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Abstract

In this paper, we consider numerical solutions of the fractional diffusion equation with

the α order time fractional derivative defined in the Caputo-Hadamard sense. A high

order time-stepping scheme is constructed, analyzed, and numerically validated. The con-

tribution of the paper is twofold: 1) regularity of the solution to the underlying equation

is investigated, 2) a rigorous stability and convergence analysis for the proposed scheme

is performed, which shows that the proposed scheme is 3 + α order accurate. Several

numerical examples are provided to verify the theoretical statement.
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1. Introduction

Fractional calculus has been paid much attention in recent decades, due to, on one side, its

well-recognized applicability in science and engineering, and on the other side, its attractive

complementary of the integer order calculus in pure mathematics, see, e.g. [7,19,23,24] and the

references cited therein.

Up to now, there exist several kinds of fractional integrals and derivatives, like Riemann-

Liouville, Caputo, Riesz, C-Fabrizio and Hadamard integrals and derivatives. The first three

have been widely studied in the past decades. Actually, the Hadamard derivative which was

proposed early in 1892 [15] is also very worthy of in-depth study, since it has been extensively

used in mechanics and engineering, e.g. both planar and three-dimensional elasticities, or the

fracture analysis [2] and the Lomnitz logarithmic creep law of special substances, e.g. igneous

rock [11, 22]. Moreover, ultraslow diffusion appears in various applications [6, 9]. For instance,

vacancy-mediated tracer flow and particle movements in certain strongly heterogeneous media

may demonstrate ultraslow diffusive phenomena [4, 5, 28]. Mathematically, the mean square
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displacement of the particles in ultraslow diffusion grows logarithmically in time [16, 25, 26].

Therefore, the Hadamard fractional operators, whose kernels are defined in terms of logarithmic

functions, serve as a natural choice for modeling ultraslow diffusion processes and thus attract

wide attentions.

For partial differential equations involving Hadamard derivative, although the research is rel-

atively sparse, several studies have been carried out, and we see increasing interest in this topic

from both scientific and engineering communities. We mention, among others, the work [18]

to develop fractional integration and differentiation in the Hadamard setting. The existence

almost everywhere was established for the considered Hadamard-type fractional derivative, the

semigroup and reciprocal properties for the Hadamard-type fractional derivative and integration

operators were proved. The stability and logarithmic decay of the solution of Hadamard-type

fractional differential equation was discussed in [20]. A logarithmic transformation reducing the

Caputo-Hadamard (CH) fractional problems to their Caputo analogues was presented in [29].

The well-posedness and regularity of CH fractional stochastic differential equations were stud-

ied in [28]. Numerically, Gohar et al. [12, 13] and Li et al. [21] derived several finite difference

schemes to approximate the CH fractional derivative. Very recently, Fan et al. [10] derived

some new numerical formulas, called as L1-2 formula, L2-1σ formula and H2N2 formula, for

discretization of the CH fractional derivative. A second-order scheme with nonuniform time

meshes for CH fractional sub-diffusion equations with initial singularity is investigated in [27].

The predictor-corrector numerical method for solving CH fractional differential equations with

the graded meshes was considered in [14]. However, to the best of our knowledge, the conver-

gence order of the existing schemes is no more than three.

The aim of this work is to propose and analyze an efficient time stepping scheme having the

convergence order more than three for the CH fractional differential equations. The proposed

scheme is based on the so-called block-by-block approach, which is a common method for

the integral equations, and has been successfully applied to construct high order scheme for

the Caputo fractional differential equations in [3]. Although the used idea for the scheme

construction is the same as [3], the convergence analysis is a completely different skill from the

method used in [3]. The rest of this paper is organized as follows. In Section 2, we present some

regularity properties of the solution for the considered problem. In Section 3, we describe the

detailed construction of the high order scheme for the Hadamard FDEs under consideration.

Then in Section 4, we derive an estimate for the local errors through a series of lemmas. The

stability and convergence analysis is given in Section 5. Finally, several numerical examples are

provided in Section 6 to support the theoretical statement. Some concluding remarks are given

in the final section.

2. Problem and Regularity Properties

We are interested in the following CH fractional equation with 0 < α < 1:

CHDα
a,tu(t) = f

(

t, u(t)
)

, 0 < a < t,

u(a) = ua,
(2.1)

where f(t, u) is a nonlinear function with respect to u, and the initial value ua is given. The

notation CHDα
a,t is the CH fractional derivative of order α defined by [2, 17],

CHDα
a v(t) =

1

Γ(1− α)

∫ t

a

(

log
t

s

)−α

δv(s)
ds

s
,
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where, for simplifying the notation, we use the notation δv := s dv/ds, which is called the

δ-derivative of v. It is known [1] that the problem (2.1) is equivalent to the Volterra integral

equation as follows:

u(t) = ua +
1

Γ(α)

∫ t

a

(

log
t

s

)α−1

f
(

s, u(s)
)ds

s
. (2.2)

Throughout the paper we assume that the function f(t, u) is continuous and satisfies the

Lipschitz condition with respect to the second variable u on a suitable set G, i.e. there exists

a Lipschitz constant L > 0 such that, for all (t, u1) and (t, u2) ∈ G, we have

|f(t, u1)− f(t, u2)| ≤ L |u1 − u2| . (2.3)

Following [13], there exists a T > a, such that the problem (2.1) admits a unique solution on

the interval (a, T ].

In order to give some regularity properties of the solutions to (2.1), we introduce the following

logarithmic transformation:

t̄ := log
t

a
, (2.4)

which is a one-to-one mapping from [a, T ] to [0, T̄ ] with T̄ = log(T/a). For any function g(t)

on [a, T ], one could define ḡ(t̄) on [0, T̄ ] by

ḡ(t̄ ) := g
(

aet̄
)

= g(t).

It can be directly checked, see also [29], that

dn

dt̄n
ḡ(t̄ ) = δng(t), n ∈ N. (2.5)

Using the logarithmic transformation (2.4) and the transformation property (2.5), we see that

the Caputo-Hadamard fractional operator is linked to the Caputo fractional operator as follows:

CHDα
a,t g(t) =

CDα
0,t̄ ḡ(t̄ ),

where the Caputo fractional derivative CDα
0,sv is defined by

CDα
0,sv(s) =

1

Γ(1− α)

∫ s

0

(s− z)−αv′(z)dz.

Consequently, the initial value problem (2.1) is equivalent to the initial value problem with

Caputo derivative

CDα
0,t̄ū(t̄ ) = f̄

(

t̄, ū(t̄ )
)

, t̄ > 0,

ū(0) = ua. (2.6)

It has been well known that the solution to (2.6) can be expressed as

ū(t̄) = ua +
1

Γ(α)

∫ t̄

0

(t̄− s)α−1f̄
(

s, ū(s)
)

ds.

Then, in virtue of Diethelm’s regularity results [7, 8], we have the following proposition.
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Proposition 2.1. (1) Assume that δ3f ∈ C(G). Then, there exists a function ψ(t) with

δ2ψ(t) ∈ C[a, T ] such that the solution u(t) of the initial value problem (2.1) can be expressed

in the form

u(t) = ψ(t) +

⌈2/α⌉−1
∑

l=1

λl

(

log
t

a

)αl

+

⌈1/α⌉−1
∑

l=1

µl

(

log
t

a

)1+αl

,

where λl ∈ R, l = 1, . . . , ⌈2/α⌉ − 1, µl ∈ R, l = 1, . . . , ⌈1/α⌉ − 1.

(2) If δkf∈C(G), k∈N, then u(t)∈C[a, T ] and δku(t) ∈ C(a, T ]. Moreover, for ν = 1, 2, . . . , k,

it holds

δνu(t) = O
(

(

log
t

a

)α−ν
)

as t → a.

Proof. These two results are respectively direct consequences of the regularity results es-

tablished in [8, Theorem 2.1] and [7, Theorem 6.27] for the transformed solution ū(t̄ ) and then

inversely transforming back to u(t). �

We see from Proposition 2.1 that a smooth function f on the right-hand side of the dif-

ferential equation will necessarily lead to a non-smooth behaviour of the solution due to the

singularity at the starting point a. However high order numerical schemes usually require reg-

ular enough f and u. In the present work we will assume δ4f(·, u(·)) ∈ C[a, T ], i.e. the fourth

order δ-differentiability of the function f and the solution u simultaneously. To see how this

assumption is justifiable, we consider a class of the function f for which the required regularity

becomes true.

Proposition 2.2. If δkf(·, u(·)) ∈ C[a, T ], k ∈ N, then δku(t)∈C(a, T ]. Furthermore, δku(t) ∈
C[a, T ] if and only if f(·, u(·)) has a k-fold zero at the starting point a.

Before we come to the proof of Proposition 2.2, we first prove an useful property of Hadamard

integral operator. That is, if g(t) ∈ C[a, T ], then HI
α
t g(t) ∈ C[a, T ], where HI

α
t is the Hadamard

fractional integral of order α defined by

HI
α
t g(t) =

1

Γ(α)

∫ t

a

(

log
t

s

)α−1

g(s)
ds

s
.

In fact, it has been showed in [29] that

HI
α
t g(t) = Iαt̄ ḡ(t̄ ),

where

Iαt̄ ḡ(t̄ ) =
1

Γ(α)

∫ t̄

0

(t̄− s)α−1ḡ(s)ds.

Note that ḡ(t̄ ) ∈ C[0, T̄ ] if g(t) ∈ C[a, T ]. It follows from [7, Theorem 2.5] that Iαt̄ ḡ(t̄ ) ∈ C[0, T̄ ],

which leads to HI
α
t g(t) ∈ C[a, T ].

Proof of Proposition 2.2. In view of (2.2), the solution u of (2.1) satisfies

u(t) = ua +
1

Γ(α)

∫ t

a

(

log
t

s

)α−1

z(s)
ds

s
, (2.7)
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where z(s) := f(s, u(s)). A straightforward calculation leads

δu(t) = t
du

dt
=

t

Γ(α)

d

dt

∫ t

a

(

log
t

s

)α−1

z(s)
ds

s

=
t

Γ(α)

d

dt

∫ log t
a

0

τα−1z(te−τ)dτ

=
1

Γ(α)

(

log
t

a

)α−1

z(a) +
t

Γ(α)

∫ log t
a

0

τα−1 dz(te
−τ)

dt
dτ

=
1

Γ(α)

(

log
t

a

)α−1

z(a) +
t

Γ(α)

∫ t

a

(

log
t

s

)α−1
dz

ds

ds

dt

ds

s
, (2.8)

where we have changed the variable of integration by letting τ = log(t/s) (i.e. s = te−τ ). It is

apparent from s = te−τ that t ds/dt = s, thus we obtain

δu(t) =
1

Γ(α)

(

log
t

a

)α−1

z(a) +
1

Γ(α)

∫ t

a

(

log
t

s

)α−1

δz(s)
ds

s

=
1

Γ(α)

(

log
t

a

)α−1

z(a) +HI
α
t δz. (2.9)

Following the same idea, differentiate the above equation k − 1 times in succession leads to

δku(t) =H Iαt δ
kz +

1

Γ(α)

[

(

log
t

a

)α−1

δk−1z(a)

+
k
∑

l=2

(α − 1) · · · (α− l + 1)

(

log
t

a

)α−l

δk−lz(a)

]

, (2.10)

where δ0z(a) = z(a) and k ≥ 2. Under the assumption on f , the function δkz is continuous.

Consequently, HI
α
t δ

kz ∈ C[a, T ]. For α < 1, the right-hand side of (2.10), and therefore also the

left-hand side, i.e. the function δku, is continuous on the half-open interval (a, T ]. Furthermore,

δku is continuous on the closed interval [a, T ] if and only if δlz(a) = 0, l = 0, 1, . . . , k − 1. �

3. Numerical Scheme

The proposed scheme will be constructed based on the equivalent equation (2.2). For

a given positive integer N , we divide the interval [a, T ] into 2N equal sub-intervals with size

∆t = (T−a)/(2N), and denote tj = a+j∆t, τi = log ti− log ti−1, i = 1, . . . , 2N, j = 0, 1, . . . , 2N.

The numerical solution of (2.2) at the point tj is denoted by uj . Set u0 = ua, fj = f(tj , uj).

We first determine the approximations to u(t) at t1 and t2. Using the quadratic inter-

polation [10], f(t, u(t)) can be approximated in the interval [t0, t2] by means of three point

(t0, f0), (t1, f1), (t2, f2) as

f
(

t, u(t)
)

≈
2
∑

i=0

φ0,i(t)fi, t ∈ [t0, t2], (3.1)

where φ0,i(t), i = 0, 1, 2, are quadratic logarithmic interpolations, defined by

φ0,0(t) =
log(t/t1) log(t/t2)

τ1(τ1 + τ2)
, (3.2a)
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φ0,1(t) =
log(t/t0) log(t/t2)

−τ1τ2
, (3.2b)

φ0,2(t) =
log(t/t0) log(t/t1)

τ2(τ1 + τ2)
. (3.2c)

Substituting (3.1) into (2.2), and integrating, we obtain

u(t2) ≈ u0 +

2
∑

i=0

c0,i2 fi, (3.3)

where

c0,i2 =
1

Γ(α)

∫ t2

a

(

log
t2
s

)α−1

φ0,i(s)
ds

s
, i = 0, 1, 2,

which can be exactly computed. Note that (3.3) requires the values of f (or indirectly, the

values of u) at t1 and t2. To determine u1, we approximate f(t, u(t)) on [t0, t1] as

f
(

t, u(t)
)

≈ ϕ0,0(t)f0 + ϕ0,1(t)f 1
2
+ ϕ0,2(t)f1, ∀ t ∈ [t0, t1], (3.4)

where t1/2 = t0 + 1/2∆t, f1/2 = f(t1/2, u(t1/2)), and ϕ0,i(t), i = 0, 1, 2, are another set of

quadratic logarithmic interpolations, defined by

ϕ0,0(t) =
log
(

t/t 1
2

)

log(t/t1)

log
(

t0/t 1
2

)

log(t0/t1)
,

ϕ0,1(t) =
log(t/t0) log(t/t1)

log
(

t 1
2
/t0
)

log
(

t 1
2
/t1
) ,

ϕ0,2(t) =
log(t/t0) log

(

t/t 1
2

)

log(t1/t0) log
(

t1/t 1
2

) .

(3.5)

Substituting (3.4) into (2.2) yields

u(t1) ≈ u0 + d0,01 f0 + d0,11 f1/2 + d0,21 f1, (3.6)

where

d0,i1 =
1

Γ(α)

∫ t1

a

(

log
t1
s

)α−1

ϕ0,i(s)
ds

s
, i = 0, 1, 2.

The value of f1/2 is determined according to (3.1), which leads to

f 1
2
≈

2
∑

i=0

ωifi (3.7)

with ωi = φ0,i
(

t1/2
)

, i = 0, 1, 2. Substituting (3.7) into (3.6), we obtain

u(t1) ≈ u0 + d0,01 f0 + d0,11 (ω0f0 + ω1f1 + ω2f2) + d0,21 f1 := u0 +

2
∑

i=0

c0,i1 fi, (3.8)

where

c0,01 = d0,01 + ω0d
0,1
1 , c0,11 = ω1d

0,1
1 + d0,21 , c0,21 = ω2d

0,1
1 .
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This leads to a 2× 2 algebraic system for the first two step solutions u1 and u2






















u1 = u0 +
2
∑

i=0

c0,i1 fi,

u2 = u0 +

2
∑

i=0

c0,i2 fi.

(3.9)

Let us now assume that the approximations uj are known for j = 0, 1, . . . , 2m, we want to

derive approximations to u(t2m+1) and u(t2m+2). Following the above approach, we have

u(t2m+1) = u0 +
1

Γ(α)

∫ t2m+1

t0

(

log
t2m+1

s

)α−1

f
(

s, u(s)
)ds

s
(3.10)

= u0 +
1

Γ(α)

[

∫ t1

t0

(

log
t2m+1

s

)α−1

f
(

s, u(s)
)ds

s

+

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

f
(

s, u(s)
)ds

s

]

≈ u0 +
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
(

ϕ0,0(s)f0 + ϕ0,1(s)f 1
2
+ ϕ0,2(s)f1

)ds

s

+
1

Γ(α)

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1
(

ϕk,0(s)f2k−1 + ϕk,1(s)f2k + ϕk,2(s)f2k+1

)ds

s
,

where ϕ0,i(t), i = 0, 1, 2, are defined in (3.5), and ϕk,i, k = 1, . . . ,m, i = 0, 1, 2, are quadratic

logarithmic interpolations associated with the points t2k−1, t2k, t2k+1

ϕk,0(t) =
log(t/t2k) log(t/t2k+1)

τ2k(τ2k + τ2k+1)
,

ϕk,1(t) =
log(t/t2k−1) log(t/t2k+1)

−τ2kτ2k+1
,

ϕk,2(t) =
log(t/t2k−1) log(t/t2k)

τ2k+1(τ2k + τ2k+1)
.

(3.11)

Inserting (3.11) into (3.10) gives

u(t2m+1) ≈ u0 + d0,02m+1f0 + d0,12m+1f 1
2
+ d0,22m+1f1

+

m
∑

k=1

[

ck,02m+1f2k−1 + ck,12m+1f2k + ck,22m+1f2k+1

]

, (3.12)

where

d0,i2m+1 =
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1

ϕ0,i(s)
ds

s
, i = 0, 1, 2,

ck,i2m+1 =
1

Γ(α)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,i(s)
ds

s
, i = 0, 1, 2, k = 1, . . . ,m.

Approximating f1/2 in (3.12) by (3.7), we arrive at the following scheme for computing u2m+1:

u2m+1 = u0 + c0,02m+1f0 + c0,12m+1f1 + c0,22m+1f2

+

m
∑

k=1

[

ck,02m+1f2k−1 + ck,12m+1f2k + ck,22m+1f2k+1

]

, (3.13)
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where

c0,02m+1 = d0,02m+1 + w0d
0,1
2m+1, c0,12m+1 = w1d

0,1
2m+1 + d0,22m+1, c0,22m+1 = w2d

0,1
2m+1.

To compute u2m+2, we use the following approximation:

u(t2m+2) = u0 +
1

Γ(α)

∫ t2m+2

t0

(

log
t2m+2

s

)α−1

f
(

s, u(s)
)ds

s

= u0 +
1

Γ(α)

m
∑

k=0

∫ t2k+2

t2k

(

log
t2m+2

s

)α−1

f
(

s, u(s)
)ds

s

≈ u0+
1

Γ(α)

m
∑

k=0

∫ t2k+2

t2k

(

log
t2m+2

s

)α−1
(

φk,0(s)f2k+φk,1(s)f2k+1+φk,2(s)f2k+2

)ds

s
,

where φk,i, k = 1, . . . ,m, i = 0, 1, 2, are the logarithmic interpolations associated with the points

t2k, t2k+1, t2k+2

φk,0(t) =
log(t/t2k+1) log(t/t2k+2)

τ2k+1(τ2k+1 + τ2k+2)
,

φk,1(t) =
log(t/t2k) log(t/t2k+2)

−τ2k+1τ2k+2
,

φk,2(t) =
log(t/t2k) log(t/t2k+1)

τ2k+2(τ2k+1 + τ2k+2)
.

(3.14)

As a result, we obtain the scheme at the step 2m+ 2

u2m+2 = u0 +

m
∑

k=0

[

ck,02m+2f2k + ck,12m+2f2k+1 + ck,22m+2f2k+2

]

, (3.15)

where

ck,i2m+2 =
1

Γ(α)

∫ t2k+2

t2k

(

log
t2m+2

s

)α−1

φk,i(s)
ds

s
, i = 0, 1, 2.

To summarize, we arrive at the following overall scheme:































































u1 = u0 + c0,01 f0 + c0,11 f1 + c0,21 f2,

u2 = u0 + c0,02 f0 + c0,12 f1 + c0,22 f2,

u2m+1 = u0 + c0,02m+1f0 + c0,12m+1f1 + c0,22m+1f2

+

m
∑

k=1

[

ck,02m+1f2k−1 + ck,12m+1f2k + ck,22m+1f2k+1

]

,

u2m+2 = u0 +
m
∑

k=0

[

ck,02m+2f2k + ck,12m+2f2k+1 + ck,22m+2f2k+2

]

,

m = 1, . . . , N − 1.

(3.16)

4. Estimation of the Truncation Errors

We first present some lemmas which will be used later on. We hereafter denote by C

a generic constant which may not be the same at different occurrences, but independent of all

discretization parameters.
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Lemma 4.1. It holds

log
t1
t0

≤ ∆t

t0
, (4.1)

and if ∆t < (
√
5− 1)a/2, then we have

τj+1 < τj < 2τj+1, j = 1, . . . , 2N − 1, (4.2)

where τj = log tj − log tj−1.

Proof. The inequality (4.1) is trivial. For (4.2), it suffices to show that τj < 2τj+1. A direct

calculation gives

τj − 2τj+1 = log
t3j

tj−1t2j+1

,

and

t3j − tj−1t
2
j+1 = t3j − (tj −∆t)(tj +∆t)2 = ∆t

(

∆t2 + tj∆t− t2j
)

.

If ∆t < (
√
5− 1)a/2, then ∆t < (

√
5− 1)tj/2. Consequently t

3
j − tj−1t

2
j+1 < 0, and

log
t3j

tj−1t2j+1

< 0.

This gives τj < 2τj+1. �

Remark 4.1. Similar to (4.2), if ∆t < (
√
5− 1)a/2, it holds

log
t1
t 1
2

< log
t 1
2

t0
< 2 log

t1
t 1
2

. (4.3)

Throughout the paper, we will always assume ∆t < (
√
5− 1)a/2.

Lemma 4.2. For i 6= j and p 6= q, we have

log
tj
ti

=

(

j − i

p− q
+ ε(∆t)

)

log
tp
tq
, (4.4)

where lim∆t→0 ε(∆t) = 0.

Proof. A routine computation gives rise to the following formula:

lim
∆t→0

log(tj/ti)

log(tp/tq)
= lim

∆t→0

log
(

1 + (j − i)∆t/ti
)

log
(

1 + (p− q)∆t/tq
) = lim

∆t→0

(j − i)tq
(p− q)ti

= lim
∆t→0

(j − i)
(

ti + (q − i)∆t
)

(p− q)ti
=
j − i

p− q
.

This completes the proof. �

Lemma 4.3.
∫ tk

tj

(

log
b

s

)α−1
ds

s
≤
(

log
b

tk

)α−1

log
tk
tj
,

where k > j, b is a positive constant.
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Proof. By virtue of the mean value theorem of integrals, there is τ∗ ∈ [log tj , log tk] such that

∫ tk

tj

(

log
b

s

)α−1
ds

s
=

∫ log tk

log tj

(log b− τ)α−1 dτ = (log b− τ∗)α−1 log
tk
tj
.

The statement then follows from the monotonically increasing nature of (log b − s)α−1 with

respect to s. �

Lemma 4.4 ([28]). For α > 0, β > 0, b > a > 0, there holds

∫ b

a

(

log
b

s

)α−1
(

log
s

a

)β−1 ds

s
=

Γ(α)Γ(β)

Γ(α+ β)

(

log
b

a

)α+β−1

.

We recall the modified Gronwall inequality, which is crucial to the proof of the stability and

error analysis of our scheme.

Lemma 4.5 (Discrete Gronwall Inequality, [13, Lemma 4.3]). Let 0 < α < 1, N be

a positive integer, a = t0 < t1 < · · · < t2N = T and

bj,n =

(

log
tn
a

− log
tj
a

)α−1

log
tj+1

tj
, j = 0, 1, . . . , n− 1, n = 1, 2, . . . , 2N.

Suppose η0 is a positive constant, the positive sequence {en} satisfies

e0 ≤ η0,

en ≤M

n−1
∑

j=0

bj,nej + η0

with M being a positive constant independent of n. Then

en ≤ Cη0, n = 1, 2, . . . , 2N,

where C is a positive constant independent of n.

We are now in a position to derive an estimate for the truncation errors of the scheme (3.16).

We define the local errors separately for the odd steps and even steps as follows:

R2m+1(∆t) := u(t2m+1)− û2m+1, (4.5)

R2m+2(∆t) := u(t2m+2)− û2m+2, (4.6)

where û2m+1 and û2m+2 are the approximations to u(t2m+1) and u(t2m+2), respectively evalu-

ated by using the schemes (3.13) and (3.15) with the exact previous solutions, i.e.

û2m+1 = u0 + c0,02m+1f
(

t0, u(t0)
)

+ c0,12m+1f
(

t1, u(t1)
)

+ c0,22m+1f
(

t2, u(t2)
)

+

m
∑

k=1

[

ck,02m+1f
(

t2k−1, u(t2k−1)
)

+ ck,12m+1f
(

t2k, u(t2k)
)

+ ck,22m+1f
(

t2k+1, u(t2k+1)
)]

,

û2m+2 = u0 +
m
∑

k=0

[

ck,02m+2f
(

t2k, u(t2k)
)

+ ck,12m+2f
(

t2k+1, u(t2k+1)
)

+ ck,22m+2f
(

t2k+2, u(t2k+2)
)]

.
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Proposition 4.1. If δ4f(·, u(·)) ∈ C[a, T ], then it holds

|R2m+1(∆t)| ≤ C∆t3+α, |R2m+2(∆t)| ≤ C∆t3+α.

Proof. We only derive the estimate for R2m+1(∆t). The even step error R2m+2(∆t) can be

estimated similarly. Using (3.10) and (3.12) in the definition (4.5), we have

R2m+1(∆t)

= u(t2m+1)−
{

u0 +
(

d0,02m+1 + w0d
0,1
2m+1

)

f
(

t0, u(t0)
)

+
(

w1d
0,1
2m+1 + d0,22m+1

)

f
(

t1, u(t1)
)

+ w2d
0,1
2m+1f

(

t2, u(t2)
)

+

m
∑

k=1

[

ck,02m+1f
(

t2k−1, u(t2k−1)
)

+ ck,12m+1f
(

t2k, u(t2k)
)

+ ck,22m+1f
(

t2k+1, u(t2k+1)
)

]

}

= u(t2m+1)−
{

u0+f
(

t0, u(t0)
)

d0,02m+1+
[

w0f
(

t0, u(t0)
)

+w1f
(

t1, u(t1)
)

+w2f
(

t2, u(t2)
)]

d0,12m+1

+f
(

t1, u(t1)
)

d0,22m+1+

m
∑

k=1

[

ck,02m+1f
(

t2k−1, u(t2k−1)
)

+ ck,12m+1f
(

t2k, u(t2k)
)

+ck,22m+1f
(

t2k+1, u(t2k+1)
)

]

}

= u0 +
1

Γ(α)

[

∫ t1

t0

(

log
t2m+1

s

)α−1

f
(

s, u(s)
)ds

s
+

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

f
(

s, u(s)
)ds

s

]

−
{

u0+
1

Γ(α)

[

f
(

t0, u(t0)
)

∫ t1

t0

(

log
t2m+1

s

)α−1

ϕ0,0(s)
ds

s

+
(

w0f
(

t0, u(t0)
)

+w1f
(

t1, u(t1)
)

+w2f
(

t2, u(t2)
))

×
∫ t1

t0

(

log
t2m+1

s

)α−1

ϕ0,1(s)
ds

s
+f
(

t1, u(t1)
)

∫ t1

t0

(

log
t2m+1

s

)α−1

ϕ0,2(s)
ds

s

]

+
1

Γ(α)

m
∑

k=1

[

f
(

t2k−1, u(t2k−1)
)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,0(s)
ds

s

+ f
(

t2k, u(t2k)
)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,1(s)
ds

s

+ f
(

t2k+1, u(t2k+1)
)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,2(s)
ds

s

]

}

=
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1

×
{

f
(

s, u(s)
)

−
[

f
(

t0, u(t0)
)

ϕ0,0(s) + f
(

t 1
2
, u
(

t 1
2

))

ϕ0,1(s) + f
(

t1, u(t1)
)

ϕ0,2(s)
]

+
[

f
(

t 1
2
, u
(

t 1
2

))

−
(

w0f
(

t0, u(t0)
)

+w1f
(

t1, u(t1)
)

+w2f
(

t2, u(t2)
))

]

ϕ0,1(s)

}

ds

s
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+
1

Γ(α)

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

×
{

f
(

s, u(s)
)

−
[

ϕk,0(s)f
(

t2k−1, u(t2k−1)
)

+ϕk,1(s)f
(

t2k, u(t2k)
)

+ϕk,2(s)f
(

t2k+1, u(t2k+1)
)

]

}

ds

s

=
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
(

r0(s) + r̃0(s)ϕ0,1(s)
)ds

s

+
1

Γ(α)

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

r2k−1(s)
ds

s
,

where

r0(s) = f
(

s, u(s)
)

− f
(

t0, u(t0)
)

ϕ0,0(s)− f
(

t 1
2
, u
(

t 1
2

))

ϕ0,1(s)− f
(

t1, u(t1)
)

ϕ0,2(s),

r̃0(s) = f
(

t 1
2
, u
(

t 1
2

))

− w0f
(

t0, u(t0)
)

− w1f
(

t1, u(t1)
)

− w2f
(

t2, u(t2)
)

,

r2k−1(s) = f
(

s, u(s)
)

− ϕk,0(s)f
(

t2k−1, u(t2k−1)
)

− ϕk,1(s)f
(

t2k, u(t2k)
)

− ϕk,2(s)f
(

t2k+1, u(t2k+1)
)

, k = 1, . . . ,m.

Using the logarithmic interpolation theory employed in [10] for all s ∈ [t0, t1] there exist ξ1(s) ∈
(t0, t1), η(s) ∈ (t0, t2) such that

r0(s) =
δ3f
(

ξ1(s), u
(

ξ1(s)
))

3!
log

s

t0
log

s

t 1
2

log
s

t1
,

r̃0(s) =
δ3f
(

η(s), u
(

η(s)
))

3!
log

t 1
2

t0
log

t 1
2

t1
log

t 1
2

t2
,

and for all s ∈ [t2k−1, t2k+1] there exists ξk(s) ∈ (t2k−1, t2k+1) such that

r2k−1(s) =
δ3f
(

ξk(s), u
(

ξk(s)
))

3!
log

s

t2k−1
log

s

t2k
log

s

t2k+1
, k = 1, . . . ,m.

Therefore, we have

R2m+1(∆t) (4.7)

=
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1 δ3f
(

ξ1(s), u
(

ξ1(s)
))

3!
log

s

t0
log

s

t 1
2

log
s

t1

ds

s

+
1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1 δ3f
(

η(s), u
(

η(s)
))

3!
log

t 1
2

t0
log

t 1
2

t1
log

t 1
2

t2
ϕ0,1(s)

ds

s

+
1

Γ(α)

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1 δ3f
(

ξk(s), u
(

ξk(s)
))

3!
log

s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s
.

It remains to estimate the right-hand side of (4.7) term by term. For the first term, denoted

by R1, we have

|R1| ≤ 1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
∣

∣

∣

∣

∣

δ3f
(

ξ1(s), u
(

ξ1(s)
))

3!
log

s

t0
log

s

t 1
2

log
s

t1

∣

∣

∣

∣

∣

ds

s

≤ M1

6Γ(α)
τ31

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
,
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where

M1 = sup
t∈[a,T ]

∣

∣δ3f
(

t, u(t)
)
∣

∣.

It follows from Lemmas 4.2 and 4.3 that

|R1| ≤ M1

6Γ(α)
τ41

(

log
t2m+1

t1

)α−1

=
M1

6Γ(α)
τ3+α
1

(

2m+ ε(∆t)
)α−1 ≤ M1

6Γ(α)
τ3+α
1 , (4.8)

where lim∆t→0 ε(∆t) = 0. Similarly, for the second term in (4.7), denoted by R2, we have

|R2| ≤ 1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
∣

∣

∣

∣

∣

δ3f
(

η(s), u
(

η(s)
))

3!
log

t 1
2

t2
log

s

t0
log

s

t1

∣

∣

∣

∣

∣

ds

s

≤ M1

6Γ(α)
τ21 (τ1 + τ2)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s

≤ M1

3Γ(α)
τ41

(

log
t2m+1

t1

)α−1

≤ M1

3Γ(α)
τ3+α
1 . (4.9)

The third term R3 can be bounded by

|R3|=
∣

∣

∣

∣

∣

1

Γ(α)

m
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1δ3f
(

ξk(s), u
(

ξk(s)
))

3!
log

s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

∣

(4.10)

≤ 1

Γ(α)

m−1
∑

k=1

{

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1 δ3f
(

t2k, u(t2k)
)

3!
log

s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1 δ3f
(

ξk(s), u
(

ξk(s)
))

− δ3f
(

t2k, u(t2k)
)

3!

× log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

}

+
1

Γ(α)

∣

∣

∣

∣

∫ t2m+1

t2m−1

(

log
t2m+1

s

)α−1 δ3f
(

ξm(s), u
(

ξm(s)
))

3!
log

s

t2m−1
log

s

t2m
log

s

t2m+1

ds

s

∣

∣

∣

∣

.

For the first term in the right-hand side of (4.10), denote by R31, we have

R31 =
1

Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1 δ3f
(

t2k, u(t2k)
)

3!
log

s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

=

∣

∣δ3f
(

t2k, u(t2k)
)∣

∣

6Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

≤ M1

6Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∫ t2k

t2k−1

(

log
t2m+1

s

)α−1

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

+

∫ t2k+1

t2k

(

log
t2m+1

s

)α−1

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

=
M1

6Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

(

log
t2m+1

s̃k

)α−1 ∫ t2k

t2k−1

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

+

(

log
t2m+1

s̄k

)α−1 ∫ t2k+1

t2k

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

, (4.11)
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where t2k−1 ≤ s̃k ≤ t2k ≤ s̄k ≤ t2k+1. By Lemmas 4.4 and 4.2, we have
∫ t2k

t2k−1

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

=

∫ t2k

t2k−1

log
s

t2k−1
log

s

t2k

(

log
s

t2k
+ log

t2k
t2k+1

)

ds

s

=

∫ t2k

t2k−1

(

log
t2k
s

)2

log
s

t2k−1

ds

s
+ log

t2k+1

t2k

∫ t2k

t2k−1

log
t2k
s

log
s

t2k−1

ds

s

=
1

12
τ42k +

1

6
τ32kτ2k+1 =

1

4
τ42k +

1

6
τ42kε1(∆t), (4.12)

where lim∆t→0 ε1(∆t) = 0. Similarly, we have
∫ t2k+1

t2k

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

=

∫ t2k+1

t2k

(

log
s

t2k
+ log

t2k
t2k−1

)

log
s

t2k
log

s

t2k+1

ds

s

= −
∫ t2k+1

t2k

(

log
s

t2k

)2

log
t2k+1

s

ds

s
− τ2k

∫ t2k+1

t2k

log
t2k+1

s
log

s

t2k

ds

s

= − 1

12
τ42k+1 −

1

6
τ2kτ

3
2k+1 = −1

4
τ42k − 1

4
τ42kε2(∆t), (4.13)

where lim∆t→0 ε2(∆t) = 0. Bringing (4.12) and (4.13) into (4.11), we obtain

R31 ≤ M1

24Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∣

τ42k

(

(

log
t2m+1

s̃k

)α−1

−
(

log
t2m+1

s̄k

)α−1
) ∣

∣

∣

∣

∣

+ r̃3, (4.14)

where

r̃3 =
M1

6Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∣

τ42k

(

ε1(∆t)

6

(

log
t2m+1

s̃k

)α−1

− ε2(∆t)

4

(

log
t2m+1

s̄k

)α−1
)∣

∣

∣

∣

∣

≤ M1

12Γ(α)
τ41

m−1
∑

k=1

ε(∆t)

(

log
t2m+1

t2k−1

)α−1

≤ M1

12Γ(α)
τ3+α
1

m−1
∑

k=1

ε(∆t)
(

2m− 2k + 2 + ε3(∆t)
)α−1

≤ M1

12Γ(α)
τ3+α
1

m−1
∑

k=1

ε(∆t)

with ε(∆t) = maxi=1,2{|εi(∆t)|}, and lim∆t→0 ε3(∆t) = 0. Due to lim∆t→0 ε(∆t) = 0, we get

ε(∆t) ≤ C∆t. It follows that

r̃3 ≤ CM1

12Γ(α)
τ3+α
1

m−1
∑

k=1

∆t ≤ CTM1

12Γ(α)
τ3+α
1 .

Applying the mean value theorem to the first term in the right-hand side of (4.14), there

exists ŝ ∈ (log(t2m+1/s̄k), log(t2m+1/s̃k)) such that
(

log
t2m+1

s̃k

)α−1

−
(

log
t2m+1

s̄k

)α−1

= (α − 1)ŝα−2 log
s̄k
s̃k
.
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This results in

R31 ≤ M1(1− α)

24Γ(α)
τ41

m−1
∑

k=1

∣

∣

∣

∣

ŝα−2 log
s̄k
s̃k

∣

∣

∣

∣

+ r̃3

≤ M1(1− α)

24Γ(α)
τ41

m−1
∑

k=1

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−2
ds

s
+ r̃3

≤ M1(1− α)

24Γ(α)
τ41

∣

∣

∣

∣

∫ t2m−1

t1

(

log
t2m+1

s

)α−2
ds

s

∣

∣

∣

∣

+ r̃3

≤ M1

24Γ(α)
τ41

(∣

∣

∣

∣

∣

(

log
t2m+1

t2m−1

)α−1
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

log
t2m+1

t1

)α−1
∣

∣

∣

∣

∣

)

+ r̃3

≤ M1

24Γ(α)
τα+3
1

(

2α−1 + (2m)α−1
)

+ r̃3 ≤ Cτα+3
1 .

The second term in the right-hand side of (4.10), denote by R32, can be rewritten as

R32 =
1

Γ(α)

m
∑

k=1

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1 δ3f
(

ξk(s), u
(

ξk(s)
))

− δ3f
(

t2k, u(t2k)
)

3!

× log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

.

By Cauchy mean value theorem, there exists ςk between ξk and t2k such that

δ3f
(

ξk, u(ξk)
)

− δ3f
(

t2k, u(t2k)
)

log ξk − log t2k
= t

d

dt
δ3f
(

t, u(t)
)

∣

∣

∣

∣

t=ςk

= δ4f
(

ςk, u(ςk)
)

.

Let M2 = supt∈[a,T ] |δ4f(t, u(t))|, then we have

R32 =
1

6Γ(α)

m−1
∑

k=1

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

δ4f
(

ςk, u(ςk)
)

log
ξk
t2k

log
s

t2k−1
log

s

t2k
log

s

t2k+1

ds

s

∣

∣

∣

∣

≤ M2

6Γ(α)

m−1
∑

k=1

τ22k (τ2k + τ2k+1)
2
∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1
ds

s

≤ 2M2

3Γ(α)
τ41

∫ t2m−1

t1

(

log
t2m+1

s

)α−1
ds

s

=
2M2

3Γ(α+ 1)
τ41

((

log
t2m+1

t1

)α

−
(

log
t2m+1

t2m−1

)α)

≤ 2M2

3Γ(α+ 1)
τ41

(

log
t2m+1

t1

)α

≤ 2M2

3Γ(α+ 1)
τ41 (2mτ1)

α

≤ 2M2

3Γ(α+ 1)
τ41

(

2m∆t

a

)α

≤ 2M2T
α

3aαΓ(α+ 1)
τ41 .

For the third term in the right-hand side of (4.10), denote by R33, it holds

R33 =
1

Γ(α)

∣

∣

∣

∣

∫ t2m+1

t2m−1

(

log
t2m+1

s

)α−1 δ3f
(

ξm(s), u
(

ξm(s)
))

3!
log

s

t2m−1
log

s

t2m
log

s

t2m+1

ds

s

∣

∣

∣

∣

≤ M1

6Γ(α)
τ2m(τ2m + τ2m+1)

2

∣

∣

∣

∣

∣

∫ t2m+1

t2m−1

(

log
t2m+1

s

)α−1
ds

s

∣

∣

∣

∣

∣
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=
M1

6Γ(α+ 1)
(τ2m + τ2m+1)

2+α
τ2m ≤ 2α+1M1

3Γ(α+ 1)
τ3+α
1 .

Thus we have

|R3| ≤ C
(

τ3+α
1 + τ41

)

. (4.15)

Combining (4.7)-(4.9), and (4.15) yields

|R2m+1(∆t)| ≤ C
(

τ3+α
1 + τ41

)

.

Finally, using (4.1), we obtain

|R2m+1(∆t)| ≤ C∆t3+α. (4.16)

The proof is complete. �

5. Stability and Convergence

We turn to perform the stability and convergence analysis for the proposed scheme. We

rewrite the scheme (3.16) under an equivalent form as follows:















































u1 = u0 + c0,01 f0 + c0,11 f1 + c0,21 f2,

u2 = u0 + c0,02 f0 + c0,12 f1 + c0,22 f2,

u2m+1 = u0 +

2m+1
∑

j=0

Aj,2m+1fj,

u2m+2 = u0 +

2m+2
∑

j=0

Aj,2m+2fj, m = 1, . . . , N − 1,

(5.1)

where

Aj,2m+1 =



















































c0,02m+1, j = 0,

c0,12m+1 + c1,02m+1, j = 1,

c0,22m+1 + c1,12m+1, j = 2,

ck,22m+1 + ck+1,0
2m+1, j = 2k + 1, k = 1, . . . ,m− 1,

ck,12m+1, j = 2k, k = 2, . . . ,m,

cm,2
2m+1, j = 2m+ 1,

(5.2)

and

Aj,2m+2 =



























c0,02m+2, j = 0,

ck−1,2
2m+2 + ck,02m+2, j = 2k, k = 1, 2, . . . ,m,

ck,12m+2, j = 2k + 1, k = 0, 1, . . . ,m,

cm,2
2m+2, j = 2m+ 2.

(5.3)

Lemma 5.1. The quadratic logarithmic interpolation functions defined in (3.2), (3.11), and

(3.14) are all bounded.
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Proof. For t ∈ [t0, t2], it holds

|φ0,0(t)| ≤ 1,

|φ0,1(t)| ≤
(τ1 + τ2)

2

τ1τ2
≤
(

1 +
τ2
τ1

)(

1 +
τ1
τ2

)

≤ 6,

|φ0,2(t)| ≤
τ1
τ2

≤ 2.

Similarly, it can be directly verified that

|ϕk,0(t)| ≤ 1, |ϕk,1(t)| ≤ 6, |ϕk,2(t)| ≤ 2, ∀ t ∈ [t2k−1, t2k+1], k = 1, . . . ,m,

|φk,0(t)| ≤ 1, |φk,1(t)| ≤ 6, |φk,2(t)| ≤ 2, ∀ t ∈ [t2k, t2k+2], k = 1, . . . ,m.

The lemma is proved. �

Lemma 5.2. The coefficients Aj,2m+1, j = 0, 1, . . . , 2m+ 1, defined in (5.2), satisfy

|Aj,2m+1| ≤
62

Γ(α)

(

log
t2m+1

tj

)α−1

log
tj+1

tj
, j = 0, 1, . . . , 2m, (5.4)

|A2m+1,2m+1| ≤
2α(2− α)

aαΓ(3 + α)
∆tα. (5.5)

Proof. For j = 0, we have

|A0,2m+1| =
∣

∣c0,02m+1

∣

∣ ≤
∣

∣d0,02m+1

∣

∣+
∣

∣w0d
0,1
2m+1

∣

∣

≤ 1

Γ(α)

(

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
+
∣

∣φ0,0
(

t 1
2

)∣

∣

∫ t1

t0

(

log
t2m+1

s

)α−1

|ϕ0,1(s)|
ds

s

)

.

The second term in the right-hand side can be bounded by using (3.2), (3.5), and (4.3) as

follows:

∣

∣φ0,0
(

t 1
2

)∣

∣

∫ t1

t0

(

log
t2m+1

s

)α−1

|ϕ0,1(s)|
ds

s

≤
log(t1/t0) log

(

t2/t 1
2

)

log
(

t 1
2
/t0
)

log(t2/t0)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s

≤ log(t1/t0)

log
(

t 1
2
/t0
)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
≤ 2

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
.

Furthermore, using Lemma 4.3 and inequalities (4.2), we obtain

|A0,2m+1| ≤
3

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
≤ 3

Γ(α)

(

log
t2m+1

t1

)α−1

log
t1
t0

=
3

Γ(α)

(

log(t2m+1/t0)

log(t2m+1/t1)

)1−α(

log
t2m+1

t0

)α−1

log
t1
t0

=
3

Γ(α)

(

1 +
τ1

τ2m+1 + · · ·+ τ2

)1−α(

log
t2m+1

t0

)α−1

log
t1
t0

≤ 3

Γ(α)

(

1 +
2τ2

τ2m+1 + · · ·+ τ2

)1−α(

log
t2m+1

t0

)α−1

log
t1
t0

≤ 32−α

Γ(α)

(

log
t2m+1

t0

)α−1

log
t1
t0
. (5.6)
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For j = 1, we have

|A1,2m+1| =
∣

∣c0,12m+1 + c1,02m+1

∣

∣ ≤
∣

∣w1d
0,1
2m+1

∣

∣+
∣

∣d0,22m+1

∣

∣+
∣

∣c1,02m+1

∣

∣. (5.7)

The first term in (5.7) is bounded by

∣

∣

∣
w1d

0,1
2m+1

∣

∣

∣
=

1

Γ(α)

∣

∣

∣

∣

∣

log
(

t 1
2
/t0
)

log
(

t 1
2
/t2
)

log(t1/t0) log(t1/t2)

∫ t1

t0

(

log
t2m+1

s

)α−1
log(s/t0) log(s/t1)

log
(

t 1
2
/t0
)

log
(

t 1
2
/t1
)

ds

s

∣

∣

∣

∣

∣

≤
2 log

(

t2/t 1
2

)

Γ(α) log
(

t1/t 1
2

)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s

≤
2
(

log(t1/t0) + log
(

t1/t 1
2

))

Γ(α) log
(

t1/t 1
2

)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s

=
2
(

2 log
(

t1/t 1
2

)

+ log
(

t 1
2
/t0
))

Γ(α) log
(

t1/t 1
2

)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s

≤ 8

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
.

For the second and third terms in (5.7), we have

∣

∣d0,22m+1

∣

∣ =

∣

∣

∣

∣

1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1

ϕ0,2(s)
ds

s

∣

∣

∣

∣

≤ 2

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
,

∣

∣c1,02m+1

∣

∣ =
1

Γ(α)

∣

∣

∣

∣

∫ t3

t1

(

log
t2m+1

s

)α−1

ϕ1,0(s)
ds

s

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t3

t1

(

log
t2m+1

s

)α−1
ds

s
.

Thus

|A1,2m+1| ≤
10

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
+

1

Γ(α)

∫ t3

t1

(

log
t2m+1

s

)α−1
ds

s

≤ 10

Γ(α)

(

log
t2m+1

t1

)α−1

log
t1
t0

+
1

Γ(α)

(

log
t2m+1

t3

)α−1

log
t3
t1

≤ 10

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1

τ1
τ2

+
1

Γ(α)

(

log(t2m+1/t1)

log(t2m+1/t3)

)1−α(

log
t2m+1

t1

)α−1

log
t2
t1

log(t3/t1)

log(t2/t1)

≤ 20

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1

+
2

Γ(α)

(

1 +
τ3 + τ2

τ2m+1 + · · ·+ τ4

)1−α(

log
t2m+1

t1

)α−1

log
t2
t1

≤ 20

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1

+
2

Γ(α)

(

1 +
6τ4

τ2m+1 + · · ·+ τ4

)1−α(

log
t2m+1

t1

)α−1

log
t2
t1

≤ 20

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1

+
2 · 71−α

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1
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≤ 34

Γ(α)

(

log
t2m+1

t1

)α−1

log
t2
t1
.

For j = 2, we have

|A2,2m+1| =
∣

∣c0,22m+1 + c1,12m+1

∣

∣ ≤ |w2|
∣

∣d0,12m+1

∣

∣+
∣

∣c1,12m+1

∣

∣. (5.8)

In one side,

|w2|
∣

∣d0,12m+1

∣

∣ =

∣

∣

∣

∣

∣

log
(

t 1
2
/t0
)

log(t2/t0)

log
(

t 1
2
/t1
)

log(t2/t1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Γ(α)

∫ t1

t0

(

log
t2m+1

s

)α−1
log(s/t0) log(s/t1)

log
(

t 1
2
/t0
)

log
(

t 1
2
/t1
)

ds

s

∣

∣

∣

∣

∣

≤ τ21
Γ(α)(τ1 + τ2)τ2

∫ t1

t0

(

log
t2m+1

s

)α−1
ds

s
≤ 2

Γ(α)

(

log
t2m+1

t1

)α−1

log
t1
t0

=
2

Γ(α)

(

log(t2m+1/t2)

log(t2m+1/t1)

)1−α(

log
t2m+1

t2

)α−1

log
t3
t2

τ1
τ3

≤ 8

Γ(α)

(

log
t2m+1

t2

)α−1

log
t3
t2
. (5.9)

In the other side,

∣

∣c1,12m+1

∣

∣ =

∣

∣

∣

∣

1

Γ(α)

∫ t3

t1

(

log
t2m+1

s

)α−1

ϕ1,1(s)
ds

s

∣

∣

∣

∣

≤ 6

Γ(α)

∫ t3

t1

(

log
t2m+1

s

)α−1
ds

s
≤ 6

Γ(α)

(

log
t2m+1

t3

)α−1

log
t3
t1

=
6

Γ(α)

(

log(t2m+1/t2)

log(t2m+1/t3)

)1−α(

log
t2m+1

t2

)α−1

log
t3
t2

τ3 + τ2
τ3

≤ 18

Γ(α)

(

1 +
2τ4

τ2m+1 + · · ·+ τ4

)1−α(

log
t2m+1

t2

)α−1

log
t3
t2

≤ 18 · 31−α

Γ(α)

(

log
t2m+1

t2

)α−1

log
t3
t2
. (5.10)

By substituting (5.9) and (5.10) into (5.8), we get

|A2,2m+1| ≤
62

Γ(α)

(

log
t2m+1

t2

)α−1

log
t3
t2
.

Now we derive the estimate for j = 3, . . . , 2m. We distinguish two cases: odd and even j. For

j = 2k + 1, k = 1, 2, . . . ,m− 1,

|A2k+1,2m+1| =
∣

∣ck,22m+1 + ck+1,0
2m+1

∣

∣

=
1

Γ(α)

∣

∣

∣

∣

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,2(s)
ds

s
+

∫ t2k+3

t2k+1

(

log
t2m+1

s

)α−1

ϕk+1,0(s)
ds

s

∣

∣

∣

∣

≤ 2

Γ(α)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1
ds

s
+

1

Γ(α)

∫ t2k+3

t2k+1

(

log
t2m+1

s

)α−1
ds

s

≤ 2

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+1

t2k−1
+

1

Γ(α)

(

log
t2m+1

t2k+3

)α−1

log
t2k+3

t2k+1
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=
2

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1

τ2k+1 + τ2k
τ2k+2

+
1

Γ(α)

(

log(t2m+1/t2k+1)

log(t2m+1/t2k+3)

)1−α(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1

τ2k+3 + τ2k+2

τ2k+2

≤ 12

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1

+
2

Γ(α)

(

1 +
τ2k+3 + τ2k+2

τ2m+1 + · · ·+ τ2k+3

)1−α(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1

≤ 12

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1
+

2 · 41−α

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1
.

≤ 20

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+2

t2k+1
.

For j = 2k, k = 2, . . . ,m,

|A2k,2m+1| =
∣

∣ck,12m+1

∣

∣ =

∣

∣

∣

∣

∣

1

Γ(α)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1

ϕk,1(s)
ds

s

∣

∣

∣

∣

∣

≤ 6

Γ(α)

∫ t2k+1

t2k−1

(

log
t2m+1

s

)α−1
ds

s

≤ 6

Γ(α)

(

log
t2m+1

t2k+1

)α−1

log
t2k+1

t2k−1

=
6

Γ(α)

(

log(t2m+1/t2k)

log(t2m+1/t2k+1)

)1−α(

log
t2m+1

t2k

)α−1

log
t2k+1

t2k

τ2k+1 + τ2k
τ2k+1

≤ 12

Γ(α)

(

1 +
τ2k+1

τ2m+1 + · · ·+ τ2k+2

)1−α (

log
t2m+1

t2k

)α−1

log
t2k+1

t2k

≤ 12 · 31−α

Γ(α)

(

log
t2m+1

t2k

)α−1

log
t2k+1

t2k
. (5.11)

This completes the proof of (5.4). It remains to prove (5.5). We proceed as follows:

A2m+1,2m+1 = cm,2
2m+1 =

1

Γ(α)

∫ t2m+1

t2m−1

(

log
t2m+1

s

)α−1
log(s/t2m−1) log(s/t2m)

log(t2m+1/t2m−1) log(t2m+1/t2m)

ds

s

=

(

Γ(α) log
t2m+1

t2m−1
log

t2m+1

t2m

)−1

×
∫ t2m+1

t2m−1

(

log
t2m+1

s

)α−1(

log2
s

t2m−1
+ log

s

t2m−1
log

t2m−1

t2m

)

ds

s
.

According to Lemma 4.4, we find

A2m+1,2m+1 =

(

log
t2m+1

t2m−1

)α(
2 log(t2m+1/t2m−1)

Γ(α+ 3) log(t2m+1/t2m)
+

log(t2m−1/t2m)

Γ(α+ 2) log(t2m+1/t2m)

)

=
(τ2m + τ2m+1)

α

Γ(3 + α)

(

2− α
τ2m
τ2m+1

)

.
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Consequently,

|A2m+1,2m+1| ≤
2α(2 − α)

Γ(3 + α)
τα1 ≤ 2α(2− α)

aαΓ(3 + α)
∆tα.

This proves (5.5). �

We can likewise prove the following lemma for Aj,2m+2. The detail of the proof is omitted.

Lemma 5.3. The coefficients Aj,2m+2, j = 0, 1, . . . , 2m+ 2, defined in (5.3), satisfy

|Aj,2m+2| ≤
62

Γ(α)

(

log
t2m+2

tj

)α−1

log
tj+1

tj
, j = 0, 1, . . . , 2m+ 1,

|A2m+2,2m+2| ≤
2α(2− α)

aαΓ(3 + α)
∆tα.

Theorem 5.1. Assume δ4f(·, u(·)) ∈ C[a, T ]. The scheme (5.1) is stable under the condition

on the time step size
2α(2 − α)

aαΓ(3 + α)
∆tαL < 1.

Proof. It is to prove that if the initial condition u0 is perturbed by ū0, then the perturbation

of the solution uj, denoted by ūj, remains bounded. It is readily seen that ūj satisfy

ū2m+1 = ū0 +
2m+1
∑

j=0

Aj,2m+1 [f(tj , uj + ūj)− f(tj , uj)] ,

ū2m+2 = ū0 +

2m+2
∑

j=0

Aj,2m+2 [f(tj , uj + ūj)− f(tj , uj)] , m = 1, . . . , N − 1.

Under the Lipschitz condition on f , we have

|ū2m+1| =
∣

∣

∣

∣

∣

ū0 +

2m+1
∑

j=0

Aj,2m+1

(

f(tj , uj + ūj)− f(tj , uj)
)

∣

∣

∣

∣

∣

≤ |ū0|+
2m+1
∑

j=0

∣

∣Aj,2m+1

(

f(tj, uj + ūj)− f(tj, uj)
)∣

∣

≤ |ū0|+ L

2m+1
∑

j=0

|Aj,2m+1| |ūj |

≤ |ū0|+ L

2m
∑

j=0

|Aj,2m+1| |ūj |+
2α(2− α)

aαΓ(3 + α)
∆tαL |ū2m+1| .

A simple rearrangement yields

(

1− 2α(2− α)

aαΓ(3 + α)
∆tαL

)

|ū2m+1| ≤ |ū0|+ L

2m
∑

j=0

|Aj,2m+1| |ūj | ,

or

|ū2m+1| ≤ C̃ |ū0|+ C̃L

2m
∑

j=0

|Aj,2m+1| |ūj | ,
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where

C̃ =

(

1− 2α(2 − α)

aαΓ(3 + α)
∆tαL

)−1

.

Applying Lemma 4.5, we obtain

|ū2m+1| ≤ C |ū0| .
By the same argument, we can prove

|ū2m+2| ≤ C |ū0| .

This completes the proof. �

The convergence of the scheme is proved in the following theorem.

Theorem 5.2. Let u be the exact solution of (2.1), {uj}2Nj=0 be the numerical solution of (5.1).

Suppose δ4f(·, u(·)) ∈ C[a, T ], f(t, u) satisfies the Lipschitz condition (2.3), and the time step

size ∆t satisfies
2α(2 − α)

aαΓ(3 + α)
∆tαL < 1. (5.12)

Then the following error estimate holds:

|u(tj)− uj| ≤ C∆t3+α, j = 1, 2, . . . , 2N. (5.13)

Proof. Let ej = u(tj)− uj, j = 0, 1, . . . , 2N. Then e0 = 0, and ej, j ≥ 1, satisfy


































































e1 =

2
∑

j=0

c0,j1

(

f
(

tj , u(tj)
)

− f(tj, uj)
)

+R1(∆t),

e2 =

2
∑

j=0

c0,j2

(

f
(

tj , u(tj)
)

− f(tj, uj)
)

+R2(∆t),

e2m+1 =

2m+1
∑

j=0

Aj,2m+1

(

f
(

tj , u(tj)
)

− f(tj , uj)
)

+R2m+1(∆t),

e2m+2 =

2m+2
∑

j=0

Aj,2m+2

(

f
(

tj , u(tj)
)

− f(tj , uj)
)

+R2m+2(∆t), m = 1, . . . , N − 1,

where the coefficients are defined in (5.2) and (5.3). By a direct calculation similar to (5.4) ,

we know c0,j1 , c0,j2 , j = 0, 1, 2, are bounded. Then it follows from Lemma 5.2 and the Lipschitz

condition that


























































































|e1| ≤ LC

2
∑

j=0

ej + |R1(∆t)| ,

|e2| ≤ LC

2
∑

j=0

ej + |R2(∆t)| ,

|e2m+1| ≤ LC

2m
∑

j=0

(

log
t2m+1

tj

)α−1

log
tj+1

tj
|ej|+

2α(2− α)

aαΓ(3 + α)
∆tαL |e2m+1|

+ |R2m+1(∆t)| ,

|e2m+2| ≤ LC
2m+1
∑

j=0

(

log
t2m+2

tj

)α−1

log
tj+1

tj
|ej|+

2α(2− α)

aαΓ(3 + α)
∆tαL |e2m+2|

+ |R2m+2(∆t)| , m = 1, . . . , N − 1.

(5.14)
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In virtue of the first and second inequalities of (5.14), we have

|e1| ≤ C(|R1(∆t)| + |R2(∆t)|), |e2| ≤ C(|R1(∆t)|+ |R2(∆t)|).

This, together with Proposition 4.1, leads to (5.13) for j = 1, 2.

Next we prove (5.13) for j > 2. Under the assumption (5.12), we derive from the last two

inequalities of (5.14):























|e2m+1| ≤ LC
2m
∑

j=1

(

log
t2m+1

tj

)α−1

log
tj+1

tj
|ej |+ C |R2m+1(∆t)| , m = 1, . . . , N − 1,

|e2m+2| ≤ LC
2m+1
∑

j=1

(

log
t2m+2

tj

)α−1

log
tj+1

tj
|ej|+ C |R2m+2(∆t)| , m = 1, . . . , N − 1.

Then it follows from the Gronwall inequality in Lemma 4.5 that
{

|e2m+1| ≤ C |R2m+1(∆t)| , m = 1, . . . , N − 1,

|e2m+2| ≤ C |R2m+2(∆t)| , m = 1, . . . , N − 1.

Finally, using Proposition 4.1 gives

|ej | ≤ C∆t3+α, j = 3, . . . , 2N.

The proof is complete. �

6. Numerical Results

We carry out some numerical experiments to verify the theoretical results obtained in the

previous sections. Precisely, our main purpose is to check the convergence property of the

numerical solution with respect to the step size.

Example 6.1. Consider the problem (2.1) with a = 2, u0 = log 2,

f(t, u) =
Γ(5 + α)

24

(

log
t

2

)4

+

(

log
t

2

)4+α

+ log 2− u(t).

It can be verified that the corresponding exact solution is

u(t) =

(

log
t

2

)4+α

+ log 2.

All the results reported in this example correspond to the numerical solution captured at

T = 3. In Table 6.1, we list the maximum errors

Err∞(∆t) = max
0≤i≤2N

|u(ti)− ui|

as a function of ∆t for α = 0.3, 0.5 and 0.7. Also shown are the corresponding decay rates,

using the formula as

Rate = log2

(

Err∞(∆t)

Err∞(∆t/2)

)

.

From Table 6.1, it is observed that the convergence rate is close to 3 + α. This is in a good

agreement with the theoretical prediction.
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Table 6.1: Maximum errors and decay rate as functions of ∆t for Example 6.1.

∆t α = 0.3 Rate α = 0.5 Rate α = 0.7 Rate

1/10 2.7749E-06 − 2.5313E-06 − 1.6310E-06 −

1/20 2.8863E-07 3.2652 2.2719E-07 3.4779 1.2826E-07 3.6687

1/40 2.9980E-08 3.2671 2.0753E-08 3.4526 1.0376E-08 3.6277

1/80 3.0962E-09 3.2755 1.8911E-09 3.4560 8.4198E-10 3.6233

1/160 3.1818E-10 3.2826 1.7130E-10 3.4646 6.7950E-11 3.6312

1/320 3.2561E-11 3.2886 1.5422E-11 3.4734 5.4405E-12 3.6427

Example 6.2. Consider the problem (2.1) with the following right-hand side function:

a = 1, u0 = 0, f(t) =
Γ(5 + α)

Γ(5)
(log t)4 + (log t)8+2α − u2.

The exact solution is u(t) = (log t)4+α in this case. It is notable that in the present example,

the right-hand side function f is a nonlinear function of u, while the previous example addresses

a right-hand side function linearly dependent of u.

We take T = 2 and repeat the same calculation as in the Example 6.1 by using the proposed

scheme. Table 6.2 shows the maximum errors and decay rates as functions of the time step size

for α = 0.2, 0.4 and 0.6. Once again the obtained numerical results confirm that the convergence

order of the scheme is 3 + α.

Table 6.2: Maximum errors and decay rate as functions of ∆t for Example 6.2.

∆t α = 0.2 Rate α = 0.4 Rate α = 0.6 Rate

1/10 3.5723E-05 − 3.8279E-05 − 2.6428E-05 −

1/20 4.2326E-06 3.0772 4.0699E-06 3.2334 2.5760E-06 3.3589

1/40 4.8136E-07 3.1364 4.1210E-07 3.3040 2.3752E-07 3.4390

1/80 5.3812E-08 3.1611 4.0861E-08 3.3342 2.1105E-08 3.4924

1/160 5.9477E-09 3.1775 3.9857E-09 3.3578 1.8364E-09 3.5226

1/320 6.5316E-10 3.1868 3.8480E-10 3.3727 1.5746E-10 3.5438

Example 6.3. The third example is to test the accuracy of the present numerical scheme,

where the analytical solution is unknown. We consider the problem (2.1) with the following

right-hand side function:

a = 1, u0 = 0, f(t) = (t− 1)5.

To test the accuracy for the present scheme, we chose T = 2, and varied the grid size ∆t.

With this choice, we expect that the numerical solution should be convergent to the exact

solution with the error O(∆t3+α) based on Theorem 5.2. Since the exact solution is unknown,

we calculate the maximum error using

Err∞(∆t) = max
i

∣

∣

∣

∣

ui(∆t)− ui

(

∆t

2

)∣

∣

∣

∣

.

We further estimate the rate of convergence using the formula as

Rate = log2

(

Err∞(∆t)

Err∞(∆t/2)

)

.
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Results were listed in Table 6.3. One may see that the convergence rate is close to 3+α for all

cases, which coincides with what we expected.

Table 6.3: Maximum errors and decay rate as functions of ∆t for Example 6.3.

∆t α = 0.2 Rate α = 0.5 Rate α = 0.7 Rate

1/10 2.0926E-04 − 1.6923E-04 − 8.3173E-05 −

1/20 2.6080E-05 3.0043 1.7533E-05 3.2708 7.7397E-06 3.4258

1/40 3.0618E-06 3.0905 1.7146E-06 3.3542 6.8139E-07 3.5057

1/80 3.4788E-07 3.1377 1.6186E-07 3.4050 5.7778E-08 3.5599

1/160 3.8808E-08 3.1642 1.4948E-08 3.4367 4.7776E-09 3.5962

1/320 4.2829E-09 3.1797 1.3615E-09 3.4567 3.8854E-10 3.6202

7. Concluding Remarks

In the present work, we have first presented some regularity properties of the solution to

the Caputo-Hadamard fractional differential equation. Then an efficient high order scheme was

constructed and analyzed for the considered problem. The stability and convergence analysis

was carried out to prove that the proposed scheme is stable under a reasonable restriction on

the step size. The obtained error estimate shows that the proposed scheme is of order 3 + α.

Finally, two numerical examples were provided to confirm the efficiency of the proposed method.
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