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FernUni Schweiz, Schinerstrasse 18, CH-3900 Brig-Glis, Switzerland.

Received 27 August 2023; Accepted 02 December 2023

Abstract. The goal of this paper is to study operators sum of p-Laplacian type
operators. We address the problems of existence and uniqueness of solutions,
this last point leading to some challenging issues in the case of quasilinear com-
binations of such p-Laplacians.
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1 Introduction and notation

We will denote by Ω a bounded open subset of R
n,n≥1. Let us consider p1, p2,. . .,

pN real numbers such that

1< p1< p2< . . .< pN ,

and ai(x,u), i=1,.. . ,N, Carathéodory functions, i.e. such that for every i,

x → ai(x,u) is measurable, ∀u∈R,

u → ai(x,u) is continuous a.e. x∈Ω.

We will suppose that for some positive constants λ,Λ,

0≤ ai(x,u)≤Λ, ∀i=1,.. .,N−1,

λ≤ aN(x,u)≤Λ, ∀u∈R a.e. x∈Ω.
(1.1)
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We would like to consider problems of the following type:














u∈W
1,pN

0 (Ω),

−∇·

(

N

∑
i=1

ai(x,u)|∇u|pi−2∇u

)

= f in Ω,
(1.2)

or under the weak form














u∈W
1,pN

0 (Ω),
∫

Ω

N

∑
i=1

ai(x,u)|∇u|pi−2∇u·∇vdx= 〈 f ,v〉, ∀v∈W
1,pN

0 (Ω),
(1.3)

where W
1,p
0 (Ω) denotes the usual Sobolev space of functions in Lp(Ω) with deri-

vatives in Lp(Ω), vanishing on the boundary of Ω, f ∈W−1,p′N(Ω) the dual space

of W
1,pN

0 (Ω) (cf. [5]). Recall that for p∈R, p>1, p′ denotes the conjugate of p given
by p′= p/(p−1).

We suppose that W
1,p
0 (Ω)-spaces are equipped with the norm

‖∇v‖p =

(

∫

Ω
|∇v|p dx

)
1
p

,

and their duals W−1,p′(Ω) with the strong dual norm defined as

| f |∗= sup

v∈W
1,p
0 (Ω)\{0}

|〈 f ,v〉|

‖∇v‖p
.

Such operators appeared some decades ago in particular as Euler equation of
problems of calculus of variations (cf. [7], [8], [10]), the idea being to consider
energy functionals presenting at the same time different growth and to analyse
the regularity of the possible minimisers (see [9], which contains many interesting
references, and also [6]). Later (cf. [4], [11]) problems of this type were supposed
to model situations where different phases coexist, two in general, leading to the
notion of (p,q)-Laplacian. Of course here we consider the sum of several pseudo
p-Laplacians and the Eq. (1.3) is not the Euler equation of some energy except
perhaps in the case when the ai’s are constant. We do not pretend either having
in mind applications. We are more guided by the challenges offered by this kind
of problems when existence and uniqueness of solution are concerned.

In the next section we develop a theory of existence of solution based on the
theory of monotone operators. The subsequent part addresses different issues of



M. Chipot / Commun. Math. Anal. Appl., x (2024), pp. 1-16 3

uniqueness or non uniqueness. In dimension one we are able to construct some
a1(x,u)=a(x,u) leading to non uniqueness in the case N=1 and to prove unique-
ness when the ai’s are say continuous and Lipschitz continuous in u. In higher
dimensions one has to restrict ourselves to special ai’s or to a single operator but
the results that we are able to show do not rely on Lipschitz continuity.

2 Existence result

Let us first prove the following existence result.

Theorem 2.1. We assume that the ai(x,u) are Carathéodory functions satisfying (1.1).

If f ∈W−1,p′N(Ω), there exists a solution u to (1.3).

Proof. Let w∈LpN (Ω). We claim that there exists a unique u=S(w) solution to














u∈W
1,pN

0 (Ω),
∫

Ω

N

∑
i=1

ai(x,w)|∇u|pi−2∇u·∇vdx= 〈 f ,v〉, ∀v∈W
1,pN
0 (Ω).

(2.1)

Note that the operator

−∇·

(

N

∑
i=1

ai(x,w)|∇u|pi−2∇u

)

is monotone, hemicontinuous, coercive from W
1,pN

0 (Ω) into its dual since

ai(x,w)|∇u|pi−2∇u∈Lp′i ⊂Lp′N (Ω).

Indeed, pi < pN implies p′i > p′N . The coerciveness of the operator is insured by

(1.1), cf. the inequality just below. We will be done if we can show that the

mapping S has a fixed point. First, taking v=u in (2.1) we deduce

λ
∫

Ω
|∇u|pN dx≤

∫

Ω

N

∑
i=1

ai(x,w)|∇u|pi−2∇u·∇udx= 〈 f ,u〉

≤| f |∗‖∇u‖pN .

Thus, it comes

‖∇u‖pN ≤

(

| f |∗
λ

)
1

pN−1

.
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We denote by CpN the constant in the Poincaré inequality (cf. [5]) such that

|u|pN ≤CpN‖∇u‖pN , ∀u∈W
1,pN

0 (Ω),

where |u|p is the Lp(Ω)-norm of u. Then we have

|u|pN ≤CpN‖∇u‖pN ≤CpN

(

| f |∗
λ

)
1

pN−1

=K. (2.2)

Thus, the mapping S goes from the ball

B=
{

u∈LpN (Ω) : |u|pN ≤K
}

into itself and is relatively compact thanks to the estimate above. We will be done,

by the Schauder fixed point theorem, if we show that S is continuous from B

into B. For that consider a sequence wn such that wn→w in LpN (Ω). Without loss

of generality we can assume that wn → w a.e. in Ω. Set un = S(wn). From (2.2)

it follows that un is bounded in W
1,pN

0 (Ω) and up to a subsequence there exists

u∈W
1,pN
0 (Ω) such that

∇un ⇀ ∇u in Lpi(Ω), ∀i,

wn → w a.e. in Ω.

We know that un satisfies

∫

Ω

N

∑
i=1

ai(x,wn)|∇un|
pi−2∇un ·∇(v−un)dx= 〈 f ,v−un〉, ∀v∈W

1,pN
0 (Ω)

and by monotonicity of the operators,

∫

Ω

N

∑
i=1

ai(x,wn)|∇v|pi−2∇v·∇(v−un)dx≥〈 f ,v−un〉, ∀v∈W
1,pN

0 (Ω). (2.3)

By the Lebesgue theorem one has

ai(x,wn)|∇v|pi−2∇v → ai(x,w)|∇v|pi−2∇v in Lp′i(Ω).

Passing to the limit in (2.3), we get

∫

Ω

N

∑
i=1

ai(x,w)|∇v|pi−2∇v·∇(v−u)dx≥〈 f ,v−u〉, ∀v∈W
1,pN

0 (Ω). (2.4)
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Replacing v by u±δv we obtain

∫

Ω

N

∑
i=1

ai(x,w)|∇u±δv|pi−2∇(u±δv)·∇(±δv)dx≥〈 f ,±δv〉, ∀v∈W
1,pN

0 (Ω),

i.e.

∫

Ω

N

∑
i=1

ai(x,w)|∇u±δv|pi−2∇(u±δv)·∇(±v)dx≥〈 f ,±v〉, ∀v∈W
1,pN

0 (Ω).

Letting δ→0, we obtain

∫

Ω

N

∑
i=1

ai(x,w)|∇u|pi−2∇u·∇vdx= 〈 f ,v〉, ∀v∈W
1,pN
0 (Ω),

and thus u=Sw. Note that the whole sequence un converges toward u since the

limit is unique. This completes the proof of existence of a solution to (1.3).

3 Uniqueness issues

We suppose here that we are in dimension 1 with Ω=(η1,η2).

Theorem 3.1. One can construct a continuous function a(x,u) such the problem







u∈W
1,p
0 (Ω),

∫

Ω
a(x,u)|u′ |p−2u′v′dx= 〈 f ,v〉, ∀v∈W

1,p
0 (Ω)

(3.1)

admits several solutions.

Proof. We use a construction similar to one in [1]. Set

u(x)=(x−η1)(η2−x), f =−(|u′|p−2u′)′.

One has clearly







u∈W
1,p
0 (Ω),

∫

Ω
|u′|p−2u′v′dx= 〈 f ,v〉, ∀v∈W

1,p
0 (Ω).

(3.2)
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Let ω be a nondecreasing, continuous function such that

ω(0)=0, ω(t)>0, ∀t>0,
∫

0+

ds

ω(s)
<+∞, (3.3)

ω(t)

t
is non increasing (3.4)

(tα,α<1 would be suitable). Set

θ(s)=
∫ s

0

dt

ω(t)
. (3.5)

θ is one-to-one mapping from [0,T] into [0,θ(T)] for every T > 0. Let us denote

by θ−1 its inverse. One has

d

dy
θ−1(y)=ω

(

θ−1(y)
)

. (3.6)

Then we define

v(x)=

{

u(x)+θ−1(x−η1) in a neighbourhood of η1,

u(x)+θ−1(η2−x) in a neighbourhood of η2,
(3.7)

and we assume that

v>u,
u′

v′
>0 on (η1,η2). (3.8)

To fulfil the second condition it is enough to have v increasing on (η1,(η1+η2)/2),
decreasing on ((η1+η2)/2,η2), v′′((η1+η2)/2)<0 since, as v′((η1+η2)/2)=0,

lim
x→

η1+η2
2

u′

v′
(x)=(u′′v′′)

(

η1+η2

2

)

.

It is clear that it is always possible to find such a v. Then for x,u∈R we define

a(x,u) as

a(x,u)=







































1, if x 6∈ (η1,η2),

1, if u≤u(x), x∈ (η1,η2),
(

u′

v′

)p−1

, if u≥v(x), x∈ (η1,η2),

δ+(1−δ)

(

u′

v′

)p−1

, if u=δu(x)+(1−δ)v(x), x∈ (η1,η2).

(3.9)
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Clearly a(x,u) is continuous on R
2. Note that u′(η1)=v′(η1) and u′(η2)=v′(η2).

Now it is not Lipschitz continuous in u. Indeed, let us denote by ωa(t) the mod-

ulus of continuity of a(x,u) with respect to u, namely

ωa(t)= sup
x∈Ω,|u−v|≤t

|a(x,u)−a(x,v)|.

For t small there exists x near η1 such that v(x)−u(x)= t. Moreover, one has

a
(

x,u(x)
)

−a
(

x,v(x)
)

=1−

(

u′(x)

v′(x)

)p−1

=
1

v′(x)p−1

(

v′(x)p−1−u′(x)p−1
)

.

Recall that for x close to η1,

(v−u)′(x)=
d

dx
θ−1(x−η1)=ω

(

θ−1(x−η1)
)

=ω
(

v(x)−u(x)
)

.

This implies that v′(x)>u′(x) for x close to η1. We also have

(

v′(x)p−1−u′(x)p−1
)

=
∫ 1

0

d

ds

{

u′(x)+s
(

v′(x)−u′(x)
)}p−1

ds

=
∫ 1

0
(p−1)

{

u′(x)+s
(

v′(x)−u′(x)
)}p−2

ds(v−u)′(x)

=ω(t)
∫ 1

0
(p−1)

{

u′(x)+s
(

v′(x)−u′(x)
)}p−2

ds.

Clearly v′(x), u′(x) are bounded and bounded away from 0 near η1. Thus

a
(

x,u(x)
)

−a
(

x,v(x)
)

=
1

v′(x)p−1

∫ 1

0
(p−1)

{

u′(x)+s
(

v′(x)−u′(x)
)}p−2

ds ω(t),

and

ωa(t)= sup
x∈Ω,|u−v|≤t

|a(x,u)−a(x,v)|≥Cω(t)

for some constant C. This implies that

∫

0+

ds

ωa(s)
≤
∫

0+

ds

ω(s)
<+∞,



8 M. Chipot / Commun. Math. Anal. Appl., x (2024), pp. 1-16

which is impossible if ωa(t)∼Kt. This shows that a(x,u) is not Lipschitz contin-

uous in u. Now one has

a
(

x,v(x)
)

|v′|p−2v′=

(

|u′|

|v′|

)p−1

|v′|p−2v′= |u′|p−1 v′

|v′|

= |u′|p−1 u′

|u′|
= |u′|p−2u′,

a
(

x,u(x)
)

|u′|p−2u′= |u′|p−2u′,

since v′/|v′|=u′/|u′|. Thus, both u and v are solution to (3.1). This completes the

proof of the theorem.

We study now a particular example in dimension 1 where, on the contrary,
we are able to prove uniqueness of solution. For that let us consider a function f
defined on Ω=(η1,η2) and satisfying

f ∈L1(Ω). (3.10)

Note that in one dimension L1(Ω)⊂W−1,p′N (Ω) since W
1,pN
0 (Ω)⊂L∞(Ω) (see, for

instance [2]).
For i=1,.. .,N let ai(x,u) be continuous functions satisfying (1.1). Suppose that

for

1< p1< p2< . . .< pN , (3.11)

u is weak solution to

−

(

N

∑
i=1

ai

(

x,u(x)
)

|u′|pi−2u′

)′

= f in Ω,

u(η1)=u(η2)=0.

(3.12)

Let us first establish a lemma which will be useful in what follows to consider u
as solution of a Cauchy problem.

Lemma 3.1. Let us denote by ai, i=1,.. .,N positive constants. For a=(a1 ,. . .,aN) we

denote by Fa(z) the inverse function of the increasing function from R into R

X →
N

∑
i=1

ai|X|pi−2X.
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Then one has for some constant cp1
, see (3.16),

|Fa(z)−Fa′ (z)|≤
1

cp1
a1

N

∑
i=1

|a′i−ai|

{

(

|z|

a1

)
1

p1−1

+

(

|z|

a′1

)
1

p1−1

}pi−p1+1

, (3.13)

where a′=(a′1,. . .,a′N).

Proof. By definition of Fa =Fa(z), Fa′ =Fa′(z) one has

N

∑
i=1

ai|Fa|
pi−2Fa = z=

N

∑
i=1

a′i |Fa′ |
pi−2Fa′ . (3.14)

So we have first the estimate

N

∑
i=1

ai|Fa|
pi = zFa ≤|z||Fa |

and thus
N

∑
i=1

ai|Fa|
pi−1≤|z|,

which implies

|Fa|≤

(

|z|

a1

)
1

p1−1

. (3.15)

Next by subtraction in (3.14) we derive

N

∑
i=1

ai

{

|Fa|
pi−2Fa−|Fa′ |

pi−2Fa′

}

=
N

∑
i=1

(

a′i−ai

)

|Fa′ |
pi−2Fa′ .

Multiplying both sides by Fa−Fa′ , we get

N

∑
i=1

ai

{

|Fa|
pi−2Fa−|Fa′ |

pi−2Fa′

}

(Fa−Fa′)=
N

∑
i=1

(

a′i−ai

)

|Fa′ |
pi−2Fa′(Fa−Fa′).

Recall (see, e.g. [3]) that for p>1 there exists a constant cp>0 such that

cp(|ξ|+|ζ|)p−2 |ξ−ζ|2 ≤ (|ξ|p−2ξ−|ζ|p−2ζ)·(ξ−ζ), ∀ξ,ζ∈R
n. (3.16)
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Thus, for some constant cp1
we have

cp1
a1{|Fa|+|Fa′ |}

p1−2|Fa−Fa′ |
2

≤
N

∑
i=1

∣

∣a′i−ai

∣

∣|Fa′ |
pi−1|Fa−Fa′ |

≤
N

∑
i=1

∣

∣a′i−ai

∣

∣{|Fa |+|Fa′ |}
pi−1|Fa−Fa′ |.

Combining this with (3.15), we get

|Fa−Fa′ |≤
1

cp1
a1

N

∑
i=1

∣

∣a′i−ai

∣

∣{|Fa|+|Fa′ |}
pi−p1+1

≤
1

cp1
a1

N

∑
i=1

∣

∣a′i−ai

∣

∣

{

(

|z|

a1

)
1

p1−1

+

(

|z|

a′1

)
1

p1−1

}pi−p1+1

.

This completes the proof.

Theorem 3.2. Under the assumptions (3.10), (3.11) suppose that the ai(x,u)’s are con-

tinuous and Lipschitz continuous in u and

0<λ≤ a1(x,u), ∀x,u. (3.17)

Then (3.12) admits a unique solution.

Proof. If u is solution to (3.12) one has

N

∑
i=1

ai

(

x,u(x)
)

|u′(x)|pi−2u′(x)=−
∫ x

η1

f (s)ds+c, (3.18)

where c is some constant. This implies in particular that u′ is continuous. Note

also that this constant c satisfies

|c|≤
∫ η2

η1

| f (s)|ds.

Indeed, since u(η1)=u(η2)=0 there is a point m∈(η1,η2) where u′(m)=0 which

implies

c=
∫ m

η1

f (s)ds,
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and the estimate above follows easily. We claim that this constant c is the same

for any solution to (3.12). To show that, let ũ be solution to (3.12) such that

N

∑
i=1

ai

(

x,ũ(x)
)

|ũ′(x)|pi−2 ũ′(x)=−
∫ x

η1

f (s)ds+c′.

Suppose that c′> c. Then one has by writing the equations above at ηk, k=1,2,

N

∑
i=1

ai

(

ηk,ũ(ηk)
)
∣

∣ũ′(ηk)
∣

∣

pi−2
ũ′(ηk)

=−
∫ ηk

η1

f (s)ds+c′>−
∫ ηk

η1

f (s)ds+c

=
N

∑
i=1

ai

(

ηk,u(ηk)
)
∣

∣u′(ηk)
∣

∣

pi−2
u′(ηk).

Thus, since ai(ηk,ũ(ηk))= ai(ηk,u(ηk)) and the function

X →
N

∑
i=1

ai

(

ηk,u(ηk)
)

|X|pi−2X

is increasing, one gets

ũ′(ηk)>u′(ηk), k=1,2.

This implies that

ũ>u near η1,

ũ<u near η2,

recall that ũ=u=0 at η1,η2. Starting from η1 let us denote by x0 the first crossing

point of the graphs of ũ and u. At this point one has again

N

∑
i=1

ai

(

x0,ũ(x0)
)
∣

∣ũ′(x0)
∣

∣

pi−2
ũ′(x0)>

N

∑
i=1

ai

(

x0,u(x0)
)
∣

∣u′(x0)
∣

∣

pi−2
u′(x0),

and thus ũ′(x0)>u′(x0). But this would imply, since ũ(x0)=u(x0) that ũ(x)<u(x)
for some x< x0 and a contradiction. If c′< c then swapping ũ and u would lead

to the same contradiction. Thus, if u is solution to (3.12), there exists a fixed

constant c such that

N

∑
i=1

ai

(

x,u(x)
)

|u′(x)|pi−2u′(x)=−
∫ x

η1

f (s)ds+c,
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i.e. such that

u′=F

(

a
(

x,u(x)
)

,−
∫ x

η1

f (s)ds+c

)

.

We have set a(x,u(x)) = (a1(x,u(x)),. . . ,aN(x,u(x))), F(a,z) = Fa(z). It follows

from the Lemma 3.1 that F(a
(

x,u(x)
)

,−
∫ x

η1
f (s)ds+c) is Lipschitz continuous in

u. Indeed, denoting by K a positive constant bounding |−
∫ x

η1
f (s)ds+c|, one has

by (3.13)
∣

∣

∣

∣

F

(

a
(

x,u(x)
)

,−
∫ x

η1

f (s)ds+c

)

−F

(

a
(

x,v(x)
)

,−
∫ x

η1

f (s)ds+c

)
∣

∣

∣

∣

≤
1

cp1
λ

N

∑
i=1

∣

∣ai

(

x,u(x)
)

−ai

(

x,v(x)
)
∣

∣

{

2

(

K

a1

)
1

p1−1

}pi−p1+1

.

We have assumed the ai(x,u)’s Lipschitz continuous in u and thus

F

(

a
(

x,u(x)
)

,−
∫ x

η1

f (s)ds+c

)

is also Lipschitz continuous in u. Since u solution to (3.12) satisfies






u′=F

(

a
(

x,u(x)
)

,−
∫ x

η1

f (s)ds+c

)

, x∈ (η1,η2),

u(η1)=0,

u is unique. This completes the proof of the theorem.

Remark 3.1. In the case where f >0 then by (3.12),

x →
N

∑
i=1

ai

(

u(x)
)

|u′(x)|pi−2u′(x)

is decreasing and thus vanishes at exactly one point where the maximum of u is.

We turn now to the results that we are able to prove in higher dimensions. We
consider first a peculiar example.

Theorem 3.3. Suppose that there exist functions αi = αi(x) and a continuous function

b(u) such that for positive constants λ0,λ1,b0,b1 one has

λ0≤αi(x)≤λ1 a.e. x∈Ω,

b0≤b(u)≤b1 , ∀u∈R,

ai(x,u)=αi(x)b(u)
pi−1

(3.19)
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for all i= 1,.. .,N, then (1.3) admits at most one solution. More generally if uk,k= 1,2

denotes a solution to (1.3) corresponding to f = fk then

f1≤ f2 implies u1≤u2.

f1≤ f2 means, as usual in this context, 〈 f1− f2,v〉≤0 for any v∈W
1,pN
0 (Ω),v≥0.

Proof. If uk is solution to (1.3) corresponding to f = fk, one sets

Uk(x)=
∫ uk(x)

0
b(s)ds.

Then clearly

∇Uk(x)=b(uk)∇uk(x),

|∇Uk(x)|
pi−2∇Uk(x)=b(uk)

pi−1|∇uk(x)|
pi−2∇uk(x),

in such a way that Uk satisfies for k=1,2,











Uk ∈W
1,pN

0 (Ω),
∫

Ω

N

∑
i=1

αi(x)|∇Uk|
pi−2∇Uk ·∇vdx= 〈 fk ,v〉, ∀v∈W

1,pN

0 (Ω).

By subtraction one gets

∫

Ω

N

∑
i=1

αi(x)
(

|∇U1|
pi−2∇U1−|∇U2|

pi−2∇U2

)

·∇vdx

= 〈 f1− f2,v〉, ∀v∈W
1,pN
0 (Ω).

Taking v=(U1−U2)
+ the positive part of U1−U2 one gets easily for some con-

stants ci >0 (see (3.16))

∫

Ω

N

∑
i=1

αi(x)ci(|∇U1|+|∇U2|)
pi−2|∇(U1−U2)

+|2dx

≤
∫

Ω

N

∑
i=1

αi(x)
(

|∇U1|
pi−2∇U1−|∇U2|

pi−2∇U2

)

·∇(U1−U2)
+dx≤0.

This implies that (U1−U2)
+=0 and thus U1≤U2 which is equivalent to u1≤u2.

Uniqueness follows by choosing f = f1 = f2. This completes the proof of the

theorem.
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Remark 3.2. Note that only one of the αi’s needs here to be positive, for in-

stance αN if one wants to rely on (1.1) to have existence of a solution.

In the case of one single operator, i.e. N=1 the above theorem can be rephrased
as follows.

Theorem 3.4. Let α1 be such 0< λ0 ≤ α1(x)≤ λ1 and a(u) be a continuous function

such that for some positive constants

b0≤ a(u)≤b1 . (3.20)

For p>1 consider u solution to






u∈W
1,p
0 (Ω),

∫

Ω
α1(x)a(u)|∇u|p−2∇u·∇vdx= 〈 f ,v〉, ∀v∈W

1,p
0 (Ω).

(3.21)

Then (3.21) admits a unique solution. Moreover, if uk,k=1,2 denotes a solution to (3.21)

corresponding to fk then

f1≤ f2 implies u1≤u2.

If ak,k=1,2 denotes a function a satisfying (3.20) and if uk, k=1,2 denotes a solution to

(3.21) corresponding to ak, fk then

0≤ f1≤ f2, a1≥ a2 implies u1≤u2.

Proof. The first part of the theorem follows from Theorem 3.3 (see also the Re-

mark 3.2) by setting b(u)= a(u)1/(p−1) .

For the second part of the theorem note first that, since the fk are nonnegative,

one has uk ≥ 0 for k= 1,2. This is a consequence of the first part of the theorem.

Set as previously

Uk(x)=
∫ uk(x)

0
ak(s)

1
p−1 ds.

As in the proof of Theorem 3.3 one notices that Uk satisfies for k=1,2,







Uk∈W
1,p
0 (Ω),

∫

Ω
α1(x)|∇Uk|

p−2∇Uk ·∇vdx= 〈 fk ,v〉, ∀v∈W
1,p
0 (Ω).

By subtraction we get
∫

Ω
α1(x)

(

|∇U1|
p−2∇U1−|∇U2|

p−2∇U2

)

·∇vdx= 〈 f1− f2,v〉, ∀v∈W
1,p
0 (Ω).
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Taking v=(U1−U2)
+ one deduces as above that U1≤U2, i.e.

U1(x)=
∫ u1(x)

0
a1(s)

1
p−1 ds≤U2(x)

=
∫ u2(x)

0
a2(s)

1
p−1 ds≤

∫ u2(x)

0
a1(s)

1
p−1 ds, (3.22)

since a1≥ a2 and u2≥0. The result follows since
∫ u1(x)

0
a1(s)

1
p−1 ds≤

∫ u2(x)

0
a1(s)

1
p−1 ds

is equivalent to u1≤u2. This completes the proof of the theorem.

Remark 3.3. Note that without the positivity of fk one gets nevertheless a com-

parison principle, i.e. U1 ≤ U2 (cf. (3.22)) and only the positivity of f2 is used

subsequently. It is interesting to see that the monotonicity result is here at two

levels f and a and that one does not need any Lipschitz continuity on a.

4 Concluding remarks

The same results as above hold for instance for the problems of the type










u∈W
1,pN

0 (Ω),

−
N

∑
i=1

∂xi

(

ai(x,u)|∂xi
u|pi−2∂xi

u
)

= f in Ω.

In fact, the two operators, i.e. the one just above and the one in (1.2), coincide in
dimension one.

In higher dimensions we suspect that the result obtained in the case where
N=1 go through for any N when

ai(x,u)=αi(x)ai(u),

ai(u) being continuous, bounded and bounded away from 0. However, so far, we
have been unable to show it except in the particular case of Theorem 3.3.
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