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Abstract

In this paper, we consider numerical solutions of the fractional diffusion equation with
the a order time fractional derivative defined in the Caputo-Hadamard sense. A high
order time-stepping scheme is constructed, analyzed, and numerically validated. The con-
tribution of the paper is twofold: 1) regularity of the solution to the underlying equation
is investigated, 2) a rigorous stability and convergence analysis for the proposed scheme
is performed, which shows that the proposed scheme is 3 + a order accurate. Several
numerical examples are provided to verify the theoretical statement.
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1. Introduction

Fractional calculus has been paid much attention in recent decades, due to, on one side, its
well-recognized applicability in science and engineering, and on the other side, its attractive
complementary of the integer order calculus in pure mathematics, see, e.g. [7,19,23,24] and the
references cited therein.

Up to now, there exist several kinds of fractional integrals and derivatives, like Riemann-
Liouville, Caputo, Riesz, C-Fabrizio and Hadamard integrals and derivatives. The first three
have been widely studied in the past decades. Actually, the Hadamard derivative which was
proposed early in 1892 [15] is also very worthy of in-depth study, since it has been extensively
used in mechanics and engineering, e.g. both planar and three-dimensional elasticities, or the
fracture analysis [2] and the Lomnitz logarithmic creep law of special substances, e.g. igneous
rock [11,22]. Moreover, ultraslow diffusion appears in various applications [6,9]. For instance,
vacancy-mediated tracer flow and particle movements in certain strongly heterogeneous media
may demonstrate ultraslow diffusive phenomena [4,5,28]. Mathematically, the mean square
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displacement of the particles in ultraslow diffusion grows logarithmically in time [16, 25, 26].
Therefore, the Hadamard fractional operators, whose kernels are defined in terms of logarithmic
functions, serve as a natural choice for modeling ultraslow diffusion processes and thus attract
wide attentions.

For partial differential equations involving Hadamard derivative, although the research is rel-
atively sparse, several studies have been carried out, and we see increasing interest in this topic
from both scientific and engineering communities. We mention, among others, the work [18]
to develop fractional integration and differentiation in the Hadamard setting. The existence
almost everywhere was established for the considered Hadamard-type fractional derivative, the
semigroup and reciprocal properties for the Hadamard-type fractional derivative and integration
operators were proved. The stability and logarithmic decay of the solution of Hadamard-type
fractional differential equation was discussed in [20]. A logarithmic transformation reducing the
Caputo-Hadamard (CH) fractional problems to their Caputo analogues was presented in [29].
The well-posedness and regularity of CH fractional stochastic differential equations were stud-
ied in [28]. Numerically, Gohar et al. [12,13] and Li et al. [21] derived several finite difference
schemes to approximate the CH fractional derivative. Very recently, Fan et al. [10] derived
some new numerical formulas, called as L1-2 formula, L2-10 formula and H2N2 formula, for
discretization of the CH fractional derivative. A second-order scheme with nonuniform time
meshes for CH fractional sub-diffusion equations with initial singularity is investigated in [27].
The predictor-corrector numerical method for solving CH fractional differential equations with
the graded meshes was considered in [14]. However, to the best of our knowledge, the conver-
gence order of the existing schemes is no more than three.

The aim of this work is to propose and analyze an efficient time stepping scheme having the
convergence order more than three for the CH fractional differential equations. The proposed
scheme is based on the so-called block-by-block approach, which is a common method for
the integral equations, and has been successfully applied to construct high order scheme for
the Caputo fractional differential equations in [3]. Although the used idea for the scheme
construction is the same as [3], the convergence analysis is a completely different skill from the
method used in [3]. The rest of this paper is organized as follows. In Section 2, we present some
regularity properties of the solution for the considered problem. In Section 3, we describe the
detailed construction of the high order scheme for the Hadamard FDEs under consideration.
Then in Section 4, we derive an estimate for the local errors through a series of lemmas. The
stability and convergence analysis is given in Section 5. Finally, several numerical examples are
provided in Section 6 to support the theoretical statement. Some concluding remarks are given
in the final section.

2. Problem and Regularity Properties

We are interested in the following CH fractional equation with 0 < o < 1:
cHDgytu(t) = f(t,u(t)), 0<ac<t, 2.1)
u(a) = uq, .

where f(¢,u) is a nonlinear function with respect to u, and the initial value u, is given. The
notation “¥Dg , is the CH fractional derivative of order o defined by [2,17],

CHp (1) = ﬁ / t (1og§)_a u() <,
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where, for simplifying the notation, we use the notation dv := sdwv/ds, which is called the
d-derivative of v. It is known [1] that the problem (2.1) is equivalent to the Volterra integral
equation as follows:

w(t) = ug + ﬁ /at <log é)al £ s u(s) 2 (2.2)

S

Throughout the paper we assume that the function f(¢,u) is continuous and satisfies the
Lipschitz condition with respect to the second variable u on a suitable set G, i.e. there exists
a Lipschitz constant L > 0 such that, for all (¢,u1) and (¢,us2) € G, we have

[f(t,ur) — f(t,u2)| < Lijur — ugl. (2.3)

Following [13], there exists a T > a, such that the problem (2.1) admits a unique solution on
the interval (a,T].

In order to give some regularity properties of the solutions to (2.1), we introduce the following
logarithmic transformation:

_ t
t :=log —, (2.4)
a
which is a one-to-one mapping from [a,T] to [0,T] with T' = log(T/a). For any function g(t)
on [a, T|, one could define g(¢) on [0,7] by
g(t) == g(aeg) =g(t).
It can be directly checked, see also [29], that

dam _ _

@g(t) =4d"g(t), neN. (2.5)
Using the logarithmic transformation (2.4) and the transformation property (2.5), we see that
the Caputo-Hadamard fractional operator is linked to the Caputo fractional operator as follows:

“"Dg, g(t) =“Dgs g(T),

where the Caputo fractional derivative CD8‘, sV is defined by
Dy u(s) = _r /é(s —2)" %' (2)dz.
8 Il-a) /o

Consequently, the initial value problem (2.1) is equivalent to the initial value problem with
Caputo derivative

“Dgu(t) = f(t.u(t)), t>0,
a(0) = ua. (2.6)

It has been well known that the solution to (2.6) can be expressed as

u(t) =wu L t_—sa_lfsas s
0 = vt gy [ (=9 s ds.

Then, in virtue of Diethelm’s regularity results [7,8], we have the following proposition.
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Proposition 2.1. (1) Assume that 6°f € C(G). Then, there exists a function (t) with
529 (t) € Cla, T) such that the solution u(t) of the initial value problem (2.1) can be expressed
in the form

[2/a]-1 " al  [1/a]-1 " 1+al
t) = (¢t A | log — log —
u(t) = P(t) + ; z(Oga) + ; ,Ul(Oga) ,

where \y e R,I=1,...,[2/a] -1, eRI=1,...,[1/a] —1.

(2) If ¥ feC(Q), kEN, then u(t)eCla,T] and 6*u(t) € C(a,T]. Moreover, for v =1,2,...

it holds
§u(t) =0 ((logz) ) as t — a.
a

Proof. These two results are respectively direct consequences of the regularity results es-
tablished in [8, Theorem 2.1] and [7, Theorem 6.27] for the transformed solution @(¢ ) and then
inversely transforming back to w(t). O

We see from Proposition 2.1 that a smooth function f on the right-hand side of the dif-
ferential equation will necessarily lead to a non-smooth behaviour of the solution due to the
singularity at the starting point a. However high order numerical schemes usually require reg-
ular enough f and . In the present work we will assume §%f(-,u(-)) € C[a, T}, i.e. the fourth
order §-differentiability of the function f and the solution w simultaneously. To see how this
assumption is justifiable, we consider a class of the function f for which the required regularity
becomes true.

Proposition 2.2. If§*f(-,u(-)) € Cla,T],k € N, then 6*u(t) € C(a,T]. Furthermore, ku(t) €
Cla,T)] if and only if f(-,u(-)) has a k-fold zero at the starting point a.

Before we come to the proof of Proposition 2.2, we first prove an useful property of Hadamard
integral operator. That is, if g(¢) € Cla, T], then gIf*g(t) € Cla, T], where g I is the Hadamard
fractional integral of order « defined by

alio®) = o | t <1og§>alg<s>%.

In fact, it has been showed in [29] that

where

73(0) = 7 | 0= a(s)as

Note that g(t) € C[0,T]if g(t) € Cla, T]. It follows from [7, Theorem 2.5] that I2g(t) € C[0,T7,
which leads to gIfg(t) € Cla, T).

Proof of Proposition 2.2. In view of (2.2), the solution u of (2.1) satisfies

w(t) = g + ﬁ /at (log é)a_l z(s)%, (2.7)
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where z(s) := f(s,u(s)). A straightforward calculation leads

-1

du t d [7 t\" ds
= —_— = — — 1 —_ JES—
oult) tdt I'(a) dt/a (og s) 2(s) s
log £
_ b i/ T 2 (te”T)dr
0
LI a_lz(a)+ = /logZT“‘lidz(te_T)dr
@ \ "84 T(a) J at

1 AN t t t\* dzds ds
= —— (log - [ gl) S 2.
['(a) (Oga> #a) + ') /a (og s) dsdt s’ (2:8)

where we have changed the variable of integration by letting 7 = log(t/s) (i.e. s =te™ 7). It is
apparent from s = te™7 that ¢t ds/d¢ = s, thus we obtain

Su(t) = ﬁ (log é)a_l 2(a) + ﬁ /at (bgé)“‘l 52(5)%
1

- <log 2)6” 2(a) + 262 (2.9)

Following the same idea, differentiate the above equation £ — 1 times in succession leads to

1 ¢ a—1
k _ qask,  _t* 2 k—1
Stu(t) =g 1% Z+F(a) [<10ga) 0" " z(a)

k

+Z(a—1)---(a—l—|—1) (logé)a 6k_lz(a)1, (2.10)

=2

where §°z(a) = z(a) and k > 2. Under the assumption on f, the function §*z is continuous.
Consequently, i I6%2 € Cla, T]. For a < 1, the right-hand side of (2.10), and therefore also the
left-hand side, i.e. the function *u, is continuous on the half-open interval (a, T]. Furthermore,
§Fu is continuous on the closed interval [a, T] if and only if 6'2(a) = 0,1 =0,1,...,k—1. O

3. Numerical Scheme

The proposed scheme will be constructed based on the equivalent equation (2.2). For
a given positive integer N, we divide the interval [a,T] into 2N equal sub-intervals with size
At = (T'—a)/(2N), and denote t; = a+jAt, 7, = logt,—logt;—1,i=1,...,2N,j=0,1,...,2N.
The numerical solution of (2.2) at the point ¢; is denoted by u;. Set ug = uq, fj = f(t;,u;).

We first determine the approximations to u(t) at ¢; and ¢2. Using the quadratic inter-
polation [10], f(¢,u(t)) can be approximated in the interval [tg,t2] by means of three point

(to, fo), (t1, f1), (t2, f2) as
f(tut) ~ Z¢O7i(t)fi, t € [to, ta], (3.1)
1=0

where ¢ ;(t),i = 0, 1,2, are quadratic logarithmic interpolations, defined by

_ log(t/t) og(t/2) .
B T1(T1 + T2) (8.22)

$o,0(t)
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log(t/to) log(t/t2)

$o,1(t) = g ; (3.2b)
toal) = AL (329

Substituting (3.1) into (2.2), and integrating, we obtain

2
ulty) ®uo+ Y _ 3" fi, (3.3)

=0

; 1 t2 t a-l ds
0,7 2 .

V= — 1 - 7 _, = ,172,
Cy ()/a <0gs) ¢07(s)s 1=0

which can be exactly computed. Note that (3.3) requires the values of f (or indirectly, the

where

values of u) at t; and to. To determine uy, we approximate f (¢, u(t)) on [to,t1] as

f(tut)) = eoo(t)fo+ wo1(t)fL + wo2(t)f1, Vit E [to, ta], (3.4)

where t1/5 = to + 1/2At, fi2 = f(ti2,u(t1/2)), and o (t),i = 0,1,2, are another set of
quadratic logarithmic interpolations, defined by

log (t/t1) log(t/t1)

1
PO Nog 1o/t log(to/11)”
 log(t/to) log(t/1)
poa(t) = log (t1 /to) log (t%/tl) (3.5)
log(t/to)log (t/t1)
©o,2(t) = .
log(t1/to) log (tl/t%)
Substituting (3.4) into (2.2) yields
uty) ~ug + dy’ fo + d' fiy2 + dV? 1, (3.6)
where )
: I i\ ds
L p— log = ()=, i=0,1,2.
Vo () S
The value of f;/, is determined according to (3.1), which leads to
2
fi= > wifi (3.7)
i=0
with w; = ¢o; (t1/2) ,i =0,1,2. Substituting (3.7) into (3.6), we obtain
2
u(ty) ~ ug +dy° fo + d (wofo +wifi + wafa) +dy fr o= qurZ i, (3.8)
=0

where
0,0 0,1 0,1 0,1 0,2 0,2 0,1
=dy fwod], ¢ =widy +dy7, )t =wady .
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This leads to a 2 x 2 algebraic system for the first two step solutions u; and s

2
0,i
Uy = ug + E ey fi,
i=0

2 (3.9)
U = Ug =+ Z C(2)7Zfi.
i=0
Let us now assume that the approximations u; are known for j = 0,1,...,2m, we want to
derive approximations to u(tom+1) and u(tem,12). Following the above approach, we have
1 tam+1 tom+1 a-t ds
toam = — 1 , — 3.10
w(tom+1) = uo + T(a) /to (og S f(S U(S)) 3 ( )
1 t1 t2m+1 ol ds
frd R 1 [ _
i ol [ ()
m tok41 t2m+1 a—1 ds
+ Z/ <1og —) f(s,u(s))—
k—1 Y t2k—1 § §
i [ (gt " oo+ woa )y + enaloh)
~ug+ —— o S s s —
0 (@) " g S $0,0 0 T ¥0,1 1T ®o0,2 1)
1 & [teen tome1 )" ds
+ = Z/ (10g M) (01,0(8) for—1 + ©r,1(5) for + or,2(8) fars1) —,
I'(«a) = S s s

where g ;(t),i = 0,1,2, are defined in (3.5), and ¢y, k = 1,...,m,i = 0,1, 2, are quadratic
logarithmic interpolations associated with the points tog_1, tok, tok+1

_ log(t/tar) log(t/tag+1)

t
Pro(t) Toi(Tok + Tok+1)
log(t/tor—1)log(t/t
o (t) = 2B/ tai) loglt/ ok (3.11)
—T2kT2k+1
log(t/tor—1)log(t/t
ora(t) = 0g(t/tz2k—1) log(t/tk)

Tok+1(T2k + T2k+1)
Inserting (3.11) into (3.10) gives

0,0 0,1 0,2
u(tam+1) = uo + doyy i1 fo + d2m+1f§ + dog1 1

m
k, k, k,
+ Z [Chim1fok—1 + Comy1 for + Com iy forra) (3.12)
k=1

. 1 t tQ +1 a-l dS
dO,z _ 1 m i . , =0.1.2
2m+1 F(a) /to <Og S %o, (S) P ? 0, 5 &y

- 1 [t t a-l ds
ki 2m—+1 .
, == 1 i(s)— =0,1,2, k=1,... .
02m+1 F(O&) /tZkl ( og S ) §0k71(8) S 9 1 3 Ly Sy ) ,m

where

Approximating f /2 in (3.12) by (3.7), we arrive at the following scheme for computing gy, 41:

0,0 0,1 0,2
U2m41 = Uo + CQm-‘,—lfO + C2m+1f1 + C2m+1f2

m
k, k, k,
+ Z [0272+1f2k71 + C2'n£+1f2k + 0273+1f2k+1}7 (3.13)
k=1
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where
0,0 _ 30,0 0,1 0,1 _ 0,1 0,2 0,2 _ 0,1
Com41 = omp1 +Wolg, 1, Coppyq = Widoy, g +dor g, Coppyq = Wadsy, 4y
To compute ugm,+2, we use the following approximation:
ds

tom42 a—1
u(tam+2) = uo + ﬁ /to (1og t2";+2) f(s,u(s))

1 i b2kt t2m+2 a-l ds
= —_— log 22m+2 as
“”ma)Z/m (og : ) Fls.u() %

k=0

m tok42 a—1
= uO+L Z/ <10g t%j?) (Pr.0(8) fort0r,1(5) fart 140k 2(5) fart2) %,

F(a) k=0 tok

where ¢y i,k =1,...,m,7 =0,1,2, are the logarithmic interpolations associated with the points

tog, tokr1, takt2

_ log(t/tak+1) log(t/tar12)

t
Pro(t) Tok+1 (Tok+1 + Tok+2)
log(t/tor) log(t/t
(1) = 2B Low) Yoalt/ tarya) (3.14)
—T2k+1T2k4-2
log(t/tak) log(t/tak+1)
Dr2(t) = :
Tok+2(Tok4+1 + Tok42)
As a result, we obtain the scheme at the step 2m + 2
m
U2m+2 = UQ + Z [C§£+2f2k + C§$+2f2k+l + C§;3+2f2k+2]7 (315)
k=0

where

. 1 togt2 t a—1 ds
k, 2m+2 .
027:1+2 = —F( /t (log W; ) ori(s)—, 1=0,1,2.
2k

a) s

To summarize, we arrive at the following overall scheme:

0,0 0,1 0,2

uy =up+c; fo+cy f1+e fa,
0,0 0,1 0,2

Uz = up + ¢y fo+cy f1+ ey fa,

0,0 0,1 0,2
U2m+1 = U0 + Copi1 fo + Copir f1 HCoia fo

m
k, k, k,
+ Z [0272+1f2k71 + Chmi f2e 02n21+1f2k+1]; (3.16)

k=1
m

k.0 k,1 k,2
U2mt2 = Ug + g [Comyafok + Comyofokst + Comyaforta),
k=0
m=1,... N—1.

4. Estimation of the Truncation Errors

We first present some lemmas which will be used later on. We hereafter denote by C
a generic constant which may not be the same at different occurrences, but independent of all
discretization parameters.
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Lemma 4.1. It holds

Y
to = to
and if At < (v/5 — 1)a/2, then we have
Tj+1<7_j<27_j+17 ]:1,,2]\771,

where 7; = logt; —logt;_1.

Proof. The inequality (4.1) is trivial. For (4.2), it suffices to show that 7; < 27;11. A direct

calculation gives
3
Tj*27’j+1:10g J2 s
ti—1tiq
and

85—t ats =15 — (t; — At)(t; + At)> = At (A + ;AL —13) .

If At < (v/5 —1)a/2, then At < (v/5 — 1)t;/2. Consequently t8 —tj 113, <0, and

3
2

log <0.

tj-1t341
This gives 7; < 27j41.
Remark 4.1. Similar to (4.2), if At < (v/5 — 1)a/2, it holds
t1 ty t1
log — < log % < 2log —.
0g ) 0g to og i
Throughout the paper, we will always assume At < (\/5 —1)a/2.

Lemma 4.2. Fori# j and p # q, we have

‘ o ;
log = = (J ! —l—E(At)) log -2,
/ pP—4q tq

where limay—oe(At) = 0.

Proof. A routine computation gives rise to the following formula:

Lo dog(ti/t) L log (L4 (G OAYE) L (=it
A0 log(ty/tg)  At=0log (1+ (p— q)At/ty)  At>0 (p—q)t;
oy (G—i)(ti+ (q—D)At)  j—i
= lim = .
At—0 (p— Q)t; pP—q

This completes the proof.

Lemma 4.3.

th b\t d b\t
/ <log—) & < <log—) 1og—k,
s S S tr t;

J

where k > j,b is a positive constant.

(4.3)
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Proof. By virtue of the mean value theorem of integrals, there is 7* € [logt;, log tx] such that

tr b a—1 d log ty t
/ <log—) S / (logh — ) dr = (logh — ) ' log —=.
t S 1

i s ogt; tj

The statement then follows from the monotonically increasing nature of (logh — s)*~1 with

respect to s. (]

Lemma 4.4 ([28]). For > 0,5 > 0,b > a > 0, there holds

b a—1 _ a+p-1
b s\A-tds T(a)[(B) b
log — (1 —) —=——"—"|log- .
/a (Ogs) 8% s I'(a+B) 85
We recall the modified Gronwall inequality, which is crucial to the proof of the stability and
error analysis of our scheme.

Lemma 4.5 (Discrete Gronwall Inequality, [13, Lemma 4.3]). Let 0 < o < 1, N be
a positive integer, a =tg < t; < --- <tony =1 and

a—1

tn t; t; .

bjm = <1og—1og—J> log 2L j=0,1,...,.n—1, n=1,2,...,2N.
a a t;

Suppose 19 is a positive constant, the positive sequence {e,} satisfies

eo < o,
n—1

€n S M Z bjynej 4+ To
j=0
with M being a positive constant independent of n. Then
en < Cng, m=1,2,...,2N,

where C' is a positive constant independent of n.

We are now in a position to derive an estimate for the truncation errors of the scheme (3.16).
We define the local errors separately for the odd steps and even steps as follows:

Romi1(At) := u(tam1) — dam+1, (4.5)

Rom+2(At) == u(tomiz) — Gomt2,

where gy, +1 and dgy,2 are the approximations to u(tam,+1) and u(tem42), respectively evalu-
ated by using the schemes (3.13) and (3.15) with the exact previous solutions, i.e.

Uom41 = ug + Cg}nglf(to,U(to)) + Cg;,llﬂf(tl, u(ty)) + Cg;iﬂf(tz, u(t2))

+ Z [c§£+1f(t2k_1, u(tor—1)) + Cg,’iﬂf(t%,u(t%)) + C§i+1f(t2k+1,u(t2k+1))]a
k=1

m
domia = o + Y [ yof (tars ultar)) + chimyof (tanrt, ultarsn)) + chimof (takta, ultoria))].
k=0



A High Order Scheme for Fractional Differential Equations with the Caputo-Hadamard Derivative 11

Proposition 4.1. If §*f(-,u(-)) € Cla,T], then it holds

|Rom+1(AL)] < CAETE | Rynpa(At)] < CALF.

Proof. We only derive the estimate for Rap,+1(At). The even step error Ran,12(At) can be
estimated similarly. Using (3.10) and (3.12) in the definition (4.5), we have

Rom+t1(At)

= u(tam+1) — {uo + (dymr + wodgin 1) £ (to, u(to)) + (widyy, oy + dyp ) f (1 ulty))

m
+wadyyy o f (t2, ulta)) + Z {szﬂf ton—1,u(tar—1)) + oy f (tar, ultor))
k=1

+ 0'5;3+1f(t2k+1v“(t2’“+1))] }
- ’U/(t2m+1)_{u0+f(t0,U(fo))dg:noz—i-l"’_ [wo f (to, u(to))+wi f (1, u(tr)) +ws f (b2, u(t2))] dop

+f(t1, u(tl))dgfl'f‘l—i_ Z {Cg;gﬂf(t?k—l’“(t?k—l))

k=1

+ Cg;vlwlf(t%a“(f2k))+cl2€;721+1f(t2k+1, U(t2k+1))} }

_ L[t ) ds | [ (e T ds
W@M (1o 2222 f<s’“<s>>?+z/ml (o222 ) s(o) T

k=1

{qurﬁ{f(to,u(to))t ( 2’”“) 0,0(s
+(wo f (to, ult ))+w1f(t1, (t ))+w2f(tz, (t2)))
/t:l(log t2";+1) ®o,1(s )d +(t1, u(th)) /tl(log tQW;H)a_tPOQ(S)%}

1 m top41 tom
I‘—Z[ tor—1, u(tor— 1))/ ( 2 +1>

k=1 tak—1

tok+1 t m -1 dS
+ f (tak, u(tar)) log 22 Pr,1(s)—
S S

tok—1

e (O ds
+ f (taks1, ultartr)) / (102; %) <Pk,2(5)?]

tok—1
1 /t1 (1 t2m+1)a_1
= — Og
(o) Ji, s

X {f(Svu(S)) - [f(to,u(to))@o,o(s) + f(t%au( %))900 1(s) + f(thu(h))sﬁo,z(s)}

+[f(%a“(t%))—(wof(tmU(tO))erlf(tlaU(tl))+w2f(t2a“(t2)))}@0,1(5)}%
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1 m tokt1 t2m+1 a—1
- log 22m+L
+1"(a) Z/ <og 5

X {f(Svu(S)) {wk,o(s)f(tqu, u(tor—1))+9r,1(8)f (tar, u(tor))

+Qk.2 (s)f(t2k+17 U(t2k+1))} }%

= s [ (108 222) 7 )+ s )

« S

1 b2k t2m+1 ol ds
N 1 _ -
+ I(a) Z/ (Og B r2k-1(5) 3

k=1"t2k—1

where

(s) = f(s,u(s)) = f(to, u(to))wo,0(s) = f(tr u(ts))poa(s) = f(tr, u(tr))po,2(s),
(5) = ( 1 U(t;)) —wo f(to, u(to)) — wi f(t, u(tr)) — waf (t2, u(tz)),
T2k71(5) = f(s,u(s)) — @r,0(s) f (tak—1, u(ton—1)) — @r,1(5) [ (tar, u(tar))
— or2(8)f (takt1, ultans1)), k=1,...,m

Using the logarithmic interpolation theory employed in [10] for all s € [tg, 1] there exist 1(s) €
(to,t1),n(s) € (to,t2) such that

5 f(£1(s),u(é1(s)))
3!

Pl ulns), .t b

3l log = 1og = log =

and for all s € [tog—1,tor+1] there exists & (s) € (tgk,l,t%ﬂ) such that

53
S (€ (5), u€r(s))) log 5 1ogi log ,
3! tok—1 tak tok+1

ro(s) = log l log = log 2
to t% t1

fo(s) =

Tok—1(s) =
Therefore, we have
Rom+1(At) (4.7
1 [ t2m+1)“ Sf((s),u(&(s)), s, s sds
1
J, (s

I'() s 3! to t% t, s
L o, e\ (), u(n(s)) |ttt ds
1 log -2 1 1 ‘3
I(e) /to (Og 5 > 3! 0g 4 108~ 10g <P0 1(s)—
1 m tog41 t m a—1 63 : q
T / <log : H) fial |u(€k(s))) log —— log - log —— =°.
F(a) k=1 torp—1 S 3 t2k_1 tQk t2k+1 s

It remains to estimate the right-hand side of (4.7) term by term. For the first term, denoted
by R1, we have

R1| < L\/tl <log t2m+1)0‘1
~ T(a) /i, s

M h tomi1\ 7 d
[ gz}
6I'(a) ~ Jy, s s

83 f(&u(s),u(&l(s))) ds
3] log — log — 1og S
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where

M; = sup |53f(t,u(t))|.
t€la,T]

It follows from Lemmas 4.2 and 4.3 that

M tom \* M N 1 My 4,
|R1| < 6F—(;)Tf <10g 2t1+1> GF(l) i (2m + e(A)YT < GF(Q)Tf* . (4.8)

where lima;—,0 €(At) = 0. Similarly, for the second term in (4.7), denoted by R2, we have

1 t tomt1 a-l 63f(77(s),u(77(s))) t1 s s | ds
R2| < —— log —— log -2 log — log — | —
B2 = 5 /to (Og s 3! &t Bt | s
M1 2 t1 t2m+1 a-l ds
< log 2L &
~ 6(w) (7 + 72) /,5U ( 08 s s
My tom+1 ot My 5,
< I < “. 4.9
= 30(a) ! (Og th ) = 30(a) ! (4.9)

The third term R3 can be bounded by

1 & t%“ t2m+1 a_153f(§k(5),u(€k(8))) s s ds
== 1 1 —1 —1 (4.10
|R3| r Oé Z S 3! o8 t2k71 o8 tQk & t2k+1 S ( )
tok—1
‘/t2k+1( t2m+1)a1 53f(t2k,u(t2k)) 10g S 1og—1og S %
- bon_1 3! tok—1  tok  tokt1l S
t%“ t2m+1 ot & f (& (s),u(&r(s))) — 63 f (tar, u(tar))
t% L s 3!
d
xlog log—lo S
tok—1 Lok tog+1 S
+—1 /t2m+l<1og t2m+1)a_163f(§m(5)a“('fm(s)))1og i 1og—log s ds
L) | i, s 3! tom—1 tom  lomy1 S |

For the first term in the right-hand side of (4.10), denote by R3;, we have

tak+1 t L 53 F (tog, ult d
/ (1og 2m+1) S (o, u(tar)) log s 1og 5 Jog s ds
ton1 s 3! tok—1 tok t2k+1 s

tok+1 t a—1 d
/ <log M) log log — log S
1 | o S t2k 1 tzk t2k+1 s

2k t a-l ds
/ (log M) log log — 1og &
tow_1 s tok—1 tog tokt1 S

tog+1 t a—1 d
+/ <logﬂ> 1og logt—lo ; 5 &
ton S tok—1 2k 2k+1 S

t a—1 tok d
( 2t ) / log log — 1og Sl
tok 1 tzk 1 tak tok+1 S

t a—1 tok+1 d
+ (1og ﬂ) / 1og log — log 5 &
Sk ton tok—1 tzk t2k+1 s

1 m—1

1= Ty &
|03 f (to, ultor)) | o=

6 ()

m—1

o &

I N

m—1

o &

: (4.11)
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where top_1 < Si < top, < S < top+1. By Lemmas 4.4 and 4.2, we have

tog d
/ 1og log — log S
top—1

tok—1 tzk t2k+1 s

fak t d
= / log 1og — (1og = + log 2k ) il
tor 1 tzk 1 tok tok toktr1/) s
bax tor\ d t fa g d
:/ (1ogik) log & + log 2kl / logiklog S
tor_1 s tog—1 S tok Sty o s tok—1 S

1 1 1 1
57'511@ + 67-23k7_2k+1 = 17'511@ + gTélkEl(At)a (4.12)

where lima;—0 €1(At) = 0. Similarly, we have

b2kt s ds
/ log 1og—10 —
ton lok—1 log  logt1 s

tok41 1 s ) ) | s ds
= og — + 1o og —lo —
/tmc ( & tak 5 k—l) & t2k s log+1 s

topt1 2 ¢ d togt1 t d
= _/ (log —) log SRR TQk/ log 2641 10gi—8
tok tak s s ton S tor S

1 1 1 1
*ETékH - 6T2k723k+1 = *ZTék - ZTékEQ(At)a (4.13)

where lima;—,0 €2(At) = 0. Bringing (4.12) and (4.13) into (4.11), we obtain

m—1 a—1 a—1
M, 4 Lom+1 lom+1 N
R3 log ZmHL) (g 2t : 4.14
' 241 (cv) k=1 & << o Sk ) (Og Sk s (4.14)
where
m—1 a—1 a—1
_ M,y 4 [ €1(AY) tom—+1 e2(At) tom—+1
- 1 — 1
" 6 () l; T%( 6 °8 Sk 4 °8 Sk
m—1 a—1
M tom
< L e(At) (lo 2 +1)
12T () P 2k—1
M m—1 L
1 34a a—
< At)(2 2k +2 At
= 12T(a) ! ; (&t)(2m — 2k +2+ ea(A1))
m—1
M
< Tt Y e(AY)
120 (a)

with e(At) = max;—1 2{|e:(At)|}, and lima¢—0e3(At) = 0. Due to limas—0(At) = 0, we get
e(At) < CAt. Tt follows that

oMy e S Ap < CTM1 e
EI= 12F Z = 120(a

Applying the mean value theorem to the first term in the right-hand side of (4.14), there
exists § € (log(tam+1/$k),log(tam+1/Sk)) such that

tom41 ot tom+1 ot 2 Sk
lng — 1ng = (Oé — 1)8 lOg -

Sk Sk Sk
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This results in

m—1
M1 1— Oé
R3; < 724F T Zl s + 73
< Ml(l — 0‘) 4m 1/16%+1 1 tom+1 o ds + 7
— 7 og —— — + 7
= 24T(a) * = St &5 5 ’
Ml(l — Oé) 4 /tle tom—+1 a=2 ds .
< 7 log ——— —
= 24l(e) ']/, SLI s s
My tom+1 ot tom+1 ot _
< 1 log ——
= 240 (a) Ty (‘ ( og P + og ' + 73
M
S 1 7_oz-i-?) (2a 1 + (2m)a 1) 4 T3 < CToz-i-B

24T (cr) 't

The second term in the right-hand side of (4.10), denote by R32, can be rewritten as

B3 [ < %H)M 0% (6 (). u(8())) = 0" (t2n, ultar))
2 =
k: ton_1 s 3!
X log log—log i % .
lok—1 lor  lokt1 s

By Cauchy mean value theorem, there exists ¢ between & and tof such that

8 f (& u(€r)) — 63 f (tar, ultar))
log & — log tag

d
= =8 (t,u(t))

= 0" f (ck, u(sk))-

t=qk
Let My = sup;c(, 7 |0*f (¢, u(t))], then we have
1 g 21 tg +1 a-l 4 fk S ds
R3 / (10 L) 6% f (s, u(sk)) log =— lo log — log —
* 7 6T(a) ; tor1 575 (s use) log ok 5 tzk 1 5 tzk t2k+1 s
m—1 t a—1

My 2 2/ At tom1 ds

< log 22m+1 &

= T(a) 2 Top, (Tok + Tok+1) . 0g S 3

IN

2M2 7_4 /t2m1 log t2m+1 a—lg
30(a) ' J,, s s

_ 2M> (10 tomi1 \ (10 tom+1 \ "
3M(a+1)" Th & tom
2Ms> 4 tom41 )" 2M> 4 @
< — 1 < 2
=3C(at+1) ! (Og ho ) S3aen Zmm)
__ M (2mAN\Y M7
3T (a+1) ! = 3aeT(a+1) Y

a

For the third term in the right-hand side of (4.10), denote by R3s, it holds

1 bam-+1 tomr ) 8 f (&m(s), u(&m(s))) s s ds
R33 = —— log —— 1 1 —1 —
° ['(a) /tm L (og s 3! o8 tom—1 ©8 tom °8 tom+1 S
]\41 ) tom+1 t2m+l a—1 dS
< m m m 1 - -
< 61"(04)72 (Tom + T2m+1) /tzm1 <0g p 5
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Ml 2+O(
= — <
6F(Oz T 1) (T2m + 7-2m+1) Tom >

2a+1M1 3t
— T
3(a+1)"

Thus we have
|R3| < C (1T +77). (4.15)

Combining (4.7)-(4.9), and (4.15) yields
|Rom41(At)] < C (79T + 7).

Finally, using (4.1), we obtain
|Rom1 (A)| < CALT, (4.16)

The proof is complete. O

5. Stability and Convergence

We turn to perform the stability and convergence analysis for the proposed scheme. We
rewrite the scheme (3.16) under an equivalent form as follows:

0,0 0,1 0,2
up =1ug+c; fo+cy fi+ce fa,
0,0 0,1 0,2
Uz = up + ¢y fo+cy f1+ ey fa,
2m—+1
Um+1 = Uo + E Ajoms1fj, (5.1)
=0
2m—+2
Ugm+42 = Ug + E Ajomiafi, m=1,...,N—1,
=0
where
0,0 .
Com+1s J = 0,
0,1 1,0 .
CQm—i—l + C2'm-|-1a J= 17
0,2 1,1 .
C2m+1 + C2m+15 J= 27
Ajomi1 =19 1, r1io (5.2)
Com+1 T Com41s 7=2k+1, k=1,....m—1,
k1 )
Com+1> J =2k, k=2,...,m,
m,2 .
Com41s j=2m+1,
and
0,0 .
Com+2s J = 0,
k—1,2 k,0 . B
Comta t Comyas  J = 2Kk, k=1,2,...,m,
Ajomiz = 1, _ (5.3)
Com+25 Jj=2k+1, k=0,1,...,m,
m,2 .
02m+2a J = 2m + 2.

Lemma 5.1. The quadratic logarithmic interpolation functions defined in (3.2), (3.11), and
(3.14) are all bounded.
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Proof. For t € [tg, 2], it holds
|¢0,0(t)| S 17
2
g0 (t)] < ET) o (1 + 3) <1 + 3) <6,

T1T2 T1 T2

-
|po,2(t)] < L <2
T2

Similarly, it can be directly verified that

loro() <1, |era(t)] <6, |era(t)] <2, Vte [tap—1,tops1], k=1,...,m,
[oro)] <1, |dri(t)] <6, |Pr2(t)] <2, VtE [tor, tantal, E=1,...,m.

The lemma is proved.

Lemma 5.2. The coefficients Ajom+1,7 =0,1,...,2m+ 1, defined in (5.2), satisfy

62 tome1 N0t
|4j2m11] < (o) <1og 2 H) log 2L, j=0,1,...,2m,

F(Oz tj tj ’
2%(2 — )
A < —— A
| 2m+1,2m+1| = GJQF(3+O&)
Proof. For j =0, we have
0,0 0,0 0,1
|A0,2m+1| = ‘C2m+1‘ < ’d2m+1‘ + ’deQm-‘,—l’

: /t1 < t2m+1>a_1 “ ! tam+1 ot
- log 95 4 looo(ts / log 201 (s)]
F(Oé) < to S S ‘ ( 2)‘ to S

17

ds
i

The second term in the right-hand side can be bounded by using (3.2), (3.5), and (4.3) as

follows:

t1 tm a—1 d
onaey)| [ (o2 ) fons o))
0

log(t1/to) log (2/t4) / ) < t2m+1>a1 s
log
to S

= log (t%/to) log(t2/to) il

s
a= a—1
< log(t1/to) /t1 <log t2m+1> ' ds < 2/t1 <1og —tQmH) %
log (t%/to) t s s to s s

Furthermore, using Lemma 4.3 and inequalities (4.2), we obtain

3 h tom—+1 > ds 3 tom—+1 oty
Agom < — log ——— — < ——1 log —
e < gy [ (06252 ) < 5 (a2 )

IN

_ 3 log(t2m+1/t0) e o tomt1 ) o 12
F(Oé) 10g(t2m+1/t1) & to & to
_ 3 (1 n 1 > Ima <1 tom+1 ) ot g t_l
F(CY) Tom4+1+ -+ T2 to
.3 (1 N 27 >1a < t2m+l)a gt—l
- I‘(a Tom4+1+ -+ T2 to
( 0



18 X.Y. YE, J.LY.CAO AND C.J. XU
For j = 1, we have

| A1 2m41] = }CQerl + C2m+1| < }w1d2m+1| + |d2m+1} + |02m+1 (5.7)

The first term in (5.7) is bounded by

1
‘w1d2m+1‘ = F(Oz)

S

log (t%/to) log (t%/tz) /tl (10 t2m+1)0‘_1 log(s/to)log(s/t1) ds
log(t1/to) log(t1/t2) Js, & log (t%/to) log (t%/tl) s

< M /t1 (log ?f2m+1)0‘_1 ds

F(a) IOg (tl/t%) to S S
bt s (/)
= log —— il
I'(«)log (tl/t%) to s S
2(21log (tl/t%) + log (t%/to)) /tl <1Og t2m+l)a1 ds

to S

I'(«a)log (tl/t%) s

t1 a—1
Si/ logt2m+1 @
I(a) Ji, s s

For the second and third terms in (5.7), we have

1 b t2m+1 ol ds

= | — 1 —

‘ 2m+1 ‘ (CY)/ (Og S 90012(5) s
a—1

t2m 1 ds

‘62m+1 = ‘/ < - ) 901,0(5)_8

Thus
10 t1 t2m+1 a-l ds 1 ts t2m+1 ol ds
Al om, 1 — 4 — 1 —
A2 +1|_1"()/0 <og s erl"((Jc)/t1 8 s s
a—1 a—1
10 tom t 1 tom t
< (10 2 +1) g—l—i— ( 2 +1) 1g—3
F(Oé) tl to F( ) t3 tl
< 10 <10 t2m+1) gt_QE
(@) 1 t1 T2
1 [log(tomer/t1)\ ' ™* tomar \ &1 o log(ts/t
N <og( omt1/ 1)> <log 2 +1> log 22 og(ts/t1)
F(Oé) 10g(t2m+1/t3) tl tl lOg(tg/tl)
a—1
2 tom+1 to
< = (log Bmal) e 2
- F(a (Og tl ) 08 tl

)

2 To + T l-a t a-l t
+ |4 Tt ) (1L+> log 12
F(Oé)< Tom41+ - + T4 &, 54
p) tome1 N0t
§_<1Ogg) log 2

)
11—« a—1
2 674 tom+1 ta
+ 1+ log —— log =
[(a) ( sz+1+"'+T4) ( S ) 54

20 tom—+1 ot ty 2.7 tom—+1 ol g,
< —— | log —— log — 1 log —
- ( o8 tl ) o8 tl + F(Oé) o8 tl 08
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34 tom—+1 ot 122
< —— | L log —.
~ o) <Og t1 ) 5

For j = 2, we have

|142 2mt1| = ‘C2m+1 + CQm-‘,—l’ < [we ‘d2m+1‘ + ’62m+1 (5.8)

In one side,

log (tl/ 0) log (tl/tl
log(tg/to) log(tQ/tl

~—

|’LU2| ‘dgm-‘,-l’ =

~—

1 [h tami1 )" log(s/to)log(s/t1) ds
)/ (log ) log (t1/to) log (t1/t1) s

a—1 -1

t2m+1 ds 2 tom+1 t1
< lo — < —— [ log ——— log —
- F(oz)(ﬁ + 7o) T2 ( & ) s T T(a) ( & t1 & to

2 (10g t2m+1/t2) ( t2m+1 aillogt_sﬁ
-1

F(Oé) 10g t2m+1/t t2 73

8 tom—+1 l3
< —— | log ——— log —. 5.9
< o (108 222 ) g (59)

In the other side,

_ 6 <1og(t2m+1/t2))1 “ (1 t2m+1> log B3 T
F(a) 10g(t2m+1/t3) to to T3
11—« a—1
18 <1+ 274 ) (1 t2m+1> 1 gt_g
I'(a) Tom+1+ -+ T 2 to

log —. (5.10)

By substituting (5.9) and (5.10) into (5.8), we get

a—1
62 tom+1 t3
Asom I lo =
| 2,2 +1| F( )(og t ) 0g

Now we derive the estimate for j = 3,...,2m. We distinguish two cases: odd and even j. For
i=2k+1,k=1,2,...,m—1,

k2 k41,0
|Aokr1,2mi1| = [Eomy + Comid
-1 -1
1 bkt t2m+1 “ bkt tomy1 “ ds
= T log Ok, ( Pr+1,0(8)—
(a) tog—1 tok+1 s

: /tzk+1 lo tom+1\" 1_ bakts t2m+1 a_lﬁ
L) Jiy & s s F s

tok+1

2 (1og tom+1 ) ot log tok+1 . 1 (log tom+1 ) ot log tok+3
IN(eY) tok+1 toar—1  I'(a) tok+3 tok41

IN
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1
2 toms1 ) Lok+2 Tok+1 + T2k
= ——(log log

') tokt1 lok+1  T2k42
" 1 <10g(t2m+1/t2k+1) >1a<10 tom+1 )allog tokt2 Takt3 + Tokt2
I'(a) \ log(tom+1/tor+3) tok+1 tok+1 Tok+2
< 12 (1og tom+1 ) ot log torto
~ ') tok+1 tok+1
N 2 (1 N Tok+3 + Tokt2 )1_a (1og tom+1 ) ot log tog42
I'(a) Tom+1 + -+ Tak+3 tort1 tort1
1 t aml oy 2. 4l-a t ol oy
< Tia <1og —2m+1> log 2k+2 4 T <log Qmﬂ) log “2k42
(o) tokt1 tor+1 () tor+1 tokt1
<2 (g tL) log 12642
~ ') tokt1 tort1
For j =2k, k=2,...,m,
1 b2kt toma1 a1 ds
A = k.1 — | — 1 m+ -
| 2k,2m+1| |02m+1 (@) /152k1 ( 0og S Sﬁk,l(s) 5
1
B (g 22 ™
L) Jiy s s s
< 6 <log tom+1 > o=l log tok+1
~ I'(o) Lok+t1 tok—1
_ 6 ( log(tam+1/t2k) )1_a (log t_2m+1)a_1 log bait1 ok + Tok
[(a) \log(tam+1/t2k+1) tok to  Tokt1
11—« a—1
12 t t
< (1 + T2k+1 > <log 2m+1> log 2k+1
') Tom+1 + -+ + Tokt2 tok tok
12 3l-« t ol oy
< (1og 2m+1) 1ogﬁ. (5.11)
['(a) ok o

This completes the proof of (5.4). It remains to prove (5.5). We proceed as follows:

A — Cm,2 -
el amt 2m+l I'(a) tom+1/tam—1)log(tam+1/tam) s

1 /t2m+1 (1 tom+1 ) o=t 1og(s/t2m,1) IOg(S/tQm) ds
_ log(

t t -
= (F(a) log :m—ﬂ log M)

2m—1 tom

tam+1 ¢ a—1 b d
X / log 22+L log? LA log 5 log 22—L as
tom—1 $ tom—1 tom—1 tom S

According to Lemma 4.4, we find

tom+1 ) “ ( 2log(tam+1/tam—1) log(tam—1/t2m) )
t2m71 F(O& + 3) 10g(t2m+1/t2m) F(O& + 2) 10g(t2m+1/t2m)

_ (TQm + 7-2m+1)a 2 _ Tom )
I'(3+a)

Ao, 2m+1 = (10g

T2m+1
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Consequently,

(a3

29(2 — a) 29(2 — a)
Aot omat| < > <
[ Azm1,2m ] < '3+ «) = a°T(3 4 «)

This proves (5.5). O
We can likewise prove the following lemma for A; 2;,42. The detail of the proof is omitted.

Lemma 5.3. The coefficients Ajom+2,7 =0,1,...,2m + 2, defined in (5.3), satisfy

62 t a-1 ts
|Ajoms2] £ =— (log 2m+2) log 2L 5 =0,1,....2m + 1,

F(Oé) tj tj
29(2 — a)
Aopmio oman| < —————At™.
[A2m+2,2m+2| < TG+ a)

Theorem 5.1. Assume 6*f(-,u(-)) € Cla,T]. The scheme (5.1) is stable under the condition
on the time step size
2912 —a)

—— AL < 1.
a°T(3+ )

Proof. 1t is to prove that if the initial condition ug is perturbed by ug, then the perturbation
of the solution u;, denoted by u;, remains bounded. It is readily seen that u; satisfy

2m—+1
o1 = To + » Ajomir [ty 05 +5) — f(t5,u5)],
=0
2m-—+2
Uomre = U0+ Y Ajames [f(t, w5 +35) = f(t,uy)], m=1,...,N -1
)

Under the Lipschitz condition on f, we have

2m—+1
tomia| = B0+ Y Ajomer (F(t5,u; +185) — f(tj,u5))
i=o0
2m+1
<|uo| + Z |Aj2mer (f (5,0 + 15) — f(t5,u5))]
i=o
2m—+1
<ol +L Y |4 2mi1] ]
j=0
2m
< |’(_L0| + LZ |Aj,2m+1| |’(_L]| +
j=0

20(2 — )

———— AL |uoma1] -
T3+ a) |U2m1]

A simple rearrangement yields

2m
20(2 — )
1— ———=AtL | |tgmy1| < | L§ Aol @il
( a°T(3 + ) )|U2 +1| < [to] + j:0| j2m+1] 4]

or
2m

[tam 11| < Cltio] + CLY |Aj ami1| 18],

J=0
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where

C= <1 - %AWL) - .

Applying Lemma 4.5, we obtain
[ti2m+1] < C'io] .
By the same argument, we can prove
|[t2m 2| < C'|tol .
This completes the proof. O

The convergence of the scheme is proved in the following theorem.

Theorem 5.2. Let u be the exact solution of (2.1), {u;}3% be the numerical solution of (5.1).
Suppose §*f(-,u(-)) € Cla, T, f(t,u) satisfies the Lipschitz condition (2.3), and the time step
size At satisfies
292 - o)
a°T(3+ )

Then the following error estimate holds:

AL < 1. (5.12)

lu(t;) —uj| < CAtFT* j=1,2,...,2N. (5.13)

Proof. Let e; = u(t;) —u;,j =0,1,...,2N. Then ey = 0, and e;,j > 1, satisfy

er = & (f(tyulty) = F(t5,u5)) + Ri(Ab),
j =0
20271 (tj,ulty)) — f(tj,u;)) + Ra(At),
2m+1
€2mt1 = Z Ajomt1 (f(tj,u(tj)) — f(tj,uj» + Romay1 (A1),

2m—+2
omiz= Y Ajomia(f(tiulty)) — f(tj,u;)) + Romia(At), m=1,...,N—1,

where the coefﬁcients are deﬁned in (5.2) and (5.3). By a direct calculation similar to (5.4) ,
we know ccl) I , c2 ,j = 0,1,2, are bounded. Then it follows from Lemma 5.2 and the Lipschitz

condition that

2
ler] S LCY e+ [Ri(At)],

=0
2
lea] < LCY ej+ [Ra(AL)],
=0
= tomi1 \ " +1 242 - o)
m <LC log == I J + ——At“L |ea,
leam 1] < ;0 (0g : > o8~ 1o+ e T le2ma+1] (5.14)

+ [Ram+1(At)]

2m41 boma\ Nt 29(2 — )
w2l SLC Y (log 242} jog Ly Z B Y npop ey,
leam2| < 2 <0g y ) 0g —— lej| + TG+ a) |€2m+2]

+|R2m+2(At)|, mzl,,N—l
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In virtue of the first and second inequalities of (5.14), we have
lex] < C(IR1(AL)] + [Ra(AL)]),  |ea| < C(IB1(AY)] + |Ra(At)]).

This, together with Proposition 4.1, leads to (5.13) for j =1, 2.
Next we prove (5.13) for j > 2. Under the assumption (5.12), we derive from the last two
inequalities of (5.14):

2m a—1
tam
|e2m+1|sw§:<1og%) log J“le]|+C|R2m+1(At>| m=1,...,N -1,
J

j=1
2m+1

tomya )"
leamt2 < LC Y (m%) log L2 J“ |e]| + C|Ramia(A)], m=1,...,N —1.
=1 ’

Then it follows from the Gronwall inequality in Lemma 4.5 that

|€2m+1| §C|R2m+1(At)|, m:l,...,N—l,
leam+2| < C|Rom12(At)], m=1,...,N —1.

Finally, using Proposition 4.1 gives
lej| < CAL*T®,  j=3,...,2N.

The proof is complete. O

6. Numerical Results

We carry out some numerical experiments to verify the theoretical results obtained in the
previous sections. Precisely, our main purpose is to check the convergence property of the
numerical solution with respect to the step size.

Example 6.1. Consider the problem (2.1) with a = 2,ug = log2,

4 44+«
flt,u) = W (1og%) + (log g) +log 2 — u(t).

It can be verified that the corresponding exact solution is

¢ 44+
u(t) = (1og 5) + log 2.

All the results reported in this example correspond to the numerical solution captured at

T = 3. In Table 6.1, we list the maximum errors

Erreo(At) = max |u(t;) — u

0<i<2N
as a function of At for a = 0.3,0.5 and 0.7. Also shown are the corresponding decay rates,
using the formula as
Erreo(At)
Rate =1 —_— .
e (E ~(At/2)

From Table 6.1, it is observed that the convergence rate is close to 3 + . This is in a good
agreement with the theoretical prediction.
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Table 6.1: Maximum errors and decay rate as functions of At for Example 6.1.

At a=0.3 Rate a=0.5 Rate a=0.7 Rate
1/10 | 2.7749E-06 — 2.5313E-06 — 1.6310E-06 —
1/20 | 2.8863E-07 | 3.2652 | 2.2719E-07 | 3.4779 | 1.2826E-07 | 3.6687
1/40 | 2.9980E-08 | 3.2671 | 2.0753E-08 | 3.4526 | 1.0376E-08 | 3.6277
1/80 | 3.0962E-09 | 3.2755 | 1.8911E-09 | 3.4560 | 8.4198E-10 | 3.6233
1/160 | 3.1818E-10 | 3.2826 | 1.7130E-10 | 3.4646 | 6.7950E-11 | 3.6312
1/320 | 3.2561E-11 | 3.2886 | 1.5422E-11 | 3.4734 | 5.4405E-12 | 3.6427

Example 6.2. Consider the problem (2.1) with the following right-hand side function:

I'5+a)
-1 - P G )
a , Uo 05 f( ) F(5)

The exact solution is u(t) = (logt)*** in this case. It is notable that in the present example,
the right-hand side function f is a nonlinear function of «, while the previous example addresses

(logt)* + (log )32 — 42,

a right-hand side function linearly dependent of w.

We take T' = 2 and repeat the same calculation as in the Example 6.1 by using the proposed
scheme. Table 6.2 shows the maximum errors and decay rates as functions of the time step size
for « = 0.2,0.4 and 0.6. Once again the obtained numerical results confirm that the convergence
order of the scheme is 3 + a.

Table 6.2: Maximum errors and decay rate as functions of At for Example 6.2.

At a=02 Rate a=04 Rate a=0.6 Rate
1/10 | 3.5723E-05 — 3.8279E-05 — 2.6428E-05 —
1/20 | 4.2326E-06 | 3.0772 | 4.0699E-06 | 3.2334 | 2.5760E-06 | 3.3589
1/40 | 4.8136E-07 | 3.1364 | 4.1210E-07 | 3.3040 | 2.3752E-07 | 3.4390
1/80 | 5.3812E-08 | 3.1611 | 4.0861E-08 | 3.3342 | 2.1105E-08 | 3.4924
1/160 | 5.9477E-09 | 3.1775 | 3.9857E-09 | 3.3578 | 1.8364E-09 | 3.5226
1/320 | 6.5316E-10 | 3.1868 | 3.8480E-10 | 3.3727 | 1.5746E-10 | 3.5438

Example 6.3. The third example is to test the accuracy of the present numerical scheme,
where the analytical solution is unknown. We consider the problem (2.1) with the following
right-hand side function:

a=1, u=0, ft)=(t-1)>°.
To test the accuracy for the present scheme, we chose T' = 2, and varied the grid size At.
With this choice, we expect that the numerical solution should be convergent to the exact
solution with the error O(At**) based on Theorem 5.2. Since the exact solution is unknown,

s (2)]

We further estimate the rate of convergence using the formula as

Erro (At)
Erro(At/2) ) '

we calculate the maximum error using

Erre(At) = max

Rate = log, (
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Results were listed in Table 6.3. One may see that the convergence rate is close to 3 4+ « for all
cases, which coincides with what we expected.

Table 6.3: Maximum errors and decay rate as functions of At for Example 6.3.

At a=02 Rate a=0.5 Rate a=0.7 Rate
1/10 | 2.0926E-04 - 1.6923E-04 — 8.3173E-05 —
1/20 | 2.6080E-05 | 3.0043 | 1.7533E-05 | 3.2708 | 7.7397E-06 | 3.4258
1/40 | 3.0618E-06 | 3.0905 | 1.7146E-06 | 3.3542 | 6.8139E-07 | 3.5057
1/80 | 3.4788E-07 | 3.1377 | 1.6186E-07 | 3.4050 | 5.7778E-08 | 3.5599
1/160 | 3.8808E-08 | 3.1642 | 1.4948E-08 | 3.4367 | 4.7776E-09 | 3.5962
1/320 | 4.2829E-09 | 3.1797 | 1.3615E-09 | 3.4567 | 3.8854E-10 | 3.6202

7. Concluding Remarks

In the present work, we have first presented some regularity properties of the solution to
the Caputo-Hadamard fractional differential equation. Then an efficient high order scheme was
constructed and analyzed for the considered problem. The stability and convergence analysis
was carried out to prove that the proposed scheme is stable under a reasonable restriction on
the step size. The obtained error estimate shows that the proposed scheme is of order 3 4 «.
Finally, two numerical examples were provided to confirm the efficiency of the proposed method.
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