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1 Introduction

A nonlinearly elastic shell with constant thickness is a three-dimensional elastic
body whose reference configuration consists of all points that lie within a small
given distance from a given surface, which is called the “middle surface of the
shell”. The nonlinear Koiter’s shell model, introduced by Koiter (see [9]) in 1966,
is one of the most used two-dimensional nonlinearly elastic shell models in nu-
merical simulations. It states that the unknown deformation ϕ : ω → R

3 of the
middle surface S=θ(ω) of the shell subjected to applied forces should minimize
a functional

JK(ϕ) :=
∫

ω

WK(ϕ)
√

ady−LK(ϕ), (1.1)
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called the total energy of the deformed shell, over an appropriate set of admissi-
ble deformations. Here WK denotes Koiter’s stored energy function (which will
be defined later) and LK denotes a linear form that takes into account the applied
forces. However, as far as we know, no theorem has been established in the liter-
ature proving the existence of a such minimizer.

On the other hand, several existence theorems have been established for ad
hoc approximations of Koiter’s shell model, that is, for models whereby Koiter’s
stored energy function WK(ϕ) is in (1.1) replaced by

W̃K(ϕ) :=WK(ϕ)+R(ε,ϕ),

where the additional term R(ε,ϕ) is negligible compared with WK(ϕ) in some
meaningful sense. Bunoiu et al. [3] and Ciarlet and Mardare [5] proposed a well-
posed two-dimensional approximation of Koiter’s model for spherical and “al-
most spherical” shells. Giang and Mardare [8] established existence theorems
for nonlinear shell models asymptotically equivalent to Koiter’s model for the
shells whose middle surfaces are minimal surfaces. Finally, Anicic [1,2] proposed
an approximate model of Koiter’s model that has a minimizer over the set of de-
formations whose principal radii of curvatures are bounded below by the half
thickness of the shell. A different approach by Ciarlet and Mardare [6] and Mar-
dare [10], where the authors have proposed nonlinear shell models asymptoti-
cally equivalent to the Koiter’s model for all kinds of geometries, but depending
on the transverse variable, so that these are three-dimensional models.

The purpose of this paper is to define a well-posed two-dimensional shell
model that is approximately equivalent to that of Koiter without any restrictions
on the geometry of the middle surface of the shell. Our approach is similar to
that of Anicic [1,2], the difference being that in our model the space of admissible
deformations is independent of the thickness of the shell. The definition of our
model is based on the ideas first appearing in the papers of Giang and Mardare [8]
and Anicic [1, 2].

2 Notations and definitions

In all that follows, Greek indices and exponents range in the set {1,2} while Latin
indices and exponents range in the set {1,2,3} (except when they are used for in-
dexing sequences). The Einstein summation convention with respect to repeated
indices and exponents is used.

Vector and matrix fields are denoted by boldface letters. The Euclidean norm,
the inner product and the vector product of two vectors u and v in R

3 are respec-
tively denoted |u|,u·v and u∧v. Given any integers m≥ 1 and n≥ 1, the inner
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product and the Frobenius norm in R
m×n are respectively denoted and defined

by A : B := Tr(ATB) and |A| := (A : A)1/2, where Tr denotes the trace operator
of square matrices. The subspace of R

n×n formed by all symmetric matrices is
denoted R

n×n
sym .

A domain in R
2 is a bounded, connected, open subset ω⊂R

2 with a Lipschitz-
continuous boundary γ := ∂ω, the set ω being locally on the same side of γ.
A generic point in the set ω is denoted y = (yα) and partial derivatives, in the
classical or distributional sense, are denoted ∂α :=∂/∂yα and ∂αβ :=∂2/(∂yα∂yβ).

Given any open subset ω of R
2 and any real number p ≥ 1, the notation

Lp(ω;Rm×n) denotes the space of matrix fields A=(Aij) :ω→R
m×n with compo-

nents in the Lebesgue space Lp(ω). It is equipped with the norm

‖A‖p :=

( ∫

ω

|A(y)|pdy

)1/p

, ∀A∈Lp(ω;Rm×n).

The notation W1,p(ω;R3) denotes the space of vector fields ζ=(ζi) : ω→R
3 with

components in the Sobolev space W1,p(ω). It is equipped with the norm

‖ζ‖1,p :=
(
‖ζ‖p

p+‖∇ζ‖p
p

)1/p
, ∀ζ∈W1,p(ω;R3),

where ∇ζ :=(∂βζi) is the matrix field with ∂βζi at its row i and column β.
Strong and weak convergences in any normed vector space are respectively

denoted → and ⇀ .
The middle surface of the reference configuration of a shell is defined by

S :=θ(ω), where ω⊂R
2 is a domain and θ∈C1(ω;R3) is an immersion, i.e. the

two tangent vector fields aα := ∂αθ are linearly independent at every y∈ω. We
assume in addition that the vector field a3 : ω→R

3, defined by

a3(y) :=
∂1θ(y)∧∂2θ(y)

|∂1θ(y)∧∂2θ(y)| , ∀y∈ω,

is also of class C1 over ω. Note that a3(y) is a unit vector normal to the surface S

at the point θ(y). The area element on the surface S is
√

a(y)dy, where

a := |∂1θ∧∂2θ|2=det(aαβ) in ω.

The covariant components aαβ ∈ C0(ω),bαβ ∈ C0(ω) and cαβ ∈ C0(ω) of the first,
second and third fundamental forms of S=θ(ω) are respectively defined by

aαβ :=aα ·aβ, bαβ :=−aβ ·∂αa3, cαβ :=∂αa3 ·∂βa3.
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The contravariant components of the first fundamental form are the components
aαβ ∈C0(ω) of the inverse matrix

(
aαβ(y)

)
:=
(
aαβ(y)

)−1
, y∈ω.

Note that both matrices (aαβ(y)) and (aαβ(y)) are symmetric and positive definite

at every y ∈ ω, that the matrix (cαβ(y)) ∈ R
2×2 is symmetric and nonnegative

definite for all y∈ω, and that

c :=det(cαβ)= |∂1a3∧∂2a3|2≥0 in ω.

The mean curvature and the total curvature of the surface S=θ(ω) are respec-
tively the functions denoted and defined by

H :=
1

2
aαβbαβ=

1

2
(k1+k2)∈C0(ω)

and

K :=det
(
aασbσβ

)
= k1k2∈C0(ω),

where k1(y) and k2(y) are the principal curvatures of the surface S=θ(ω) at the
point θ(y), defined as the eigenvalues of the 2×2 matrix (aασ(y)bσβ(y)).

We also define the mixed components bα
β ∈C0(ω) of the second fundamental

form by letting

bα
β= aασbσβ in ω.

A deformation of the middle surface of the shell S = θ(ω) is a smooth enough
mapping ϕ: ω→R

3. Given an arbitrary deformation ϕ, the functions

aαβ(ϕ) :=aα(ϕ)·aβ(ϕ), where aα(ϕ) :=∂αϕ,

denote the covariant components of the first fundamental form of the deformed
surface ϕ(ω), and the functions

Gαβ(ϕ) :=
1

2

(
aαβ(ϕ)−aαβ

)

denote the covariant components of the change of metric tensor field associated
with the deformation ϕ of S. The area element along the deformed surface ϕ(ω)

is
√

a(ϕ), where

a(ϕ) := |∂1ϕ∧∂2ϕ|2=det
(
aαβ(ϕ)

)
.
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If the two nonlinear vectors aα(ϕ) are linearly independent, then the unit vector
field

a3(ϕ) :=
∂1ϕ∧∂2ϕ

|∂1ϕ∧∂2ϕ|
is well-defined and normal to the deformed surface ϕ(ω). The functions

bαβ(ϕ) :=−∂αϕ·∂βa3(ϕ)

denote the covariant components of the second fundamental form of the de-
formed surface ϕ(ω), the functions

Rαβ(ϕ) :=bαβ(ϕ)−bαβ

denote the covariant components of the change of curvature tensor field associ-
ated with the deformation ϕ of S, the functions

cαβ(ϕ) :=∂αa3(ϕ)·∂βa3(ϕ)

denote the covariant components of the third fundamental form of the deformed
surface ϕ(ω), and the functions

Pαβ(ϕ) :=
1

2

(
cαβ(ϕ)−cαβ

)

denote the covariant components of the change of the third fundamental form
associated with the deformation ϕ of S.

The unknown deformation ϕ of the middle surface of the shell appearing in
Koiter’s nonlinear shell model is assumed to satisfy a boundary condition of the
form

ϕ=θ, a3(ϕ)=a3 on γ0,

where γ0 is a non-empty relatively open subset of γ := ∂ω. In addition, the un-
known ϕ is subjected to the constraint

∂1ϕ∧∂2ϕ 6=0 in ω,

so that the tangent plane is well-defined at each point of the deformed surface.
The nonlinear shell model of Koiter states that the unknown deformation ψ

of the middle surface S = θ(ω) of the shell should be a minimizer over a set of
smooth enough vector fields ϕ: ω→R

3 satisfying the boundary conditions

ϕ=θ, a3(ϕ)=a3 on γ0



6 T. H. Giang / Commun. Math. Anal. Appl., x (2024), pp. 1-31

of the total energy of the deformed surface ϕ(ω), denoted and defined by

JK(ϕ) :=
∫

ω

WK(ϕ)
√

a dy−LK(ϕ),

where

WK(ϕ) :=
ε

2
aαβστ Gστ(ϕ)Gαβ(ϕ)+

ε3

6
aαβστ Rστ(ϕ)Rαβ(ϕ),

and the functions

aαβστ :=
4λµ

λ+2µ
aαβaστ+2µ(aασaβτ+aατaβσ)

are the contravariant components of the two-dimensional elasticity tensor of the
shell, λ≥0 and µ>0 are the Lamé constants of the constitutive material, and LK

is a linear functional that takes into account the applied forces. Notice that there
exists a constant ce = ce(ω,θ,λ,µ)>0 such that

∑
α,β

|tαβ|2≤ ceaαβστ(y)tστ tαβ (2.1)

for all y∈ω and all symmetric matrices (tαβ) (see, for example, [4, Theorem 3.3-2]).
We also denote by

WM(ϕ) := aαβστ Gστ(ϕ)Gαβ(ϕ)

the membrane energy appearing in Koiter’s model, by

WF(ϕ) := aαβστ Rστ(ϕ)Rαβ(ϕ)

the flexural energy, and by

WT(ϕ) := aαβστ Pστ(ϕ)Pαβ(ϕ)

a new energy measuring the change of the third fundamental form when the
middle surface of the shell undergoes a deformation ϕ.

3 A new stored energy function of Koiter’s type

The purpose of this section is to define a new stored energy function that is
asymptotically equivalent to Koiter’s for “small enough” thickness and change
of metric and curvature tensors. To begin with, let

r(y) :=
1

8
min

{
2,

1

|k1(y)|+|k2(y)|

}
, ∀y∈ω, (3.1)
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where k1(y) and k2(y) are the principal curvatures defined in Section 2. Since
H,K∈C0(ω), |k1|, |k2|∈C0(ω) and thus they are bounded from above. Therefore,
r∈C0(ω) and there exists a positive number r0 such that

r(y)≥ r0, ∀y∈ω.

Next, we denote

g+
α :=∂αθ+r∂αa3

the “upper” vector fields and

g−
α :=∂αθ−r∂αa3

the “lower” vector fields associated with the middle surface of the shell and with
the function r. Then we define the “upper” and the “lower” covariant tensor
fields (g+αβ) and (g−αβ) by letting

g+αβ := g+
α ·g+

β = aαβ−2rbαβ+r2cαβ,

and

g−αβ := g−
α ·g−

β = aαβ+2rbαβ+r2cαβ,

respectively. In the same way, we define the “deformed upper vector fields” and
the “deformed lower vector fields” associated with the deformation ϕ:ω→R

3 by

g+
α (ϕ) :=∂αϕ+r∂αa3(ϕ),

and

g−
α (ϕ) :=∂αϕ−r∂αa3(ϕ),

respectively. The “deformed upper” and “lower” covariant tensor fields g+αβ(ϕ)

and g−αβ(ϕ) are also defined by letting

g+αβ(ϕ) := g+
α (ϕ)·g+

β (ϕ)= aαβ(ϕ)−2rbαβ(ϕ)+r2cαβ(ϕ),

and

g−αβ(ϕ) := g−
α (ϕ)·g−

β (ϕ)= aαβ(ϕ)+2rbαβ(ϕ)+r2cαβ(ϕ).

The functions

G+
αβ(ϕ) :=

1

2

(
g+αβ(ϕ)−g+αβ

)
=Gαβ(ϕ)−rRαβ(ϕ)+r2Pαβ(ϕ),
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and

G−
αβ(ϕ) :=

1

2

(
g−αβ(ϕ)−g−αβ

)
=Gαβ(ϕ)+rRαβ(ϕ)+r2Pαβ(ϕ),

denote respectively the covariant components of the change of upper and lower
tensor fields of the shell.

We also define the “upper” and “lower” contravariant tensor fields
(

g
αβ
+

)
:=
(

g+αβ

)−1
and

(
g

αβ
−
)

:=
(

g−αβ

)−1
,

and the functions

g+ :=det
(

g+αβ

)
=(1−2rH+r2K)2a,

g− :=det
(

g−αβ

)
=(1+2rH+r2K)2a,

g+(ϕ) :=det
(

g+αβ(ϕ)
)
,

g−(ϕ) :=det
(

g−αβ(ϕ)
)
.

From the definition of r, on can easily prove that the matrices (g+αβ), (g
−
αβ), (g

αβ
+ )

and (g
αβ
− ) are positive definite at all points y∈ω.

Next, we define

W̃M

(
ϕ
)

:=2µ
(

aαβaαβ(ϕ)−2
)

+
2λµ

λ+2µ

(
a(ϕ)

a
−1

)
−4µ

λ+µ

λ+2µ
log

(
a(ϕ)

a

)
,

W̃+
T (ϕ) :=

(λ+µ)g+

r2a

[(
g

αβ
+ g+αβ(ϕ)−2

)
−log

(
g+(ϕ)

g+

)]
,

W̃−
T (ϕ) :=

(λ+µ)g−

r2a

[(
g

αβ
− g−αβ(ϕ)−2

)
−log

(
g−(ϕ)

g−

)]
.

Now we are able to define a new stored energy function meant to replace in
the functional (1.1) the usual one of Koiter.

Definition 3.1 (A New Stored Energy Function). Let WM,WF and WT be the func-

tions defined in Section 2 and W̃M,W̃+
T and W̃−

T are as above. Then, given any constants

0<δ<1 and C1>0 and C2>0, define the function W̃K by

W̃K(ϕ) :=
ε

2

[
δWM(ϕ)+(1−δ)W̃M(ϕ)

]
+

ε3

6
WF(ϕ)

+
ε5

10

[
C1WT(ϕ)+C2(4H2−2K)

(
W̃+

T (ϕ)+W̃−
T (ϕ)

)]

for all immersions ϕ∈W1,4(ω;R3) such that a3(ϕ)∈W1,4(ω;R3).
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The next theorem shows that W̃K(ϕ) coincides with Koiter’s stored energy
function WK(ϕ) at the first order with respect to small thickness and change of
metric and curvature tensors.

Theorem 3.1. For all immersions ϕ∈C1(ω;R3) with a3(ϕ)∈C1(ω;R3) that are suffi-

ciently close in the C1(ω)-norm to the immersion θ, the following estimate hold:

W̃K(ϕ)=WK(ϕ)+o
(
WK(ϕ)

)
+ε2O

(
WK(ϕ)

)
.

Proof. The result is a consequence of Lemmas 3.1-3.3 established below.

Lemma 3.1. The following relations hold in ω for every immersion ϕ∈C1(ω;R3) with

a3(ϕ)∈C1(ω;R3) that is sufficiently close in the C1(ω)-norm to the immersion θ:

Pαβ(ϕ)=−bσ
α bτ

βGστ(ϕ)+
1

2
bσ

α Rσβ(ϕ)+
1

2
bσ

βRασ(ϕ)

+O
(
WM(ϕ)

)
+O

(
WF(ϕ)

)
,

WT(ϕ)=O
(
WM(ϕ)

)
+O

(
WF(ϕ)

)
.

Proof. This lemma is a direct consequence of [3, Lemma 2] and for this reason its

proof is omitted.

Lemma 3.2. Given any immersion ϕ∈C1(ω;R3) that is sufficiently close in the C1(ω)-
norm to the immersion θ, the following relation holds in ω:

W̃M(ϕ)=WM(ϕ)+o
(
WM(ϕ)

)
.

Proof. The proof of this lemma which can be found in the proof of [3, Lemma 1],

is recalled here for reader’s convenience. The definition of the functions Gαβ(ϕ)
implies that

aαβ(ϕ)= aαβ+2Gαβ(ϕ).

As a consequence, we have

a(ϕ) :=det
(
aαβ(ϕ)

)
=det

(
aαβ+2Gαβ(ϕ)

)

= a
[
1+2aαβGαβ(ϕ)+4det

(
aασGσβ(ϕ)

)]
. (3.2)

Next, Cayley-Hamilton theorem applied to the matrix field with components

Gα
β(ϕ) := aασ Gσβ(ϕ) shows that

Gα
σ(ϕ)G

σ
β(ϕ)−Gσ

σ(ϕ)G
α
β(ϕ)+det

(
Gσ

τ (ϕ)
)
δα

β=0,
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where δα
β denotes the Kronecker symbol. Therefore,

2det
(
aασGσβ(ϕ)

)
=
(
aαβGαβ(ϕ)

)2−aαβaστGασ(ϕ)Gβτ(ϕ). (3.3)

Then we deduce from the relations (3.2) and (3.3) that

a(ϕ)

a
=1+2aαβGαβ(ϕ)+2

(
aαβGαβ(ϕ)

)2−2aαβaστGασ(ϕ)Gβτ(ϕ),

which in turn implies that

log

(
a(ϕ)

a

)
=2aαβGαβ(ϕ)−2aασaβτGαβ(ϕ)Gστ(ϕ)+o

(
WM(ϕ)

)
.

The conclusion of the lemma follows by combining the above relations with the

definition of the function W̃M(ϕ).

Lemma 3.3. Given any immersion ϕ∈C1(ω;R3) with a3(ϕ)∈C1(ω;R3) that is suffi-

ciently close in the C1(ω)-norm to the immersion θ, the following relations hold in ω:

W̃+
T (ϕ)=O

(
WM(ϕ)

)
+O

(
WF(ϕ)

)
,

W̃−
T (ϕ)=O

(
WM(ϕ)

)
+O

(
WF(ϕ)

)
.

Proof. The idea of the proof is similar to the one of Lemma 3.2. We will only

prove the first relation, the second one being obtained in a similar manner. The

definition of the functions G+
αβ(ϕ) implies that

g+αβ(ϕ)= g+αβ+2G+
αβ(ϕ).

Consequently,

g+(ϕ) :=det
(

g+αβ(ϕ)
)
=det

(
g+αβ+2G+

αβ(ϕ)
)

= g+
[
1+2g

αβ
+ G+

αβ(ϕ)+4det
(

gασ
+ G+

σβ(ϕ)
)]

, (3.4)

on the one hand. On the other hand, by applying Cayley-Hamilton theorem to

the matrix field with components Gα,+
β (ϕ) := aασ+G+

σβ(ϕ), one deduces that

Gα,+
σ (ϕ)Gσ,+

β (ϕ)−Gσ,+
σ (ϕ)Gα,+

β (ϕ)+det
(
Gσ,+

τ (ϕ)
)
δα

β=0,

where δα
β again denotes the Kronecker symbol, so that (by applying the trace op-

erator to it)

2det
(

gασ
+ G+

σβ(ϕ)
)
=
(

g
αβ
+ G+

αβ(ϕ)
)2−g

αβ
+ gστ

+ G+
ασ(ϕ)G

+
βτ(ϕ). (3.5)
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Then we infer from the relations (3.4) and (3.5) that

g+(ϕ)

g+
=1+2g

αβ
+ G+

αβ(ϕ)+2
(

g
αβ
+ G+

αβ(ϕ)
)2

−2g
αβ
+ gστ

+ G+
αβ(ϕ)G

+
βτ(ϕ). (3.6)

By combining (2.1), Lemma 3.1 and the definition of G+
αβ(ϕ), we obtain

∑
α,β

∣∣G+
αβ(ϕ)

∣∣2=O
(
aαβστG+

αβ(ϕ)G
+
στ(ϕ)

)

=O
(
WM(ϕ)+WF(ϕ)

)
. (3.7)

From (3.6) and (3.7), we deduce that

log

(
g+(ϕ)

g+

)
=2g

αβ
+ G+

αβ(ϕ)+O
(
WM(ϕ)+WF(ϕ)

)
.

The desired result follows by combining the above relations with the definition

of the function W̃+
T (ϕ).

4 Existence of the minimizer

In this section, we prove that the minimization problem for the nonlinear shell
model associated with the new energy function defined in Definition 3.1 has
a minimizer. To this end, we need the following five lemmas.

Lemma 4.1. Let λ≥0 and µ>0 be given constants and g∈C(ω) and h∈C(ω) be given

positive functions.

(a) Define the function W1 : ω×R→R∪{+∞} by

W1(y,z) :=
4µg(y)

λ+2µ

[
λ

2

z2

h(y)
−(λ+µ)log

(
z2

h(y)

)]

for all (y,z)∈ω×(0,+∞), and by

W1(y,z) :=+∞ otherwise.

Then ∫

ω

W1

(
y,v(y)

)
dy≤ liminf

n→∞

∫

ω

W1

(
y,vn(y)

)
dy (4.1)

whenever vn⇀v in L2(ω) when n→∞.
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(b) Define the function W2 : ω×R→R∪{+∞} by

W2(y,z) :=−(λ+µ)g(y)log

(
z2

h(y)

)

for all (y,z)∈ω×(0,+∞), and by

W2(y,z) :=+∞ otherwise.

Then ∫

ω

W2

(
y,v(y)

)
dy≤ liminf

n→∞

∫

ω

W2

(
y,vn(y)

)
dy (4.2)

whenever vn⇀v in L2(ω) when n→∞.

Proof. The proof of part (b) is similar to the proof of part (a), which itself can be

found in [8, Lemma 3]. We present it here for completeness. First, observe that

the functions g and h are positive and logx ≤ x for all x > 0. Consequently, we

have

W1(y,z)≥ 4µ(λ+µ)g(y)

λ+2µ

[
log
(
h(y)

)
−2z

]

for all (y,z)∈ω×R. Then the function F : ω×R→R∪{+∞}, defined by

F(y,z) :=W1(y,z)+
4µ(λ+µ)g(y)

λ+2µ

[
2z−log

(
h(y)

)]

for all (y,z)∈ω×R, satisfies

F(y,z)≥0, ∀(y,z)∈ω×R.

Now, it is easy to see that F is a Carathéodory function and the functions z ∈
R→ F(y,z) are convex for all y∈ω. Then a classical theorem in the Calculus of

Variations (see, e.g. Dacorogna [7, Theorem 3.23]) shows that

∫

ω

F
(

y,v(y)
)

dy≤ liminf
n→∞

∫

ω

F
(
y,vn(y)

)
dy

whenever vn⇀v in L2(ω) when n→∞.
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Next, notice that
∫

ω

g(y)v(y)= lim
n→∞

∫

ω

g(y)vn(y)dy,

since vn ⇀ v in L2(ω) and g∈C(ω)⊂ L2(ω) (remember that ω is a bounded set

by assumption). Then the conclusion follows by combining the last two relations.

The proof is complete

Lemma 4.2. Given any constant λ≥0,µ>0, ε>0,δ>0 and C>0 that satisfy Cδ≥20/9,

let

W3(F ,N) :=
λµ

λ+2µ

[
δ|F|4+ 4ε2

3
(F : N)2+C

ε4

5
|N|4

]

+µ

[
δ|FTF|2+ 4ε2

3
|FTN|2+C

ε4

5
|NTN|2

]

for all F,N ∈R
3×2. Then

∫

ω

W3(F,N)
√

ady≤ liminf
n→∞

∫

ω

W3(Fn,Nn)
√

ady

whenever (Fn,Nn)⇀ (F ,N) in (L4(ω;R3×2))2 when n→∞.

Proof. The details of the proof can be found in the proof of [8, Lemma 4]. The key

ingredient is that, under the assumptions of the lemma, the following inequality

holds for all F, N , E, M∈R
3×2:

∂2W2

∂F2
(F ,N)

(
(E,M),(E,M)

)
+2

∂2W2

∂F∂N
(F,N)

(
(E,M),(E,M)

)

+
∂2W2

∂N2
(F ,N)

(
(E,M),(E,M)

)
≥0. (4.3)

Once (4.3) is proved, the fact that W2 is convex follows. The proof is complete.

Lemma 4.3. Given any nonnegative functions A,C∈C0(ω) and any function B∈C0(ω),
let

W4(y,F,N) :=A(y)|F |2+B(y)(F : N)+C(y)|N |2

for all (y,F ,N)∈ω×R
h×k×R

h×k, where h and k are given positive integers. Assume

that B(y)2 ≤4A(y)C(y) for every y∈ω. Then
∫

ω

W4(·,F,N)
√

ady≤ liminf
n→∞

∫

ω

W4(·,Fn,Nn)
√

ady

whenever (Fn,Nn)⇀ (F ,N) in (L2(ω;(Rh×k)))2 when n→∞.
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Proof. The assumption B(y)2 ≤4A(y)C(y) implies that the function W4 is convex

with respect to (F ,N). This implies that

∫

ω

W4(·,F ,N)
√

ady≤ liminf
n→∞

∫

ω

W4(·,Fn,Nn)
√

ady.

The proof is complete.

Lemma 4.4. Let A,B∈C0(ω) be two functions such that A(y)≥B(y)≥0 for all y∈ω,

let N : ω→R
3×2 be any matrix field with continuous components, and define

W5(y,N) :=A(y)|N |2|N(y)|2−B(y)
∣∣NN(y)T

∣∣2

for all (y,N)∈R
3×2.

Then ∫

ω

W5(·,N)
√

ady≤ liminf
n→∞

∫

ω

W5(·,Nn)
√

ady

whenever Nn⇀N in L2(ω;R3×2) when n→∞.

Proof. It suffices to prove that W5(y,N) is convex with respect to N . By a simple

calculation, we obtain

∂2W5

∂N2
(y,N)(M)=2A(y)|M |2|N(y)|2−2B(y)|MN(y)T |2

for all N ,M∈R
3×2 and all y∈ω. Then from the simple inequality

|EF|≤ |E||F|, ∀E,F∈R
3×2

together with the assumption A(y)≥B(y)≥0, we obtain the desired result.

Lemma 4.5. Let s0 be the positive root of the equation

s2− 28+1

210
s− 1

64
=0.

Then the following matrix fields:

S1(y) :=
(

s0aαβ(y)−2r(y)bαβ(y)+s0r2(y)cαβ(y)
)
,

S2(y) :=
(

s0aαβ(y)+2r(y)bαβ(y)+s0r2(y)cαβ(y)
)

for all y∈ω, are symmetric and nonnegative definite at every point y∈ω.
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Proof. We only give the proof for the matrix field S1, the proof for S2 is based on

a similar argument. First, it is obvious that S1(y) is symmetric. Next, by applying

Cayley-Hamilton formula to the matrix field (bα
β), it follows that

bτ
σbσ

β−2Hbτ
β+Kδτ

β =0 in ω,

where δτ
β is the Kronecker symbol. From this and the relation

cαβ=bασaστbτβ in ω,

we deduce that

cαβ=2Hbαβ−Kaαβ in ω, (4.4)

and thus

det(cαβ)=K2a in ω. (4.5)

Since the matrix A(y) :=(aαβ)(y) is symmetric and positive definite with con-

tinuous components at each y∈ω, there exists a unique symmetric and positive

definite matrix U(y)∈R
2×2
sym with continuous components such that

A(y)=U(y)2, (4.6)

and thus

A−1(y)=
(

aαβ(y)
)
=
(
U−1(y)

)2
,

where U−1(y) is also a symmetric and positive definite matrix with components

depending continuously on y∈ω.

Now we will show that

Tr
(
U−1(y)S1(y)U

−1(y)
)
≥0, ∀y∈ω, (4.7)

det
(
U−1(y)S1(y)U

−1(y)
)
≥0, ∀y∈ω. (4.8)

To this end, by some straightforward calculations based in particular on the def-

initions of H and K, the relations |rH|≤1/16 and 4H2−2K≥0, we deduce from

(4.4) that

Tr
(
(aαβ)S1

)
=(aαβ) :

[
s0(aαβ)−2r(bαβ)+s0r2(cαβ)

]

=2s0−4rH+s0r2(4H2−2K)

≥2s0−
1

4
>0. (4.9)
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Then we infer from (4.6) and (4.9) that

Tr
(
U−1(y)S1(y)U

−1(y)
)
=Tr

(
U−1(y)U−1(y)S1(y)

)

=Tr
(
(aαβ(y))S1(y)

)
>0,

for all y∈ω. Thus, (4.7) holds.

Next, we infer from relations (4.4) and (4.5) and from the inequalities |rH| ≤
1/16, |r2K|≤1/256 and 4H2−2K≥0 that

det(S1)= s2
0det(aαβ)+4r2det(bαβ)+s2

0r4det(cαβ)

−2rs0(a11b22+a22b11−2a12b12)+s2
0r2(a11c22+a22c11−2a12c12)

−2r3s0(b11c22+b22c11−2b12c12)

= s2
0a+4r2Ka+s2

0r4K2a−4rs0Ha+s2
0r2(4H2−2K)a−4r3s0HK

= a
(

s2
0+4r2K+s2

0r4K2−4rs0H−4r3s0HK+s2
0r2(4H2−2K)

)

≥ a
(

s2
0+4r2K−4rs0H−4r3s0HK

)
≥ a

(
s2

0−
1

64
− s0

4
− s0

210

)

= a

(
s2

0−
28+1

210
s0−

1

64

)
=0,

and thus (4.8) holds. From (4.7) and (4.8), we deduce that U−1(y)S1(y)U
−1(y) is

symmetric and nonnegative definite, which in turn implies that S1(y) is symmet-

ric and positive definite. The proof is complete.

Now we are able to give the proof for our existence theorem, which is the
main result of this paper. Note that the theorem holds with particular choices
δ=1/4,C1 :=9 and C2 :=90, irrespectively of the values of the elastic coefficients
λ and µ.

Theorem 4.1. Define the functional J̃K :V K(ω)→R∪{+∞} by

J̃K(ϕ) :=
∫

ω

W̃K(ϕ)
√

ady−LK(ϕ), ∀ϕ∈V K(ω),

where

V K(ω) :=
{

ϕ∈W1,4(ω;R3); |∂1ϕ∧∂2ϕ|>0 a.e. in ω, a3(ϕ)∈W1,4(ω;R3),
∣∣(∂1a(ϕ)+r∂1a3(ϕ)

)
∧
(
∂2a(ϕ)+r∂2a3(ϕ)

)∣∣>0 a.e. in ω,∣∣(∂1a(ϕ)−r∂1a3(ϕ)
)
∧
(
∂2a(ϕ)−r∂2a3(ϕ)

)∣∣>0 a.e. in ω,

ϕ
∣∣
γ0
=θ|γ0 , a3(ϕ)

∣∣
γ0
=a3

∣∣
γ0

}
,
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r ∈ C(ω) is the function defined in terms of θ by (3.1), W̃K is the function defined in

Definition 3.1, and LK :W1,4(ω;R3)→R is any linear and continuous function. Assume

that the constants appearing in the definition of W̃K satisfy

0<δ<
λ+2µ

4(λ+µ)
, C1δ≥ 20

9
,

and

C2≥
2

(1−s0)

[
C1

µ

λ+2µ
+

40

9

µ(3λ+2µ)(
λ+2µ−4δ(λ+µ)

)
(λ+2µ)

]
,

where s0 is defined in Lemma 4.5. Then the functional J̃K has a minimizer in V K(ω).

Proof. For convenience, the proof will be divided into five steps.

Step 1. We prove that the functional J̃K is well-defined and coercive. Let ϕ∈
V K(ω). Notice that for an arbitrary symmetric and positive definite matrix M ∈
R

2×2
sym, we have

1

2
Tr(M)≥

(
det(M)

)1/2
.

Then we infer from (4.6) that (recall that U denotes the square root of the matrix

field A=(aαβ))

1

2
aαβaαβ(ϕ)=

1

2
Tr
(

A−1
(
aαβ(ϕ)

))
=

1

2
Tr
(
U−1U−1

(
aαβ(ϕ)

))

=
1

2
Tr
(
U−1

(
aαβ(ϕ)

)
U−1

)
≥
√

det
(
U−1

(
aαβ(ϕ)

)
U−1

)

=
√

det
(
U−1U−1

(
aαβ(ϕ)

))
=
√

det
(
aασaσβ(ϕ)

)

=

√
a(ϕ)

a
.

Then from the definition of the function W̃M(ϕ), we obtain

W̃M(ϕ)≥4µ(x−1)+
2λµ

λ+2µ
(x2−1)−8µ

λ+µ

λ+2µ
logx

≥4µ

(
x−1− λ

2(λ+2µ)
− 2(λ+µ)

λ+2µ
logx

)
,

where x :=
√

a(ϕ)/a. Then an elementary computation of the infimum of the

function in the right-hand side shows that

W̃M(ϕ)≥C3,
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where C3 is a constant depending only on λ and µ. By a similar argument, there

exists a constant C4 depending only on θ,r0,λ and µ such that

W̃+
T (ϕ)≥C4, W̃−

T (ϕ)≥C4.

Besides, the uniform positive-definiteness of the two-dimensional elasticity

tensor (see the inequality (2.1)) implies that there exist positive constants C5 =
C5(λ,µ,ω),C6 =C6(λ,µ,ω) and C7=C7(λ,µ,ω) such that, for all ϕ∈V K(ω),

WM(ϕ)=
1

4
aαβστ

(
aαβ(ϕ)−aαβ

)(
aστ(ϕ)−aστ

)

≥C5∑
α,β

|aαβ(ϕ)−aαβ|2

≥C6∑
α

|aαα(ϕ)|2−C7,

WF(ϕ)= aαβστ
(
bαβ(ϕ)−bαβ

)(
bστ(ϕ)−bστ

)

≥C5∑
α,β

|bαβ(ϕ)−bαβ|2≥0,

WT(ϕ)=
1

4
aαβστ

(
cαβ(ϕ)−cαβ

)(
cστ(ϕ)−cστ

)

≥C6∑
α,β

|cαβ(ϕ)|2−C7.

Combining the above inequalities with Poincaré’s inequality in the domain ω

(which is bounded with Lipschitz continuous boundary by assumption, cf. Sec-

tion 2) and using that ϕ and a3(ϕ) both belong to W1,4(ω;R3), one deduces that

the functional J̃K :V K(ω)→R∪{+∞} is well-defined as an extended real number

in R∪{+∞}, that J̃K(ϕ) is bounded from below, and that J̃K is coercive in the

following sense: If a sequence (ϕn)
∞
n=1⊆V K(ω) satisfies

sup
n

J̃K(ϕn)<∞,

then the sequences (ϕn) and a3(ϕn), n≥1, are both bounded in W1,4(ω;R3).

Step 2. Let (ϕn)
∞
n=1 ⊆V K(ω) denote an infimizing sequence of the functional J̃K

over the set VK(ω). Since VK(ω) contains at least one element, namely θ, we have

inf
ϕ∈VK(ω)

J̃K(ϕ)≤ J̃K(θ)<∞.
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Then the coerciveness of J̃K implies that the sequences (ϕn) and (a3(ϕn)),n≥1,

are both bounded in W1,4(ω;R3). This space being reflexive, there exists a subse-

quence, still denoted (ϕn)
∞
n=1⊆V K(ω) for conciseness, such that

ϕn ⇀ ψ in W1,4(ω;R3),

∂1ϕn∧∂2ϕn ⇀ ξ in L2(ω;R3),

a3(ϕn) ⇀ ζ in W1,4(ω;R3),

(4.10)

where

ψ∈W1,4(ω;R3) with ψ|γ0 =θ|γ0 ,

ξ∈L2(ω;R3),

ζ∈W1,4(ω;R3) with ζ|γ0 =a3|γ0 .

(4.11)

Moreover, since

∂1ϕn∧∂2ϕn=
1

2
[∂1(ϕn∧∂2ϕn)+∂2(∂1ϕn∧ϕn)]

⇀
1

2
[∂1(ψ∧∂2ψ)+∂2(∂1ψ∧ψ)]=∂1ψ∧∂2ψ in D′(ω,R3),

we have

ξ=∂1ψ∧∂2ψ,

which implies

∂1ϕn∧∂2ϕn ⇀ ∂1ψ∧∂2ψ in L2(ω;R3). (4.12)

By a similar argument, we deduce that

∂1a3(ϕn)∧∂2a3(ϕn) ⇀ ∂1ζ∧∂2ζ in L2(ω;R3), (4.13)

∂1

(
ϕn+a3(ϕn)

)
∧∂2

(
ϕn+a3(ϕn)

)
⇀ ∂1(ψ+ζ)∧∂2(ψ+ζ) in L2(ω;R3), (4.14)

Notice that r∈C0(ω). By combining (4.12)-(4.14), one deduce that

(
∂1ϕn+r∂1a3(ϕn)

)
∧
(
∂2ϕn+r∂2a3(ϕn)

)
⇀ (∂1ψ+r∂1ζ)∧(∂2ψ+r∂2ζ),(

∂1ϕn−r∂1a3(ϕn)
)
∧
(
∂2ϕn−r∂2a3(ϕn)

)
⇀ (∂1ψ−r∂1ζ)∧(∂2ψ−r∂2ζ)

in L2(ω;R3).
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Step 3. Next, we decompose W̃K(ϕ) into a sum of six particular functions, as

follows. From the definition of WM(ϕ) and W̃M(ϕ), we have

δWM(ϕ)+(1−δ)W̃M(ϕ)

=δ

[
λµ

λ+2µ

(
aαβaαβ(ϕ)

)2
+µaασaβτaαβ(ϕ)aστ(ϕ)

]

+aαβaαβ(ϕ)

[
(1−δ)2µ−δ

(
4λµ

λ+2µ
+2µ

)]

+(1−δ)
4µ

λ+2µ

[
λ

2

a(ϕ)

a
−(λ+µ)log

(
a(ϕ)

a

)]

+δ

(
4λµ

λ+2µ
+2µ

)
−(1−δ)

(
4µ+

2λµ

λ+2µ

)
.

Note that the coefficient of aαβaαβ(ϕ) is positive thanks to the assumption that

δ< (λ+2µ)/(4(λ+µ)). Also notice that

aαβaαβ =2, aασaαβaβτ = aστ .

Consequently,

W̃K(ϕ)=A1(ϕ)+A2(ϕ)+A3(ϕ)+A4(ϕ)+A5(ϕ)+A6(ϕ)+A7, (4.15)

where the functions in the right-hand side are defined as follows.

The function A1(ϕ) : ω→R∪{+∞} is defined by

A1(ϕ) :=
ε

2
(1−δ)

4µ

λ+2µ

[
λ

2

a(ϕ)

a
−(λ+µ)log

(
a(ϕ)

a

)]

− ε5

10
C2(4H2−2K)

(λ+µ)g+

r2a
log

(
g+(ϕ)

g+

)

− ε5

10
C2(4H2−2K)

(λ+µ)g−

r2a
log

(
g−(ϕ)

g−

)

at the points of ω, where g+(ϕ)> 0 and g−(ϕ)> 0, and by A1(ϕ) :=+∞ at the

points of ω where g+(ϕ)=0 or g−(ϕ)=0.

The function A2(ϕ) : ω→R is defined by

A2(ϕ) :=
λµ

λ+2µ

[
ε

2
δ
(
aαβaαβ(ϕ)

)2
+

2ε3

3

(
aαβbαβ(ϕ)

)2
+

ε5

10
C1

(
aαβcαβ(ϕ)

)2
]
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+µ

[
ε

2
δaασaβτaαβ(ϕ)aστ(ϕ)+

2ε3

3
aασaβτbαβ(ϕ)bστ(ϕ)

+
ε5

10
C1aασaβτcαβ(ϕ)cστ(ϕ)

]
.

The function A3(ϕ) : ω→R is defined by

A3(ϕ) :=
ε

2

λµ

λ+2µ

[
l

λ+2µ

4µ(λ+µ)
aαβaαβaστaστ(ϕ)−

8ε2

3
aαβbαβaστbστ(ϕ)

+
ε4

5

(
320

9l

µ(λ+µ)

λ+2µ

)
aαβcαβaστcστ(ϕ)

]
,

where

l :=2µ

(
1−4δ

λ+µ

λ+2µ

)
.

The function A4(ϕ) : ω→R is defined by

A4(ϕ) :=
ε

2
µ

[
l

λ+2µ

2µ(λ+µ)
aασaαβaβτaστ(ϕ)−

8ε2

3
aασbαβaβτbστ(ϕ)

+
ε4

5

(
160

9l

µ(λ+µ)

λ+2µ

)
aασcαβaβτcστ(ϕ)

]
.

The function A5(ϕ) : ω→R is defined by

A5(ϕ) :=
ε5

10

[
2(1−s0)(λ+µ)C2(4H2−2K)aστcστ(ϕ)

−
[

λµ

λ+2µ

(
320

9l

µ(λ+µ)

λ+2µ

)
aαβcαβaστcστ(ϕ)

+µ

(
160

9l

µ(λ+µ)

λ+2µ

)
aασcαβaβτcστ(ϕ)

]

−C1

[
2λµ

λ+2µ
aαβcαβaστcστ(ϕ)+2µaασcαβaβτcστ(ϕ)

]]
.

The function A6(ϕ) : ω→R is defined by

A6(ϕ) :=
ε5

10
(λ+µ)C2(4H2−2K)

×
[

g+

r2a
g

αβ
+ g+αβ(ϕ)+

g−

r2a
g

αβ
− g−αβ(ϕ)−2(1−s0)a

στcστ(ϕ)

]
.
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The function A7 : ω→R is defined by

A7 :=
ε

2

[
δ

(
4λµ

λ+2µ
+2µ

)
−(1−δ)

(
2λµ

λ+2µ
+4µ

)]
+

ε3

3
aαβστbαβbστ

+
ε5

10

[
1

4
C1aαβστcαβcστ−(λ+µ)C2(4H2−2K)

(
2g+

r2a
+

2g−

r2a

)]
.

Step 4. We now prove that each of the following integrals:

∫

ω

Ai(ϕ)
√

ady, i=1,2,.. .,6,

is sequentially weakly lower semi-continuous. First, since

a(ϕ)= |a3(ϕ)·(∂1ϕ∧∂2ϕ)|2 a.e. in ω,

g+(ϕ)=
∣∣a3(ϕ)·

[(
∂1ϕ+r∂1a3(ϕ)

)
∧
(
∂2ϕ+r∂2a3(ϕ)

)]∣∣2 a.e. in ω,

g−(ϕ)=
∣∣a3(ϕ)·

[(
∂1ϕ−r∂1a3(ϕ)

)
∧
(
∂2ϕ−r∂2a3(ϕ)

)]∣∣2 a.e. in ω,

the function A1(ϕ) satisfies

A1(ϕ)
√

a=
ε

2
W∗

1

(
·,a3(ϕ)·(∂1ϕ∧∂2ϕ)

)

+
ε5

10
W2,a

(
·,a3(ϕ)·

(
∂1a3(ϕ)∧∂2a3(ϕ)

))

+
ε5

10
W2,b

(
·,a3(ϕ)·

(
∂1a3(ϕ)∧∂2a3(ϕ)

))
,

where W∗
1 denotes the function W1 defined in Lemma 4.1(a) with

g :=(1−δ)
√

a, h := a,

and W2,a, respectively W2,b, denotes the function W2 in Lemma 4.1(b) with

g :=C2(4H2−2K)
g+

r2a

√
a, h := g+ ,

respectively with

g :=C2(4H2−2K)
g−

r2a

√
a, h := g− .



T. H. Giang / Commun. Math. Anal. Appl., x (2024), pp. 1-31 23

Since the sequences (a3(ϕn)·(∂1ϕn∧∂2ϕn)), (t
+
n ), (t−n ), where

t+n :=a3(ϕn)·
[(

∂1ϕn+r∂1a3(ϕn)
)
∧
(
∂2ϕn+r∂2a3(ϕn)

)]
,

t−n :=a3(ϕn)·
[(

∂1ϕn−r∂1a3(ϕn)
)
∧
(
∂2ϕn−r∂2a3(ϕn)

)]
,

converge weakly in L2(ω), respectively to the functions
(
ζ ·(∂1ψ∧∂2ψ)

)
,

ζ ·[(∂1ψ+r∂1ζ)∧(∂2ψ+r∂2ζ)],

ζ ·[(∂1ψ−r∂1ζ)∧(∂2ψ−r∂2ζ)]

thanks to the convergences established in Step 2 above combined with the com-

pact embedding of W1,4(ω) into L∞(ω) (remember that ω is a bounded Lipschitz

domain in R
2), Lemma 4.1 implies that

∫

ω

[
ε

2
W∗

1

(
·,ζ ·(∂1ψ∧∂2ψ)

)
+

ε5

10
W2,a

(
·,ζ ·[(∂1ψ+r∂1ζ)∧(∂2ψ+r∂2ζ)]

)

+
ε5

10
W2,b

(
·,ζ ·[(∂1ψ−r∂1ζ)∧(∂2ψ−r∂2ζ)]

)]
dy

≤ ε

2
liminf

n→∞

∫

ω

W∗
1

(
·,a3(ϕn)·(∂1ϕn∧∂2ϕn)

)
dy

+
ε5

10
liminf

n→∞

∫

ω

W2,a

(
·,t+n

)
dy+

ε5

10
liminf

n→∞

∫

ω

W2,b(·,t−n )dy

= liminf
n→∞

∫

ω

A1(ϕn)
√

ady. (4.16)

Second, let F :=(∇ϕ)U−1 and N :=∇(a3(ϕ))U
−1, where U is defined in (4.6).

Then a series of straightforward calculations show that, for every immersion ϕ∈
W1,4(ω;R3) such that a3(ϕ)∈W1,4(ω;R3), the following relations hold a.e. in ω:

aαβaαβ(ϕ)= |F |2,

aαβbαβ(ϕ)=−F : N ,

aαβcαβ(ϕ)= |N |2,

aασaβτaαβ(ϕ)aστ(ϕ)= |FFT|2,

aασaβτbαβ(ϕ)bστ(ϕ)=[FFT] : [N NT],

aασaβτcαβ(ϕ)cστ(ϕ)= |N NT|2,

(4.17)
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where the notation “:” means the inner product between two matrices of the same

type.

Using these relations in the definition of A2(ϕ) implies that

A2(ϕ)=
ε

2
W3(F ,N),

where the function W3 is that defined in the statement of Lemma 4.2 with the

constant C replaced by the constant C1 appearing in the statement of Theorem 4.1.

Therefore, since the convergences (4.10) imply that

Fn :=(∇ϕn)U
−1

⇀ (∇ψ)U−1 in L4(ω,R3×2),

Nn :=∇(a3(ϕn))U
−1

⇀ (∇ζ)U−1 in L4(ω,R3×2),

we infer from Lemma 4.2 that
∫

ω

W3

(
(∇ψ)U−1,(∇ζ)U−1

)√
ady

≤ liminf
n→∞

∫

ω

W3(Fn,Nn)
√

ady

=
2

ε
liminf

n→∞

∫

ω

A2(ϕn)
√

ady. (4.18)

Third, let F0 := (∇θ)U−1 and N0 := ∇(a3(θ))U
−1. Then, after a series of

straightforward calculations, we deduce that

aαβaαβ = |F0|2, aαβbαβ=−F0 : N0, aαβcαβ= |N0|2 (4.19)

for every y∈ω. From this, (4.17) and definition of A3(ϕ), we obtain

A3(ϕ)=
ε

2

λµ

λ+2µ
W4,a(·,F,N),

where the function W4,a is the function W4 defined in the statement of Lemma 4.3

with

A(y)= l
λ+2µ

4(λ+µ)
|F0(y)|2,

B(y)=
8ε2

3

(
F0(y) : N0(y)

)
,

C(y)=
ε4

5

(
320

9l

µ(λ+µ)

λ+2µ
|N0(y)|2

)
.
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It is easy to see that these A(y), B(y) and C(y) satisfy the assumptions of Lem-

ma 4.3. Therefore,

ε

2

λµ

λ+2µ

∫

ω

W4,a

(
·,(∇ψ)U−1,(∇ζ)U−1

)√
ady

≤ ε

2

λµ

λ+2µ
liminf

n→∞

∫

ω

W4,a(·,Fn,Nn)
√

ady

= liminf
n→∞

∫

ω

A3(ϕn)
√

ady. (4.20)

Fourth, a series of straightforward calculations show that, for all immersion

ϕ∈ W1,4(ω;R3) such that a3(ϕ) ∈ W1,4(ω;R3), the following relations hold a.e.

in ω:
aασaβτaαβaστ(ϕ)= |FFT

0 |2,

aασaβτbαβbστ(ϕ)=−(FFT
0 ) : (N NT

0 ),

aασaβτcαβcστ(ϕ)= |N NT
0 |2.

(4.21)

This implies that

A4(ϕ)=
ε

2
µW4,b

(
·,FFT

0 ,NNT
0

)
,

where the function W4,b coincides with the function W4 defined in the statement

of Lemma 4.3 with

A(y)= l
λ+2µ

4(λ+µ)
, B(y)=

8ε2

3
, C(y)=

ε4

5

(
1600

9l

µ(λ+µ)

λ+2µ

)
.

Again, it is easy to see that these A(y), B(y) and C(y) satisfy the assumptions of

Lemma 4.3. Therefore, since the convergences (4.10) imply that

FnFT
0 :=(∇ϕn)U

−1FT
0 ⇀ (∇ψ)U−1FT

0 in L4(ω,R3×3),

NnNT
0 :=∇

(
a3(ϕn)

)
U−1NT

0 ⇀ (∇ζ)U−1NT
0 in L4(ω,R3×3),

we infer from Lemma 4.3 that
ε

2
µ
∫

ω

W4,b

(
·,(∇ψ)U−1FT

0 ,(∇ζ)U−1NT
0

)√
ady

≤ ε

2
µliminf

n→∞

∫

ω

W4,b

(
·,FnFT

0 ,NnNT
0

)√
ady

= liminf
n→∞

∫

ω

A4(ϕn)
√

ady. (4.22)
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Fifthly, using in particular that

aαβcαβ=4H2−2K,

we deduce from (4.17), (4.19) and (4.21) that

A5(ϕ) :=
ε5

10

[(
2(1−s0)(λ+µ)C2−

λµ

λ+2µ

(
320

9l

µ(λ+µ)

λ+2µ

)
−C1

2λµ

λ+2µ

)
|N0|2|N|2

−
(

µ

(
160

9l

µ(λ+µ)

λ+2µ

)
+2µC1

)∣∣NNT
0

∣∣2
]

.

Thus,

A5(ϕ)=
ε5

10
W5,a(·,N),

where W5,a is the function W5 defined in Lemma 4.4 with N replaced by N0,

A=2(1−s0)(λ+µ)C2−
λµ

λ+2µ

(
320

9l

µ(λ+µ)

λ+2µ

)
−C1

2λµ

λ+2µ
,

B=µ

(
160

9l

µ(λ+µ)

λ+2µ

)
+2µC1.

From the assumptions on C1 and C2, we deduce that A and B defined above

satisfy A≥B≥0 and thus by Lemma 4.4 we have

ε5

10

∫

ω

W5,a

(
·,(∇ζ)U−1

)√
ady

≤ ε5

10
liminf

n→∞

∫

ω

W5,a(·,Nn)
√

ady

= liminf
n→∞

∫

ω

A5(ϕn)
√

ady. (4.23)

Finally, let S3 : ω→R
2×2 be the matrix field defined by

S3(y) :=
(

aαβ(y)+r2(y)cαβ(y)
)
, ∀y∈ω,

and S3(ϕ) : ω→R
2×2 the matrix field defined by

S3(ϕ) :=
(

aαβ(ϕ)+r2cαβ(ϕ)
)
.
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Introducing the matrix

J :=

(
0 −1

1 0

)
,

we note that

g+
(

g
αβ
+

)
= J
(

g+αβ

)
JT, g−

(
g

αβ
−
)
= J
(

g−αβ

)
JT, a(aαβ)= J(aαβ)JT.

Then

A6(ϕ) :=
ε5

10
(λ+µ)C2(4H2−2K)

×
[

1

r2a
Tr
(

JS1JT
(

g+αβ(ϕ)
))
+

1

r2a
Tr
(

JS2JT
(

g−αβ(ϕ)
))

+
2(1−s0)

r2a
Tr
(

JS3JTS3(ϕ)
)
−2(1−s0)a

στcστ(ϕ)

]
, (4.24)

where S1 and S2 are matrix fields defined in Lemma 4.5. Since these matrix fields

are symmetric and nonnegative definite, so are the matrix fields JS1JT and JS2JT.

Then there exists a unique symmetric and nonnegative definite matrix fields T1 :

ω→R
2×2, T2 : ω→R

2×2 with continuous components such that, for all y∈ω,

JS1(y)JT =T1(y)
2,

JS2(y)JT =T2(y)
2.

By some simple calculations, we also have

Tr
(
S3(y)

)
>0, ∀y∈ω,

det
(
S3(y)

)
>0, ∀y∈ω,

and thus S3(y) is symmetric and positive definite at all points y∈ω. This implies

that JS3(y)JT is symmetric and positive definite, and thus there exists a unique

symmetric and nonnegative definite matrix field T3 : ω→R
2×2 with continuous

components such that, for all y∈ω,

JS3(y)JT =T3(y)
2.

Similarly, there exists a unique symmetric and semi-positive definite matrix field

with continuous components T : ω→R
2×2 such that, for all y∈ω,

J
(
cαβ(y)

)
JT =T(y)2.
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The above equalities and (4.24) yield

A6(ϕ) :=
ε5

10
(λ+µ)C2(4H2−2K)

×
[

1

r2a

∣∣(∇ϕ+r∇a3(ϕ)
)

T1

∣∣2+ 1

r2a

∣∣(∇ϕ−r∇a3

(
ϕ)
)

T2

∣∣2

+
2(1−s0)

r2a
|∇ϕT3|2+

2(1−s0)

a
r2|∇a3(ϕ)T |2

]

=
ε5

10
(λ+µ)C2

[
W5,b

(
·,
(
∇ϕ+r∇a3(ϕ)

)
T1

)
+W5,b

(
·,
(
∇ϕ−r∇a3(ϕ)

)
T2

)

+W5,c

(
·,(∇ϕ)T3

)
+W5,d

(
·,
(
∇a3(ϕ)

)
T
)]

,

where W5,b is the function W5 defined in Lemma 4.4 with

N(y)=
1√
2

I2, A(y)=
4H2(y)−2K(y)

r2(y)a(y)
, B(y)=0,

I2 denotes the identity matrix in R
2×2, W5,c is the function W5 defined in Lemma

4.4 with

N(y)=
1√
2

I2, A(y)=
2(1−s0)

(
4H2(y)−2K(y)

)

r2(y)a(y)
, B(y)=0,

and W5,d is the function W5 defined in Lemma 4.4 with

N(y)=
1√
2

I2, A(y)=
2(1−s0)

(
4H2(y)−2K(y)

)

a(y)
, B(y)=0.

It follows from Lemma 4.4 and (4.10) that

ε5

10
(λ+µ)C2

∫

ω

[
W5,b

(
·,(∇ψ+r∇ζ)T1

)
+W5,b

(
·,(∇ψ−r∇ζ)T2

)

+W5,c

(
·,(∇ψ)T3

)
+W5,d

(
·,(∇ζ)T

)]
dy

≤ ε5

10
(λ+µ)C2

∫

ω

[
W5,b

(
·,
(
∇ϕn+r∇a3(ϕn)

)
T1

)

+W5,b

(
·,
(
∇ϕn−r∇a3(ϕn)

)
T2

)
+W5,c

(
·,(∇ϕ)T3

)

+W5,d

(
·,(∇a3(ϕn)T

)]
dy

= liminf
n→∞

∫

ω

A6(ϕn)
√

ady. (4.25)



T. H. Giang / Commun. Math. Anal. Appl., x (2024), pp. 1-31 29

Step 5. Adding inequalities (4.16), (4.18), (4.20), (4.22), (4.23) and (4.25) shows

that
∫

ω

[
ε

2
W∗

1

(
·,ζ ·(∂1ψ∧∂2ψ)

)
+

ε5

10
W2,a

(
·,ζ ·
[
(∂1ψ+r∂1ζ)∧(∂2ψ+r∂2ζ)

])

+
ε5

10
W2,b

(
·,ζ ·
[
(∂1ψ−r∂1ζ)∧(∂2ψ−r∂2ζ)

])]
dy

+
ε

2

∫

ω

W3

(
(∇ψ)U−1,(∇ζ)U−1

)√
ady

+
ε

2

λµ

λ+2µ

∫

ω

W4,a

(
·,(∇ψ)U−1,(∇ζ)U−1

)√
ady

+
ε

2
µ
∫

ω

W4,b

(
·,(∇ψ)U−1FT

0 ,(∇ζ)U−1NT
0

)√
ady

+
ε5

10

∫

ω

W5,a

(
·,(∇ζ)U−1

)√
ady

+
ε5

10
(λ+µ)C2

∫

ω

[
W5,b

(
·,(∇ψ+r∇ζ)T1

)
+W5,b

(
·,(∇ψ−r∇ζ)T2

)

+W5,c

(
·,(∇ψ)T3

)
+W5,d

(
·,(∇ζ)T

)]
dy

≤ liminf
n→∞

∫

ω

[
6

∑
i=1

Ai(ϕn)+A7

]
√

ady

= liminf
n→∞

∫

ω

W̃K(ϕn)
√

ady= liminf
n→∞

J̃K(ϕn)+LK(ψ). (4.26)

Since liminf
n→∞

J̃K(ϕn)<∞, we deduce in particular that

W∗
1

(
·,ζ ·(∂1ψ∧∂2ψ)

)
<∞ a.e. in ω,

so that by Lemma 4.1,

ζ ·(∂1ψ∧∂2ψ)>0 a.e. in ω.

A similar argument shows that

ζ ·
(
(∂1ψ+r∂1ζ)∧(∂2ψ+r∂2ζ)

)
>0 a.e. in ω, (4.27)

ζ ·
(
(∂1ψ−r∂1ζ)∧(∂2ψ−r∂2ζ)

)
>0 a.e. in ω. (4.28)
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Since |a3(ϕn)|=1 and a3(ϕn)·∂αϕn =0 a.e. in ω, the convergences established in

Step 3 of the proof imply that

|ζ|=1, ζ ·∂αψ=0 a.e. in ω.

The last two relations show that ζ is a unit normal vector field to the surface

ψ(ω). Since we also proved that

ζ ·(∂1ψ∧∂2ψ)>0 a.e. in ω,

we have

ζ=a3(ψ) a.e. in ω. (4.29)

Consequently, inequality (4.26) can be recast as

∫

ω

[
6

∑
i=1

Ai(ψ)+A7

]
√

ady≤ liminf
n→∞

J̃K(ϕn)+LK(ψ),

or equivalently, as

J̃K(ψ)≤ liminf
n→∞

J̃K(ϕn).

Since relations (4.11), (4.27)-(4.29) imply that

ψ∈V K(ω),

we have proved that the function ψ minimizes the functional J̃K over V K(ω). The

proof is complete.
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