain the following TV-IC model, which was established in [5, 17]:

min
u,v

λ1

2
‖f − v‖2 + λ2KL(Hu, v) + ϕ(Lu) + δU (u) + δV (v), (2.3)

where

λ1 =
1

λσ2
, λ2 =

1

λ
, KL(Hu, v) =

∑

i

(

(Hu)i − vi − vi ln
(Hu)i
vi

)

,

and δU (u) is the indicator function of the constraint set U = {u|0 ≤ ui ≤ M, ∀i} defined by

δU (u) =

{

0, u ∈ U,

+∞, otherwise.

Additionally, δV (v) denotes the indicator function of the constraint set V = {v|vi ≥ ǫ > 0, ∀i}.
It should be noted that we require v to have a lower bound, which is introduced to evaluate

the convergence guarantee of the proposed algorithm.

2.2. Review of the BCA algorithm

Zhang et al. [40] evaluated the TV-IC model (2.3) when H = I, that is,

min
u,v

λ1

2
‖f − v‖2 + λ2KL(u, v) + ‖∇u‖1 + δV (v), (2.4)

where ‖∇u‖1 denotes the total variation. They proposed the BCA algorithm to solve (2.4),

which is presented as






























uk+1 = argmin
u

Lα(u, v
k, wk,Λk),

vk+1 = argmin
v

Lα(u
k+1, v, wk,Λk),

wk+1 = argmin
w

Lα(u
k+1, vk+1, w,Λk),

Λk+1 = Λk + α(vk+1 · wk+1 − uk+1),

(2.5)

where · denotes element-wise multiplication, and Lα represents the augmented Lagrangian

function defined by

Lα(u, v, w,Λ) =
λ1

2
‖f − v‖2 + λ2

∑

i

(ui − vi − vi lnwi)

+ ‖∇u‖1 + δV (v) + 〈Λ, v · w − u〉+ α

2
‖v · w − u‖2.
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The convergence of the BCA algorithm (2.5) was established in [40]. To avoid the subproblem

of minimizing the total variation of u in the BCA algorithm, Zhang et al. [40] further proposed

a BCAf algorithm (BCA with full splitting) as follows:


























































uk+1 = argmin
u

Lαw,αp

(

u, vk, wk, pk,Λk
w,Λ

k
p

)

,

vk+1 = argmin
v

Lαw,αp

(

uk+1, v, wk, pk,Λk
w,Λ

k
p

)

,

wk+1 = argmin
w

Lαw,αp

(

uk+1, vk+1, w, pk,Λk
w,Λ

k
p

)

,

pk+1 = argmin
p

Lαw,αp

(

uk+1, vk+1, wk+1, p,Λk
w,Λ

k
p

)

,

Λk+1
w = Λk

w + αw(v
k+1 · wk+1 − uk+1),

Λk+1
p = Λk

p + αp(p
k+1 −∇uk+1),

(2.6)

where Lαw,αp
(u, v, w, p,Λw,Λp) is defined as

Lαw,αp
(u, v, w, p,Λw,Λp) =

λ1

2
‖f − v‖2 + λ2

∑

i

(ui − vi − vi lnwi)

+ ‖p‖1 + δV (v) + 〈Λw, v · w − u〉+ αw

2
‖v · w − u‖2

+ 〈Λp, p−∇u〉+ αp

2
‖p−∇u‖2.

However, the convergence of the BCAf algorithm (2.6) remains uncertain.

3. Main Algorithm and Convergence Analysis

In this section, we propose a completely splitting algorithm to solve the TV-IC model

(2.3). Following the idea of the BCA algorithm (2.5), by introducing an auxiliary variable

(Hu)i = wi · vi, the resulting subproblem of u represents a total variation and least-square

minimization problem, which does not have a closed-form solution. If the BCAf algorithm (2.6)

is used, a system of linear equations must be solved, and moreover, the theoretical convergence

of the algorithm cannot be guaranteed. Therefore, by introducing the proximal term and using

a smooth regularization function, we develop a completely splitting algorithm to solve the

TV-IC model (2.3), with the advantage that each subproblem has a closed-form solution.

3.1. PBCA algorithm

First, by introducing two auxiliary variables, (Hu)i = wi ·vi and Lui = yi for any 1 ≤ i ≤ n,

we rewrite (2.3) as the following equivalent constrained problem:

min
u,v,w,y

λ1

2
‖f − v‖2 + λ2

∑

i

(wi · vi − vi − vi lnwi) + ϕ(y) + δU (u) + δV (v)

s.t. (Hu)i = wi · vi, Lui = yi, ∀ 1 ≤ i ≤ n.

(3.1)

The augmented Lagrangian function of the constrained problem mentioned above is given as

Lρ1,ρ2
(u, v, w, y, d1, d2) =

λ1

2
‖f − v‖2 + λ2

∑

i

(wi · vi − vi − vi lnwi)

+ ϕ(y) + δU (u) + δV (v) + 〈d1, Hu− w · v〉

+
ρ1
2
‖Hu− w · v‖2 + 〈d2, Lu− y〉+ ρ2

2
‖Lu− y‖2, (3.2)
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where ρ1 > 0 and ρ2 > 0 represent penalty parameters, d1 and d2 denote Lagrangian multipliers,

〈· , ·〉, and ‖ · ‖ denote the inner product and norm, respectively, and · represents element-wise

multiplication. In the remainder of this work, all multiplications, divisions, exponentiations,

and square root operations considered are performed element-wise.

Then, based on the preconditioned ADMM [3, 4, 11, 13, 15, 23, 33, 36, 38] framework, we

propose the following iterative algorithm to solve (3.1):



























































uk+1 = argmin
u

Lρ1,ρ2

(

u, vk, wk, yk, dk1 , d
k
2

)

+
1

2
‖u− uk‖2P ,

vk+1 = argmin
v

Lρ1,ρ2

(

uk+1, v, wk, yk, dk1 , d
k
2

)

,

wk+1 = argmin
w

Lρ1,ρ2

(

uk+1, vk+1, w, yk, dk1 , d
k
2

)

,

yk+1 = argmin
y

Lρ1,ρ2

(

uk+1, vk+1, wk+1, y, dk1 , d
k
2

)

,

dk+1
1 = dk1 + ρ1(Huk+1 − wk+1 · vk+1),

dk+1
2 = dk2 + ρ2(Lu

k+1 − yk+1),

(3.3)

where P indicates a positive definite symmetric matrix. Now, we demonstrate that each sub-

problem in (3.3) has a closed-form solution.

First, we consider the u-subproblem as

uk+1 = argmin
u

{

δU (u) +
〈

dk1 , Hu− wk · vk
〉

+
ρ1
2
‖Hu− wk · vk‖2

+
〈

dk2 , Lu− yk
〉

+
ρ2
2
‖Lu− yk‖2 + 1

2
‖u− uk‖2P

}

. (3.4)

To obtain a closed-form solution to the u-subproblem, we define

P =
1

α
I − ρ1H

⊤H − ρ2L
⊤L,

where 1 > α(ρ1‖H‖2 + ρ2‖L‖2). Subsequently, the u-subproblem can be simplified into the

following form:

uk+1 = argmin
u

{

δU (u) +
〈

dk1 , Hu
〉

+
ρ1
2

(

〈Hu,Hu〉 − 2〈Hu,wk · vk〉
)

+
〈

dk2 , Lu
〉

+
ρ2
2

(

〈Lu,Lu〉 − 2〈Lu, yk〉
)

+
1

2

(

〈u− uk, Pu〉 − 〈u− uk, Puk〉
)

}

= argmin
u

{

δU (u) +
〈

H⊤dk1 , u
〉

+
ρ1
2
〈H⊤Hu, u〉 −

〈

ρ1H
⊤wk · vk, u

〉

+
〈

L⊤dk2 , u
〉

+
ρ2
2
〈L⊤Lu, u〉 −

〈

ρ2L
⊤yk, u

〉

+
1

2
〈Pu, u〉 −

〈

Puk, u
〉

}

= argmin
u

{

δU (u) +
1

2α

∥

∥u− α
(

Puk −H⊤dk1 + ρ1H
⊤wk · vk − L⊤dk2 + ρ2L

⊤yk
)∥

∥

2
}

.

Consequently, uk+1 can be easily computed by

uk+1 = PU

(

α
(

Puk −H⊤dk1 + ρ1H
⊤wk · vk − L⊤dk2 + ρ2L

⊤yk
))

, (3.5)
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where PU represents an orthogonal projection onto the closed convex set U . For the definition

U = {u|0 ≤ ui,j ≤ M}, we have

(

PU (u)
)

i,j
=















ui,j , if 0 ≤ ui,j ≤ M,

0, if ui,j < 0,

M, if ui,j > M.

Second, we consider the v-subproblem, which is given as

vk+1 = argmin
v

{

λ1

2
‖f − v‖2 + λ2

∑

i

(

wk
i · vi − vi − vi lnw

k
i

)

+ δV (v)

+
〈

dk1 , Huk+1 − wk · v
〉

+
ρ1
2
‖Huk+1 − wk · v‖2

}

= argmin
v≥ǫ

{

λ1

2
‖f − v‖2 + λ2

∑

i

(

wk
i · vi − vi − vi lnw

k
i

)

+
〈

dk1 , Huk+1 − wk · v
〉

+
ρ1
2
‖Huk+1 − wk · v‖2

}

.

The abovementioned minimization problem can be calculated independently for each component

of v, that is

vk+1
i = argmin

vi≥ǫ

{

λ1

2
(fi − vi)

2 + λ2

(

wk
i · vi − vi − vi lnw

k
i

)

+
〈

dk1 i, (Huk+1)i − wk
i · vi

〉

+
ρ1
2

(

(Huk+1)i − wk
i · vi

)2
}

. (3.6)

The optimality condition of (3.6) is

(

λ1 + ρ1
(

wk
i

)2) · vk+1
i − λ1fi + λ2

(

wk
i − 1− lnwk

i

)

− ρ1w
k
i · (Huk+1)i − wk

i · d1ki = 0.

Then, the optimal solution of the v-subproblem is

vk+1 = max(v̂k+1, ǫ),

where max(· , ·) represents the maximum value of the two vectors and v̂k+1 is defined by

v̂k+1 =
λ1f + λ2(I + lnwk − wk) + ρ1w

k ·Huk+1 + wk · dk1
λ1 + ρ1(wk)2

.

Third, we consider the w-subproblem as

wk+1 = argmin
w

{

λ2

∑

i

(

wi · vk+1
i − vk+1

i · lnwi

)

+
〈

dk1 , Huk+1 − w · vk+1
〉

+
ρ1
2
‖Huk+1 − w · vk+1‖2

}

= argmin
w

{

λ2

∑

i

(

wi · vk+1
i − vk+1

i · lnwi

)

+
ρ1
2

∥

∥

∥

∥

Huk+1 − w · vk+1 +
dk1
ρ1

∥

∥

∥

∥

2
}

.
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The optimality condition for the abovementioned problem is

ρ1
(

vk+1
i

)2 ·
(

wk+1
i

)2
+
(

λ2v
k+1
i − ρ1v

k+1
i · (Huk+1)i − vk+1

i · d1ki
)

· wk+1
i − λ2v

k+1
i = 0. (3.7)

Then, wk+1 can be easily computed as

wk+1 =
−
(

λ2 − ρ1Huk+1 − dk1
)

+

√

(

λ2 − ρ1Huk+1 − dk1
)2

+ 4ρ1λ2vk+1

2ρ1vk+1
. (3.8)

Finally, we consider the y-subproblem as

yk+1 = argmin
y

{

ϕ(y) +
〈

dk2 , Lu
k+1 − y

〉

+
ρ2
2
‖Luk+1 − y‖2

}

= argmin
y

{

ϕ(y) +
ρ2
2

∥

∥

∥

∥

y −
(

Luk+1 +
dk2
ρ2

)∥

∥

∥

∥

2
}

= prox 1

ρ2
ϕ

(

Luk+1 +
dk2
ρ2

)

. (3.9)

Therefore, each subproblem of the iterative algorithm (3.3) has a closed-form solution.

The following lemma indicates the relationship between wk+1 and dk+1
1 , and it can be used

to simplify the calculation of the v-subproblem.

Lemma 3.1. Let {wk+1} and {dk+1
1 } be generated by (3.3), then, we have

wk+1 ·
(

λ2 − dk+1
1

)

= λ2.

Proof. According to the optimality condition of the w-subproblem (3.7) and the update rule

of multiplier d1, we obtain

0 = ρ1(v
k+1)2 · (wk+1)2 +

(

λ2v
k+1 − ρ1v

k+1 ·Huk+1 − vk+1 · dk1
)

· wk+1 − λ2v
k+1

= vk+1 · wk+1
(

λ2 − ρ1(Huk+1 − vk+1 · wk+1)− dk1
)

− λ2v
k+1

= vk+1 · wk+1
(

λ2 − dk+1
1

)

− λ2v
k+1.

Because vi ≥ ǫ > 0 for any i, we obtain

wk+1 ·
(

λ2 − dk+1
1

)

= λ2.

The proof is complete. �

By Lemma 3.1, we obtain

v̂k+1 =
λ1f + λ2(I + lnwk − wk) + ρ1w

k ·Huk+1 + wk · dk1
λ1 + ρ1(wk)2

=
λ1f + λ2 lnw

k + ρ1w
k ·Huk+1 + λ2 − wk · (λ2 − dk1)

λ1 + ρ1(wk)2

=
λ1f + λ2 lnw

k + ρ1w
k ·Huk+1

λ1 + ρ1(wk)2
.

Therefore, the calculation of vk+1 can be simplified as follows:

vk+1 = max(v̂k+1, ǫ)

= max

(

λ1f + λ2 lnw
k + ρ1w

k ·Huk+1

λ1 + ρ1(wk)2
, ǫ

)

. (3.10)

The following presents a summary of the proposed algorithm to solve the TV-IC model.
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Algorithm 3.1: Proximal Bilinear Constraint-Based ADMM Algorithm to Solve the

TV-IC Model.

Input : For arbitrary u0, v0, w0, and y0. Given λ1, λ2, ρ1, and ρ2.

1 Solve uk+1 by (3.5).

2 Solve vk+1 by (3.10).

3 Solve wk+1 by (3.8).

4 Solve yk+1 by (3.9).

5 Update the multipliers by

dk+1
1 = dk1 + ρ1(Huk+1 − wk+1 · vk+1),

dk+1
2 = dk2 + ρ2(Lu

k+1 − yk+1).

Stop when a given stopping criterion is satisfied.

Output: uk+1.

3.2. Convergence analysis of the PBCA algorithm

In this subsection, we demonstrate the convergence of the proposed PBCA algorithm. To

guarantee sufficient descent and boundedness of the iterative sequences generated by Algo-

rithm 3.1, we assume the following.

Assumption 3.1. H and L represent two bounded linear operators, and there exists a constant

c̄ > 0 such that

‖Hu‖2 + ‖Lu‖2 ≥ c̄2‖u‖2

for any u.

Assumption 3.2. The function ϕ is convex, coercive, smooth, and gradient Lipschitz contin-

uous with constant Lϕ, that is

‖∇ϕ(x)−∇ϕ(y)‖ ≤ Lϕ‖x− y‖.

Remark 3.1. Prior works established that the total variation ‖u‖TV can be represented by

a composition of a convex function ϕ (e.g. ℓ1-norm) and a first-order difference operator L,

i.e. ‖u‖TV = ϕ(Lu). See, for example [24, 34]. However, the ℓ1-norm is not differentiable.

In this study, we choose Huber-TV (see (4.1)) as the regularization function, which satisfies

Assumption 3.2.

We take advantage of the following lemma, and the proof of which can be found in [40].

Lemma 3.2. Let

T (x) =
1

2
‖Ax− b‖2 +M(x),

where M(x) denotes a convex function. Let x⋆ be a stationary point of T (x), that is, 0 ∈ ∂T (x⋆),

where ∂T (x⋆) represents the subdifferential of T (x) in the convex analysis sense. Then, we have

T (x)− T (x⋆) ≥ 1

2
‖A(x− x⋆)‖2.

We can now prove the convergence of Algorithm 3.1. The convergence can be divided into

three steps.
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Step 1. The size of the successive difference of the dual variable is controlled by the succes-

sive difference of the original variable.

Step 2. The augmented Lagrangian function Lρ1,ρ2
(uk, vk, wk, yk, dk1 , d

k
2) is a monotonically

decreasing function with a lower bound.

Step 3. Combining with the previous two steps, we can prove that the algorithm converges

to the stationary point solution.

Lemma 3.3. Suppose that Assumption 3.2 holds. Let {(wk+1, yk+1, dk+1
1 , dk+1

2 )} be the se-

quences generated by Algorithm 3.1, and let the iterative sequence {wk} has a uniformly pos-

itive lower bound, that is, wk
i ≥ c > 0 for any i, where c denotes a positive constant that is

independent of k. Then, we have

∥

∥dk+1
1 − dk1

∥

∥

2 ≤ λ2
2

c4
‖wk+1 − wk‖2,

∥

∥dk+1
2 − dk2

∥

∥

2 ≤ L2
ϕ‖yk+1 − yk‖2.

Proof. It follows from Lemma 3.1 that

∥

∥dk+1
1 − dk1

∥

∥

2
=

∥

∥

∥

∥

λ2w
k+1 − λ2

wk+1
− λ2w

k − λ2

wk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(λ2w
k+1 − λ2) · wk − (λ2w

k − λ2) · wk+1

wk+1 · wk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λ2(w
k+1 − wk)

wk+1 · wk

∥

∥

∥

∥

2

≤ λ2
2

c4
‖wk+1 − wk‖2. (3.11)

According to the first-order optimality condition of the y-subproblem, the following holds:

∇ϕ(yk+1)−
(

dk2 + ρ2(Lu
k+1 − yk+1)

)

= 0 =⇒ ∇ϕ(yk+1) = dk+1
2 .

Therefore, we deduce the following:

∥

∥dk+1
2 − dk2

∥

∥

2
= ‖∇ϕ(yk+1)−∇ϕ(yk)‖2 ≤ L2

ϕ‖yk+1 − yk‖2.

The proof is complete. �

Lemma 3.4. Suppose that Assumption 3.2 holds. Let {(wk+1, yk+1, dk+1
1 , dk+1

2 )} be the se-

quences generated by Algorithm 3.1, and let the iterative sequence {wk} has a uniformly positive

lower bound. Let 1 > α(ρ1‖H‖2 + ρ2‖L‖2), ρ1 >
√
2λ2/(ǫc

2) and ρ2 >
√
2Lϕ. Then, we have

Lρ1,ρ2

(

uk, vk, wk, yk, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)

≥ 1

2α
‖uk+1 − uk‖2 + 1

2
‖uk+1 − uk‖2P +

λ1 + ρ1c
2

2
‖vk+1 − vk‖2

+ C1‖wk+1 − wk‖2 + C2‖yk+1 − yk‖2, (3.12)

where

C1 =
ρ1ǫ

2

2
− λ2

2

ρ1c4
, C2 =

ρ2
2

−
L2
ϕ

ρ2
, P =

1

α
I − ρ1H

⊤H − ρ2L
⊤L.
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Proof. For the u-subproblem, based on Lemma 3.2, we derive

Lρ1,ρ2

(

uk, vk, wk, yk, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk, wk, yk, dk1 , d
k
2

)

≥ 1

2α
‖uk+1 − uk‖2 + 1

2
‖uk+1 − uk‖2P . (3.13)

Similarly, for the v-subproblem, we obtain

Lρ1,ρ2

(

uk+1, vk, wk, yk, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk, yk, dk1 , d
k
2

)

≥ λ1

2
‖vk+1 − vk‖2 + ρ1

2
‖wk · (vk+1 − vk)‖2

≥ λ1

2
‖vk+1 − vk‖2 + ρ1c

2

2
‖vk+1 − vk‖2

=
λ1 + ρ1c

2

2
‖vk+1 − vk‖2, (3.14)

where the second inequality results from wk
i ≥ c > 0, ∀ i.

For the w-subproblem, we have

Lρ1,ρ2

(

uk+1, vk+1, wk, yk, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk, dk1 , d
k
2

)

≥ ρ1
2
‖vk+1 · (wk+1 − wk)‖2 ≥ ρ1ǫ

2

2
‖wk+1 − wk‖2, (3.15)

where the second inequality stems from vki ≥ ǫ > 0 for any i.

Finally, for the y-subproblem, we obtain

Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk1 , d
k
2

)

≥ ρ2
2
‖yk+1 − yk‖2. (3.16)

From Lemma 3.3, it follows that

Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk1 , d
k
2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk2

)

= − 1

ρ1

∥

∥dk+1
1 − dk1

∥

∥

2 ≥ − λ2
2

ρ1c4
‖wk+1 − wk‖2, (3.17)

Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk2

)

− Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)

= − 1

ρ2

∥

∥dk+1
2 − dk2

∥

∥

2 ≥ −
L2
ϕ

ρ2
‖yk+1 − yk‖2. (3.18)

Because ρ1 >
√
2λ2/(ǫc

2) and ρ2 >
√
2Lϕ, by adding (3.13)-(3.18), we can obtain (3.12), which

completes the proof. �

Lemma 3.5. We define G : Ω → R as

G(u, v, w, y) =
λ1

2
‖f − v‖2 + λ2

∑

i

(wi · vi − vi − vi · lnwi) + ϕ(Lu)

− λ2
2

2

∑

i

(

1− 1

wi

)2

+
ρ1 − 1

2
‖Hu− w · v‖2 + ρ2 − Lϕ

2
‖Lu− y‖2,
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where ρ1 > 1, ρ2 > Lϕ, and

Ω =
{

(u, v, w, y)|vi ≥ ǫ > 0, wi ≥ c > 0, ∀ i; c̄2‖u‖2 ≤ ‖Hu‖2 + ‖Lu‖2; u, v, w, y ∈ Rn
}

,

if

‖(u, v, w, y)‖Ω = max{‖u‖∞, ‖v‖∞, ‖w‖∞, ‖y‖∞} → ∞,

then, under Assumption 3.2, we have G(u, v, w, y) → ∞.

Proof. Let (u, v, w, y) ∈ Ω, then we have the following estimation:

G(u, v, w, y) ≥ λ1

2
‖f − v‖2 + λ2

∑

i

(wi · vi − vi − vi · wi) + ϕ(Lu)− λ2
2

2

∑

i

(

1− 1

wi

)2

+
ρ1 − 1

2
‖Hu− w · v‖2 + ρ2 − Lϕ

2
‖Lu− y‖2

=
λ1

2
‖f − v‖2 − λ2

∑

i

vi + ϕ(Lu)− λ2
2

2

∑

i

(

1− 1

wi

)2

+
ρ1 − 1

2
‖Hu− w · v‖2 + ρ2 − Lϕ

2
‖Lu− y‖2,

where the first inequality holds because − lnwi ≥ −wi if wi > 0. It should be noted that

wi ≥ c > 0 and 1− 1/wi ∈ [1− 1/c, 1), and (1 − 1/wi)
2 is bounded.

We now discuss four cases wherein {‖u‖∞, ‖v‖∞, ‖w‖∞, ‖y‖∞} → ∞.

Case 1. ‖v‖∞ → ∞; it is clear that G(u, v, w, y) → ∞.

Case 2. There exists a constant c1 such that ‖v‖∞ < c1 and ‖w‖∞ → ∞. We obtain the

following estimation:

G(u, v, w, y) ≥ λ2

∑

i

(wi − 1) · vi − λ2

∑

i

vi lnwi −
λ2
2

2

∑

i

(

1− 1

wi

)2

≥ λ2ǫ
∑

i

(wi − 1)− λ2c1
∑

i

lnwi −
λ2
2

2

∑

i

(

1− 1

wi

)2

.

Because

lim
wi→∞

λ2ǫ(wi − 1)− λ2c1 lnwi − λ2
2(1− 1/wi)

2/2

wi

= λ2ǫ > 0,

we can estimate
(

λ2ǫ
∑

i

(wi − 1)− λ2c1
∑

i

lnwi −
λ2
2

2

∑

i

(

1− 1

wi

)2
)

→ ∞ as ‖w‖∞ → ∞.

Therefore, we obtain G(u, v, w, y) → ∞.

Case 3. Two constants c2, c3 exist such that ‖v‖∞ < c2, ‖w‖∞ < c3, and ‖u‖∞ → ∞. It is

known that c̄2‖u‖2 ≤ ‖Hu‖2 + ‖Lu‖2 → ∞; therefore, ‖Hu‖∞ → ∞ or ‖Lu‖∞ → ∞. Under

Assumption 3.2, we can easily obtain G(u, v, w, y) → ∞.

Case 4. Three constants c4, c5, c6 exist such that ‖v‖∞ < c4, ‖w‖∞ < c5, ‖u‖∞ < c6, and

‖y‖∞ → ∞. Because ρ2 > Lϕ, we can derive G(u, v, w, y) → ∞.

In summary, we conclude that G(u, v, w, y) → ∞ as ‖(u, v, w, y)‖Ω → ∞. �
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Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Let {(wk+1, yk+1, dk+1
1 , dk+1

2 )} be

the sequences generated by Algorithm 3.1, and let the iterative sequence {wk} has a uniformly

positive lower bound. Let 1 > α(ρ1‖H‖2 + ρ2‖L‖2), ρ1 > max(
√
2λ2/(ǫc

2), 1) and ρ2 >
√
2Lϕ.

Then, the following statements hold:

(i) Sequence (uk, vk, wk, yk, dk1 , d
k
2) generated by Algorithm 3.1 is bounded and has at least

one limit point.

(ii) Successive errors uk+1 − uk → 0, vk+1 − vk → 0, wk+1 − wk → 0, yk+1 − yk → 0 and

dk+1
1 − dk1 → 0, dk+1

2 − dk2 → 0.

(iii) Each limit point (u∗, v∗, w∗, y∗, d∗1, d
∗
2) is a stationary point of Lρ1,ρ2

(u, v, w, y, d1, d2).

Proof. (i) From Lemma 3.4, we know that Lρ1,ρ2
(uk, vk, wk, yk, dk1 , d

k
2) is monotonically

decreasing. Next, we prove that Lρ1,ρ2
(uk, vk, wk, yk, dk1 , d

k
2) has a lower bound.

It can be easily interpreted that

Lρ1,ρ2

(

uk, vk, wk, yk, dk1 , d
k
2

)

≥ λ1

2
‖f − vk‖2 + λ2

∑

i

(

wk
i · vki − vki − vki · lnwk

i

)

+ ϕ(yk)− λ2
2

2

∑

i

(

1− 1

wk
i

)2

+
ρ1 − 1

2
‖Huk − wk · vk‖2 +

〈

dk2 , Lu
k − yk

〉

+
ρ2
2
‖Luk − yk‖2

≥ λ1

2
‖f − vk‖2 + λ2

∑

i

(

wk
i · vki − vki − vki · lnwk

i

)

+ ϕ(yk)− λ2
2

2

∑

i

(

1− 1

wk
i

)2

+
ρ1 − 1

2
‖Huk − wk · vk‖2 + 〈∇ϕ(yk), Luk − yk〉

+
ρ2 − Lϕ

2
‖Luk − yk‖2 + Lϕ

2
‖Luk − yk‖2

≥ λ1

2
‖f − vk‖2 + λ2

∑

i

(

wk
i · vki − vki − vki · lnwk

i

)

+ ϕ(Luk)− λ2
2

2

∑

i

(

1− 1

wk
i

)2

+
ρ1 − 1

2
‖Huk − wk · vk‖2 + ρ2 − Lϕ

2
‖Luk − yk‖2

= G(uk, vk, wk, yk). (3.19)

Thus, combined with Lemma 3.5 and (3.19), the sequences {uk}, {vk}, {wk}, {yk}, andG(uk, vk,

wk, yk) are all bounded, and the boundedness of {dk1}, {dk2} is due to Lemma 3.1, and∇ϕ(yk)=dk2 .

Owing to the boundedness of sequence (uk, vk, wk, yk, dk1 , d
k
2), there must be a convergent

subsequence (uki , vki , wki , yki , dki

1 , dki

2 ), i.e. (uki , vki , wki , yki , dki

1 , dki

2 ) → (u∗, v∗, w∗, y∗, d∗1, d
∗
2).

(ii) From (3.19), it is evident that sequence Lρ1,ρ2
(uk, vk, wk, yk, dk1 , d

k
2) is also bounded. By

summing (3.12) from k = 1 to ∞, we obtain

∞
∑

k=1

(

‖uk+1 − uk‖2 + ‖vk+1 − vk‖2 + ‖wk+1 − wk‖2 + ‖yk+1 − yk‖2
)

< ∞.

Therefore, we obtain uk+1 − uk → 0, vk+1 − vk → 0, wk+1 − wk → 0, yk+1 − yk → 0. From

Lemma 3.3, we can also obtain dk+1
1 − dk1 → 0, dk+1

2 − dk2 → 0.

(iii) According to the optimality condition of the u-subproblem, we deduce that there exists

q1 ∈ ∂δU (u
k+1) such that
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q1 +H⊤dk1 + ρ1H
⊤(Huk+1 − wk · vk)

+ L⊤dk2 + ρ2L
⊤(Luk+1 − yk) + P (uk+1 − uk) = 0.

Let

p1 = q1 +H⊤dk+1
1 + ρ1H

⊤(Huk+1 − wk+1 · vk+1)

+ L⊤dk+1
2 + ρ2L

⊤(Luk+1 − yk+1)

∈ ∂uLρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)

,

then, we have

‖p1‖ =
∥

∥q1 +H⊤dk+1
1 + ρ1H

⊤(Huk+1 − wk+1 · vk+1) + L⊤dk+1
2 + ρ2L

⊤(Luk+1 − yk+1)
∥

∥

=
∥

∥H⊤
(

dk+1
1 − dk1

)

+ ρ1H
⊤(wk · vk − wk+1 · vk+1) + L⊤

(

dk+1
2 − dk2

)

+ ρ2L
⊤(yk − yk+1)− P (uk+1 − uk)

∥

∥

=
∥

∥H⊤
(

dk+1
1 − dk1

)

+ ρ1H
⊤
[

− wk · (vk+1 − vk)− vk+1 · (wk+1 − wk)
]

+ L⊤
(

dk+1
2 − dk2

)

+ ρ2L
⊤(yk − yk+1)− P (uk+1 − uk)

∥

∥

≤
∥

∥H⊤
(

dk+1
1 − dk1

)
∥

∥+ ρ1‖H⊤wk · (vk+1 − vk)‖+ ρ1‖H⊤vk+1 · (wk+1 − wk)‖
+
∥

∥L⊤
(

dk+1
2 − dk2

)∥

∥+ ρ2‖L⊤(yk+1 − yk)‖+ ‖P (uk+1 − uk)‖. (3.20)

The optimality condition of the v-subproblem implies that there exists q2 ∈ ∂δV (v
k+1) such

that

0 = q2 + λ2(w
k − I − lnwk)− λ1(f − vk+1)− ρ1w

k · (Huk+1 − wk · vk+1)− wk · dk1
= q2 − λ2 lnw

k + λ1v
k+1 − λ1f + ρ1(w

k)2 · vk+1 − ρ1w
k ·Huk+1,

where the second equal sign results from Lemma 3.1.

Let

p2 = q2 + λ2(w
k+1 − I − lnwk+1)− λ1(f − vk+1)

− ρ1w
k+1 · (Huk+1 − wk+1 · vk+1)− wk+1 · dk+1

1

∈ ∂vLρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)

,

then we obtain

‖p2‖ =
∥

∥q2 + λ2(w
k+1 − I − lnwk+1)− λ1(f − vk+1)− wk+1 · dk+1

1

− ρ1w
k+1 · (Huk+1 − wk+1 · vk+1)

∥

∥

=
∥

∥ρ1v
k+1 ·

[

(wk+1)2 − (wk)2
]

+ λ2(lnw
k − lnwk+1)

− ρ1Huk+1 · (wk+1 − wk)
∥

∥

=
∥

∥

[

ρ1v
k+1 · (wk+1 + wk)− ρ1Huk+1

]

· (wk+1 − wk)

+ λ2(lnw
k − lnwk+1)

∥

∥

=
∥

∥

(

dk1 − dk+1
1

)

· (wk+1 − wk) + ρ1v
k+1 · wk · (wk+1 − wk)

+ λ2(lnw
k − lnwk+1)

∥

∥

≤
∥

∥dk+1
1 − dk1

∥

∥ ‖wk+1 − wk‖+ ρ1‖vk+1 · wk · (wk+1 − wk)‖
+ λ2‖ lnwk+1 − lnwk‖. (3.21)
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From the optimality condition of the w-subproblem and Lemma 3.1, we obtain

∥

∥∇wLρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)∥

∥

=

∥

∥

∥

∥

λ2(w
k+1 · vk+1 − vk+1)− ρ1v

k+1 · wk+1 ·
(

Huk+1 − wk+1 · vk+1 +
dk+1
1

ρ1

)
∥

∥

∥

∥

=
∥

∥ρ1(v
k+1)2 · (wk+1)2 +

(

λ2v
k+1 − ρ1v

k+1 ·Huk+1 − vk+1 · dk+1
1

)

· wk+1 − λ2v
k+1
∥

∥

=
∥

∥ρ1(v
k+1)2 · (wk+1)2 +

(

λ2v
k+1 − ρ1v

k+1 ·Huk+1 − vk+1 · dk+1
1

)

· wk+1

−
(

λ2w
k+1 − wk+1 · dk+1

1

)

· vk+1
∥

∥

=
∥

∥vk+1 · wk+1 ·
(

ρ1v
k+1 · wk+1 + λ2 − ρ1Huk+1 − dk+1

1 − λ2 + dk+1
1

)∥

∥

=
∥

∥vk+1 · wk+1 ·
(

dk1 − dk+1
1

)∥

∥. (3.22)

The optimality condition of the y-subproblem and the update rule of the multipliers dk+1
1 ,

dk+1
2 yield

∥

∥∇yLρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)∥

∥

=
∥

∥∇ϕ(yk+1)− dk+1
2 − ρ2(Lu

k+1 − yk+1)
∥

∥ =
∥

∥dk2 − dk+1
2

∥

∥, (3.23)
∥

∥∇d1
Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)
∥

∥

=
∥

∥Huk+1 − wk+1 · vk+1
∥

∥ =
1

ρ1

∥

∥dk+1
1 − dk1

∥

∥, (3.24)

∥

∥∇d2
Lρ1,ρ2

(

uk+1, vk+1, wk+1, yk+1, dk+1
1 , dk+1

2

)∥

∥

=
∥

∥Luk+1 − yk+1
∥

∥ =
1

ρ2

∥

∥dk+1
2 − dk2

∥

∥. (3.25)

Therefore, by combining (ii) and (3.20)-(3.25), we conclude that (u∗, v∗, w∗, y∗, d∗1, d
∗
2) is a sta-

tionary point of Lρ1,ρ2
(u, v, w, y, d1, d2). �

4. Numerical Experiments

In this section, we discuss a few numerical experiments to illustrate the performance of the

proposed algorithm (Algorithm 3.1) on the mixed Poisson-Gaussian noise removal problem. All

experiments were performed on a 64-bit Windows 10 operating system with an Intel Pentium

G4400 CPU and 4 GB memory. All the source code was tested using MATLAB R2020b. The

source code used in this paper can be downloaded at https://github.com/hhaaoo1331/Mixed-

Poisson-Gaussian.

We used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [37] to

evaluate the quality of the restored images. They are defined as follows:

PSNR = 10 log10

(

MN |umax − umin|2
‖u− ũ‖2

)

,

where u is the original image, ũ denotes the recovered image, umax and umin represent the

maximum and minimum pixel values, respectively, and M and N indicate the image sizes.

SSIM =
(2µuµũ + C1)(2σuũ + C2)

(

µ2
u + µ2

ũ + C1

)(

σ2
u + σ2

ũ + C2

) ,
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where µu and µũ represent the averages of u and ũ, respectively, σ2
u and σ2

ũ are the corresponding

variances, σuũ represents the corresponding covariance, and C1 and C2 represent the two fixed

variables. The stopping criterion used in all experiments is defined as

‖uk+1 − uk‖
‖uk‖ ≤ 10−4,

or the maximum number of iterations becomes 1000.

We selected three images for testing, which are illustrated in Fig. 4.1. We first scaled the

pixel value of the test image u, that is, the pixel value was adjusted from the original [0, 255]

to [0, 1]. We considered different blur kernels H (H1: Gaussian blur (fspecial ("Gaussian,"

[7,7], 3)); H2: Disk blur (fspecial ("disk," 3))) to obtain a blurred image g = Hu, and

then we used Poissrnd (ηg)/η to add Poisson noise, where η represents the scale factor used

to control the size of the Poisson noise. Further, additive Gaussian noise with mean zero and

standard variance σ was added to obtain the final observed noise image, f . In the experiment,

we selected three different Poisson noise levels and two different Gaussian noise variances for

testing, namely, η = 1, 4, 16 and σ = 10−1, 10−2.

We used ϕ(Lu) =
∑

i,j |(Lu)i,j|γ (Huber-TV) as the regularization function, where

|z|γ =







|z| − γ

2
, if |z| ≥ γ

1

2γ
|z|2, if |z| < γ.

(4.1)

In particular, when γ = 0, the Huber-TV coincides with the standard TV regularization.

Herein, we will refer to the corresponding algorithm as PBCA+Huber. In contrast, we will

refer to the PBCA algorithm that directly uses the TV regularization as PBCA+TV. Although

the corresponding iterative algorithm is not guaranteed to converge, it achieves satisfactory

performance in practice.

(a) (b) (c)

Fig. 4.1. (a) 256× 256 “Fluorescent Cells”; (b) 256× 256 “Peppers”; (c) 256× 256 “Two Code”.

4.1. Parameter discussion

In this subsection, we evaluate the influence of parameters γ, ρ1, ρ2, ǫ, and α in the context

of the PBCA+Huber algorithm. We chose “Fluorescent Cells” as the test image, and the

noise level was set to η = 16, σ = 10−1, with H as Gaussian blur (fspecial ("Gaussian,"

[7,7], 3)). In Fig. 4.2, we demonstrate the effect of parameter ρ1 from 10 to 5000 on the

PBCA+Huber algorithm by plotting the change in PSNR. However, it should be noted that
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(a) ρ1 (b) ρ2

Fig. 4.2. Change in PSNR with respect to parameters ρ1 and ρ2 for the PBCA+Huber algorithm.

the other parameters γ, ρ2, ǫ, and α are fixed. We can infer that parameter ρ1 has little effect

on the algorithm. Similarly, we present the effect of parameter ρ2 from 10 to 5000 on the

PBCA+Huber algorithm, where the other parameters γ, ρ1, ǫ, and α are fixed. Evidently, the

PSNR values decrease slightly when parameter ρ2 > 120.

For parameter γ in Huber-TV, if γ tends to 0, the Huber-TV regularization function ap-

proximately equals to the TV regularization function. Therefore, we fixed parameters ρ1, ρ2, ǫ,

and α and changed γ from 10−5 to 10−1. We plot the changes in PSNR values in Fig. 4.3. It

can be observed that the PSNR values remain nearly unchanged when γ lies in the range of

10−2 to 6× 10−2.

An extremely small positive scale factor ǫ must be introduced to prove the convergence of

the PBCA algorithm; therefore, it is necessary to evaluate whether the value of ǫ affects the

PBCA algorithm. To do so, we fixed ρ1, ρ2, γ, and α and changed ǫ from 10−10 to 10−1. The

result of the change in PSNR values is presented in Fig. 4.4. The results show that the PSNR

values remain nearly unchanged when ǫ lies in the range of 10−10 to 5× 10−2.

For parameter α in the positive definite matrix P , when the value of α is large, the matrix P

may not be positive definite, leading to poor experimental results. Therefore, we fixed γ, ρ1, ρ2, ǫ

and varied α from 10−5 to 10−2; the corresponding change in PSNR values is shown in Fig. 4.5.

It can be observed that when α < 1.5 × 10−4, the algorithm converges slowly, and the PSNR

Fig. 4.3. Change in PSNR with respect to parameter γ for the PBCA+Huber algorithm.
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Fig. 4.4. Change in PSNR with respect to parameter ǫ for the PBCA+Huber algorithm.

Fig. 4.5. Change in PSNR with respect to parameter α for the PBCA+Huber algorithm.

values are small. When 1.5×10−4 ≤ α ≤ 4×10−3, the PSNR values remain almost unchanged.

When α > 4× 10−3, the PSNR values begin to decrease continuously.

Therefore, in the subsequent experiments, we set γ = 0.02, ρ1 = 300, ρ2 = 80, ǫ = 10−5 and

α = 0.003.

4.2. Mixed Poisson-Gaussian deblurring

In this subsection, we present the results of some experiments with the PBCA algorithm for

image deblurring under mixed Poisson-Gaussian noise. We compare the algorithm with other

popular algorithms employed to solve the TV-IC model, including the primal-dual-based itera-

tive algorithm (PD+TV) [17] and the primal-dual hybrid gradient algorithm (PDHG+TV) [35].

Regularization parameters, λ1, and λ2 were used to balance the data-fitting and regular-

ization terms, which play an important role in the experimental results. Fig. 4.6 presents

a three-dimensional relationship diagram of the regularization parameters, λ1 and λ2, and the

PSNR values in the PBCA+Huber algorithm. We used this method to determine the optimal

values of the regularization parameters, λ1 and λ2. Owing to space limitations, we directly

provide the optimal regularization parameters, λ1, and λ2 of the PBCA algorithm under other

noise levels in Table 4.1. In Table 4.2, we present the recovery results of PSNR and SSIM

values for all the algorithms under different noise levels. Compared with other algorithms, our

proposed PBCA algorithm achieves higher PSNR values. In Fig. 4.7, we present the restoration
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(a) (b) (c)

Fig. 4.6. Evolution of PSNR (dB) under different regularization parameters. Black dots represent the

optimal PSNR value and the corresponding values of regularization parameters λ1 and λ2. (a): η = 4,

σ = 10−2, H = fspecial ("disk," 3), the test image is “Fluorescent Cells”; (b): η=16, σ=10−1,

H = fspecial ("disk," 3), the test image is “Peppers”; (c): η = 1, σ = 10−2, H = fspecial

("Gaussian," [7,7], 3), the test image is “Two Code”.

results for three test images with different noise levels. In Fig. 4.8, we present the changes in

PSNR to the elapsed CPU time. The results show that the PBCA algorithm is faster than the

PD+TV and PDHG+TV algorithms.

Table 4.1: Regularization parameter settings in mixed Poisson-Gaussian noise deblurring.

Image η H Method
σ = 10−1 σ = 10−2

λ1 λ2 λ1 λ2

Fluorescent Cells

1

H1

PBCA+TV 4.4 250 300 1.1

PBCA+Huber 4.1 120 264.5 1.1

H2

PBCA+TV 4 77 112 1

PBCA+Huber 3.8 72.1 122.3 1

4

H1

PBCA+TV 11.8 94 354 3.6

PBCA+Huber 11.8 100 260 3.3

H2

PBCA+TV 9.6 285 12 78

PBCA+Huber 9.4 220 12 65.4

16

H1

PBCA+TV 23.4 88 443.2 9

PBCA+Huber 23.7 160 230 10

H2

PBCA+TV 23.8 88.4 449 8.2

PBCA+Huber 23.2 86.7 230 9

Peppers

1

H1

PBCA+TV 350 1.9 211.8 1.7

PBCA+Huber 350 1.7 199.7 1.7

H2

PBCA+TV 469.6 2 180 1.6

PBCA+Huber 349.8 1.6 170 1.5

4

H1

PBCA+TV 230 3.9 309 4.1

PBCA+Huber 261 4.1 210 4.2

H2

PBCA+TV 498 3.8 280 3.7

PBCA+Huber 110 3.9 110 4

16

H1

PBCA+TV 237 8.3 176 11.8

PBCA+Huber 140 9.2 120 13.2

H2

PBCA+TV 274 8.1 448.4 9

PBCA+Huber 100 9 300 9.5
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Table 4.1: Regularization parameter settings in mixed Poisson-Gaussian noise deblurring (cont’d).

Image η H Method
σ = 10−1 σ = 10−2

λ1 λ2 λ1 λ2

Two Code

1

H1

PBCA+TV 61 2.2 210 2.4

PBCA+Huber 64.1 2.7 270 2.5

H2

PBCA+TV 39.6 2.2 60 2.2

PBCA+Huber 4.1 11.2 4.6 8

4

H1

PBCA+TV 141.2 6 1500 4.6

PBCA+Huber 126.8 5.7 1300 5.2

H2

PBCA+TV 122 3.8 1350 4

PBCA+Huber 135.5 5 1350 4.4

16

H1

PBCA+TV 158.6 9.6 2500 9

PBCA+Huber 55 22.1 399.1 11.3

H2

PBCA+TV 125.2 8.6 1500 8.4

PBCA+Huber 36 19.2 1300 9.2

Table 4.2: PSNR (dB) and SSIM of the compared methods for deblurring with mixed Poisson-Gaussian

noise.

Image η σ H Input PD+TV PDHG+TV PBCA+TV PBCA+Huber

Fluorescent Cells

1

10−1

H1

6.95 22.00 21.81 21.87 22.28

0.0411 0.4580 0.4495 0.4517 0.4836

H2

6.92 21.45 21.48 21.52 21.83

0.0240 0.4283 0.4179 0.4225 0.4566

10−2

H1

7.02 21.85 21.48 21.75 22.09

0.0307 0.4577 0.4231 0.4096 0.4287

H2

7.09 21.88 21.33 21.82 22.15

0.0360 0.4563 0.4011 0.4164 0.4328

4

10−1

H1

12.18 23.03 22.80 22.84 23.13

0.0571 0.5116 0.5007 0.5028 0.5147

H2

12.17 22.93 22.90 22.94 23.33

0.0610 0.5038 0.5102 0.5116 0.5291

10−2

H1

12.93 23.21 22.89 22.98 23.35

0.0874 0.5329 0.4869 0.4912 0.5108

H2

13.00 23.22 23.25 23.29 23.61

0.0950 0.5251 0.5299 0.5321 0.5531

16

10−1

H1

16.07 23.87 23.67 23.72 24.12

0.1138 0.5467 0.5487 0.5510 0.5552

H2

16.13 24.05 23.94 23.98 24.34

0.1258 0.5541 0.5645 0.5661 0.5729

10−2

H1

18.25 24.40 24.12 24.17 24.63

0.2253 0.5932 0.5713 0.5738 0.5935

H2

18.32 24.50 24.40 24.45 24.85

0.2399 0.5541 0.5943 0.5952 0.6126
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Table 4.2: PSNR (dB) and SSIM of the compared methods for deblurring with mixed Poisson-Gaussian

noise (cont’d).

Image η σ H Input PD+TV PDHG+TV PBCA+TV PBCA+Huber

Peppers

1

10−1

H1

3.08 18.84 18.93 19.12 19.28

0.0151 0.5198 0.5276 0.5274 0.5567

H2

3.07 19.09 19.11 19.15 19.46

0.0163 0.5263 0.5368 0.5129 0.5608

10−2

H1

3.14 18.74 18.90 19.14 19.26

0.0162 0.5058 0.5102 0.5265 0.5418

H2

3.13 19.03 19.23 19.44 19.54

0.0184 0.4898 0.5321 0.5423 0.5636

4

10−1

H1

8.67 20.32 20.66 20.81 20.95

0.0452 0.5633 0.6054 0.6113 0.6248

H2

8.72 20.67 20.98 21.16 21.31

0.0526 0.5731 0.6252 0.6202 0.6437

10−2

H1

9.05 20.45 20.72 20.92 21.06

0.0483 0.5749 0.6036 0.6133 0.6320

H2

9.02 20.59 20.93 21.17 21.25

0.0525 0.5589 0.6136 0.6186 0.6319

16

10−1

H1

13.48 21.51 21.80 21.89 22.10

0.1066 0.6127 0.6587 0.6624 0.6824

H2

13.58 21.92 22.29 22.40 22.61

0.1153 0.6216 0.6781 0.6816 0.7015

10−2

H1

14.56 21.85 22.28 22.35 22.60

0.1331 0.6471 0.6761 0.6788 0.7070

H2

14.65 22.08 22.55 22.66 22.87

0.1437 0.6423 0.6917 0.6971 0.7158

Two Code

1

10−1

H1

2.21 14.97 15.13 15.86 15.87

0.0936 0.5480 0.5431 0.5882 0.5867

H2

2.25 15.35 15.62 16.41 16.06

0.1113 0.5586 0.5619 0.6019 0.5882

10−2

H1

2.27 15.07 15.21 16.30 16.33

0.1385 0.5864 0.5556 0.7470 0.7331

H2

2.38 15.29 15.38 16.19 15.88

0.1643 0.5866 0.5527 0.7224 0.5918

4

10−1

H1

7.45 17.45 18.21 18.71 18.74

0.1868 0.6478 0.6853 0.6900 0.6900

H2

7.63 18.24 18.78 19.32 19.35

0.2186 0.6856 0.6985 0.7095 0.7021

10−2

H1

17.65 17.90 18.47 20.13 20.17

0.2351 0.7218 0.6980 0.8734 0.8625

H2

7.88 18.50 19.11 19.98 20.00

0.2810 0.7262 0.7095 0.8668 0.8555

16

10−1

H1

11.22 20.12 20.96 21.19 21.41

0.2739 0.7863 0.8376 0.7616 0.8177

H2

11.67 20.81 21.85 21.96 22.25

0.3130 0.7995 0.8456 0.7751 0.8282

10−2

H1

11.81 21.05 21.59 24.08 23.67

0.3336 0.8716 0.8680 0.9365 0.9247

H2

12.40 22.00 22.59 23.98 24.01

0.3975 0.9074 0.8657 0.9370 0.9268
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(a) Input:16.13 (b) Input:14.56 (c) Input:12.40

(d) PD+TV:24.05 (e) PD+TV:21.85 (f) PD+TV:22.00

(g) PDHG+TV:23.94 (h) PDHG+TV:22.28 (i) PDHG+TV:22.59

(j) PBCA+TV:23.98 (k) PBCA+TV:22.35 (l) PBCA+TV:23.98

(m) PBCA+Huber:24.34 (n) PBCA+Huber:22.60 (o) PBCA+Huber:24.01

Fig. 4.7. Results of different algorithms (with PSNR(dB) below the figures) for mixed Poisson-Gaussian

noise deblurring. (a): “Fluorescent Cells”, noise level: η = 16, σ = 10−1, H = fspecial (\disk," 3);

(b): “Peppers”, noise level: η = 16, σ = 10−2, H = fspecial (\Gaussian," [7,7], 3); (c): “Two

Code”, noise level: η = 16, σ = 10−2, H = fspecial (\disk," 3).
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To demonstrate the convergence of the PBCA+TV and PBCA+Huber algorithms, the

PSNR values are plotted with the number of iterations in Fig. 4.9. It can be observed that the

final PSNR values remain unchanged. Therefore, we can conclude that the proposed algorithm

is convergent.

Fig. 4.8. PSNR(dB) versus CPU time (in seconds) for algorithms: PBCA+Huber, PBCA+TV,

PDHG+TV, and PD+TV for mixed Poisson-Gaussian noise deblurring. Left: η = 1, σ = 10−2,

H = fspecial ("disk," 3), the test image is “Fluorescent Cells”; Middle: η = 16, σ = 10−2,

H = fspecial ("Gaussian," [7,7], 3), the test image is “Peppers”; Right: η = 4, σ = 10−1,

H = fspecial ("disk," 3), the test image is “Two Code”.

Fig. 4.9. PSNR(dB) versus number of iterations: Top: PBCA+TV; Bottom: PBCA+Huber;

Left: η = 16, σ = 10−1, H = fspecial ("disk," 3), the test image is “Fluorescent Cells”; Mid-

dle: η=16, σ = 10−2, H = fspecial ("Gaussian," [7,7], 3), the test image is “Peppers”; Right:

η = 4, σ = 10−2, H = fspecial ("Gaussian," [7,7], 3), the test image is “Two Code”.

4.3. Mixed Poisson-Gaussian denoising

In this subsection, we present some experimental results of the PBCA algorithm for pure

denoising under mixed Poisson-Gaussian noise and compare them with those of the BCA [40]
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algorithm. The selection of the Poisson noise scale factor η and Gaussian noise variance σ is

the same as described above.

Table 4.3 provides the optimal values of regularization parameters λ1 and λ2 for the PBCA

algorithm for different noise levels. In Fig. 4.10, the recovery result of “Fluorescent Cells”

indicates that the performance of the PBCA+Huber algorithm is almost the same as that of

the BCA algorithm. The recovery results of “Peppers” and “Two Code” show that our method

exhibits higher PSNR values than all other methods. In Table 4.4, we present the numerical

results of the PSNR and SSIM values for all the algorithms at different levels of noise.

Table 4.3: Regularization parameter settings in mixed Poisson-Gaussian noise denoising.

Image η Method
σ = 10−1 σ = 10−2

λ1 λ2 λ1 λ2

Fluorescent Cells

1
PBCA+TV 12 0.8 12 0.7

PBCA+Huber 17 0.7 11.9 0.7

4
PBCA+TV 11 2.8 13 2.6

PBCA+Huber 9.5 2.6 19.9 2

16
PBCA+TV 12.1 11.9 31.2 6.6

PBCA+Huber 11.2 12 26.6 6.7

Peppers

1
PBCA+TV 20 0.9 17.5 0.9

PBCA+Huber 15 0.9 13 0.9

4
PBCA+TV 20 2.4 29 2.4

PBCA+Huber 10 2.8 10.2 2.7

16
PBCA+TV 28 4.8 49 4.8

PBCA+Huber 24.9 4.9 44 4.8

Two Code

1
PBCA+TV 3.6 1.5 3.8 1.4

PBCA+Huber 3.5 1.4 3.6 1.4

4
PBCA+TV 6 3.4 6.4 3.4

PBCA+Huber 6.2 3.4 7 3.4

16
PBCA+TV 9.2 7.6 12.8 6.6

PBCA+Huber 10.2 7.4 14 7

Table 4.4: PSNR (dB) and SSIM values of the compared methods for denoising with mixed Poisson-

Gaussian noise.

Image η σ Input PD+TV PDHG+TV BCA+TV PBCA+TV PBCA+Huber

Fluorescent Cells

1

10−1
6.95 22.12 21.65 21.93 21.79 22.24

0.0411 0.4975 0.4172 0.4423 0.4267 0.4587

10−2
7.15 22.20 21.71 22.04 21.86 22.29

0.0575 0.4992 0.4425 0.4661 0.4670 0.4693

4

10−1
12.41 23.78 23.73 23.80 23.68 23.91

0.1179 0.5687 0.5569 0.5723 0.5515 0.5652

10−2
13.11 24.14 24.13 24.31 24.06 24.35

0.1655 0.6017 0.5959 0.6139 0.5918 0.6028

16

10−1
16.54 25.25 25.58 25.73 25.58 25.73

0.2294 0.6336 0.6701 0.6747 0.6701 0.6677

10−2
19.18 26.50 26.62 26.78 26.62 26.78

0.3985 0.7309 0.7346 0.7440 0.7347 0.7385
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Table 4.4: PSNR (dB) and SSIM values of the compared methods for denoising with mixed Poisson-

Gaussian noise (cont’d).

Image η σ Input PD+TV PDHG+TV BCA+TV PBCA+TV PBCA+Huber

Peppers

1

10−1
3.12 19.14 19.21 19.52 19.50 19.63

0.0293 0.5560 0.5130 0.5570 0.5379 0.5462

10−2
3.15 19.30 19.35 19.73 19.61 19.81

0.0295 0.5049 0.5160 0.5537 0.5414 0.5571

4

10−1
8.75 21.30 21.81 21.98 21.95 21.90

0.0822 0.5512 0.6106 0.6445 0.6152 0.6277

10−2
9.16 21.40 22.00 22.22 22.19 22.15

0.0910 0.5896 0.6256 0.6629 0.6158 0.6482

16

10−1
13.97 24.25 24.89 24.90 25.01 25.06

0.1752 0.7161 0.7127 0.7296 0.7189 0.7137

10−2
15.18 25.70 25.70 25.84 25.86 25.92

0.2176 0.7517 0.7426 0.7647 0.7513 0.7479

Two Code

1

10−1
2.35 16.44 15.02 16.67 17.42 17.25

0.2014 0.6078 0.5551 0.5954 0.6224 0.6224

10−2
2.44 16.64 15.11 16.79 17.61 17.44

0.3414 0.6375 0.5465 0.6137 0.6414 0.6424

4

10−1
8.15 20.59 20.10 20.46 21.70 21.36

0.3439 0.7161 0.6860 0.7177 0.7326 0.7428

10−2
8.52 20.84 20.19 20.68 21.97 21.59

0.5200 0.7457 0.6811 0.7444 0.7509 0.7793

16

10−1
13.43 24.33 24.71 23.95 25.81 25.23

0.4541 0.8127 0.7768 0.7785 0.8167 0.8248

10−2
14.46 25.20 25.46 24.90 26.68 26.08

0.6507 0.8312 0.7855 0.8767 0.8534 0.8997

4.4. Lower bound testing

In this subsection, we demonstrate that the sequence {wk} generated by Algorithm 3.1 has

a positive and consistent lower bound. From the plot of the change in the minimum value of

sequence {wk} shown in Fig. 4.11, it can be observed that the minimum value of sequence {wk}
is always greater than 0.7, which indicates that Assumption 3.2 is reasonable.

5. Conclusions

Image restoration with mixed Poisson-Gaussian noise is a challenging problem in image

processing. In this paper, we proposed a complete splitting algorithm to solve the TV-IC

model, which is suitable for denoising and deblurring of mixed Poisson-Gaussian noise. Most

importantly, the proposed approach avoids the use of the Newton iteration method to solve

subproblems while solving the TV-IC model, which is a common difficulty encountered by other

algorithms. Consequently, the proposed algorithm converges considerably faster than previous

methods. In addition, we theoretically established the convergence of the proposed algorithm.

Finally, we presented the results of numerical experiments to show that our proposed algorithm

achieved better recovery performance compared to other state-of-the-art methods.
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(a) Input:19.18 (b) Input:13.97 (c) Input:8.52

(d) PD+TV:26.50 (e) PD+TV:24.25 (f) PD+TV:20.84

(g) PDHG+TV:26.62 (h) PDHG+TV:24.89 (i) PDHG+TV:20.19

(j) BCA+TV:26.78 (k) BCA+TV:24.90 (l) BCA+TV:20.68

(m) PBCA+TV:26.62 (n) PBCA+TV:25.01 (o) PBCA+TV:21.97

(p) PBCA+Huber:26.78 (q) PBCA+Huber:25.06 (r) PBCA+Huber:21.59

Fig. 4.10. Results of different algorithms (with PSNR(dB) below the figures) for mixed Poisson-

Gaussian noise denoising. (a): “Fluorescent Cells”, noise level: η = 16, σ = 10−2; (b): “Peppers”,

noise level: η = 16, σ = 10−1; (c): “Two Code”, noise level: η = 4, σ = 10−2.
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Fig. 4.11. Minimum value curves of sequence {wk} for the PBCA+Huber algorithm.
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