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Abstract

We design and analyze an iterative two-grid algorithm for the finite element discretiza-

tions of strongly nonlinear elliptic boundary value problems in this paper. We propose

an iterative two-grid algorithm, in which a nonlinear problem is first solved on the coarse

space, and then a symmetric positive definite problem is solved on the fine space. The

main contribution in this paper is to establish a first convergence analysis, which requires

dealing with four coupled error estimates, for the iterative two-grid methods. We also

present some numerical experiments to confirm the efficiency of the proposed algorithm.
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1. Introduction

Two-grid methods are first proposed for nonselfadjoint problems and indefinite elliptic prob-

lems [6, 10]. Then, two-grid methods are extended to solve semilinear elliptic problems [7],

quasi-linear and nonlinear elliptic problems [8,9], respectively. Especially, for nonlinear elliptic

problems, the basic idea of two-grid methods is to first obtain a rough solution by solving the

original problem in a coarse mesh with mesh size H , and then correct the rough solution by

solving a symmetric positive definite (SPD) system in a fine mesh with mesh size h. Noticing

the coarse mesh could be extremely coarse in contrast to the fine mesh, it is not difficult to

solve an original problem in coarse mesh. Therefore, two-grid methods reduce the computa-

tional complexity of solving the original problem to solving a SPD problem and dramatically

improve the computational speed. Recently, Bi et al. [1] presented a two-grid algorithm to

solve the strongly nonlinear elliptic problems and provided a posteriori error estimator for the

two-grid methods. It is noted that the literature mentioned above is all about non-iterative

two-grid methods.

As is well-known, the mesh size H of coarse mesh and h of fine mesh should satisfy a certain

relationship for the optimal convergence order in non-iterative two-grid methods. The iterative

two-grid methods have the advantage over the non-iterative two-grid methods in that, the

distance between the mesh sizes H and h can be enlarged by increasing the iteration counts

with the same accuracy. However, there is only a small amount of literature on iterative
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two-grid methods of conforming finite element discretization for elliptic problems. Xu [9] first

proposed and analyzed an iterative two-grid method for non-symmetric positive definite elliptic

problems. Zhang et al. [11] designed some iterative two-grid algorithms for semilinear elliptic

problems and provided the corresponding convergence analysis. To our knowledge, there is

not any published literature on the iterative two-grid algorithm of conforming finite element

discretization for strongly nonlinear elliptic boundary value problems.

In this paper, an iterative two-grid algorithm for solving strongly nonlinear elliptic problems

is studied. The discrete system of strongly nonlinear elliptic problems is presented at first. And

then, an iterative two-grid algorithm is proposed for the discrete system, which is obtained by

applying a non-iterative two-grid algorithm of [8] in a successive fashion. Finally, a challenging

convergence analysis of the proposed algorithm is provided. Despite the fact that our algorithm

is simply obtained by [8], the convergence analysis of the non-iterative two-grid algorithm could

not be directly applied to the iterative two-grid algorithm. Here we complete this challenging

convergence analysis by mathematical induction which can also be used in solving semilinear

elliptic problems by iterative two-grid algorithms in [11]. However, we must emphasize that the

convergence analysis of our algorithm is significantly different from the one of [11]. Compared

with the current work [11], our convergence analysis is far more difficult and complex, and

specific challenges could be reflected in:

(1) the higher order derivative component of our model problem is still nonlinear,

(2) the coupled error estimates cause formidable obstacles for the convergence analysis (see the

proof of Lemma 4.5).

To avoid the repeated use of generic but unspecified constants, x.y is used to denote x≤Cy,

where C are some positive constants which do not depend on the mesh size. Furthermore

the constants C may denote different values under different circumstances. For some specific

constants, we use the constant C with some subscript to denote.

The rest of the paper is organized as follows. In Section 2, the discrete scheme of strongly

nonlinear elliptic problems, as well as the corresponding well-posedness and a priori error es-

timates, are introduced. In Section 3, an iterative two-grid algorithms is proposed. And then

some preliminaries and the convergence analysis of the proposed algorithms are provided in

Section 4. Finally, some numerical experiments are presented to verify the efficiency of the

proposed algorithm in Section 5.

2. Model Problems and Discrete Systems

In this section, we present the continuous and discrete variational problems of strongly

nonlinear elliptic problems, and provide the corresponding well-posedness and a priori error

estimates.

Given a bounded convex polygonal domain Ω ⊂ R
2 with the boundary ∂Ω. We denote

Wm,p(Ω) as the standard Sobolev space with norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω, where the

integersm ≥ 0 and p ≥ 1. For convenience, we also denoteHm(Ω) = Wm,2(Ω), ‖·‖m = ‖·‖m,2,Ω

and H1
0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0}.

We consider the following strongly nonlinear elliptic problem:

{

−∇ · a(x, u,∇u) + f(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω,
(2.1)
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where a(x, y, z) : Ω̄ × R × R
2 → R

2 and f(x, y, z) : Ω̄ × R× R
2 → R. When a(x, u,∇u) and

f(x, u,∇u) take different functions, different problems are available, such as mean curvature

flow, Bratu’s problem, and so on (see [3]).

We assume that a(x, y, z) and f(x, y, z) are second order continuous differentiable functions.

For simplicity, we denote that

ay(w) = Dya(x, w,∇w), az(w) = Dza(x, w,∇w),

fy(w) = Dyf(x, w,∇w), fz(w) = Dzf(x, w,∇w),

and similar notations are applied to the second order derivatives of a(x, y, z) and f(x, y, z).

Remark 2.1. Since a(x, y, z) and f(x, y, z) are second order continuous differentiable func-

tions, there exists a positive constant C̃ as upper bound with respect to all the first and second

order derivatives of a(· , · , ·) and f(· , · , ·).

We denote

A(v, ϕ) =
(

a(x, v,∇v),∇ϕ
)

+
(

f(x, v,∇v), ϕ
)

, ∀ v, ϕ ∈ H1
0 (Ω). (2.2)

By Green formula, it is easy to see that the solution u ∈ H1
0 (Ω) of (2.1) satisfies

A(u, v) = 0, ∀ v ∈ H1
0 (Ω). (2.3)

The Fréchet derivative L′ of (2.1) at w is given by

L′(w)v = −∇ ·
(

ay(w)v + az(w)∇v
)

+ fy(w)v + fz(w)∇v.

In the following, we give some of our basic assumptions (similar assumptions also could be

found in [3,9]). Firstly, the problem (2.3) has a solution u ∈ H1
0 (Ω)∩H

r+1(Ω)∩W 2,2+ε(Ω) (ε > 0

and integer r ≥ 1). Secondly, for the solution u of (2.3), there exists a positive constant α0

such that

ξTaz(u)ξ ≥ α0|ξ|
2, ∀ξ ∈ R

2, x ∈ Ω̄. (2.4)

Finally, L′(u) : H1
0 (Ω) → H−1(Ω) is an isomorphism. These assumptions guarantee that u is

an isolated solution of (2.3).

Let Th be a conforming quasi-uniform triangulation on Ω, where the mesh size h denotes

the maximum of the circumscribed circle diameters of element K ∈ Th. By this, any element

K ∈ Th is contained in (contains) a circle of radius Ĉ1h (respectively, Ĉ2h), where the constant

Ĉ1 and Ĉ2 do not depend on mesh size h, and there is no hanging node on Th. The finite

element space Vh on Th is defined as

Vh =
{

vh ∈ H1
0 (Ω) : vh|K ∈ Pr(K), ∀K ∈ Th

}

,

where Pr(K) is the set of polynomials of degree at most integer r on K.

Here is the discrete system of (2.3): Find uh ∈ Vh such that

A(uh, vh) = 0, ∀ vh ∈ Vh. (2.5)

The following lemma presents the well-posedness of the variational problem (2.5) and a priori

error estimates, which can be found in [9, Lemma 3.2 and Theorem 3.4], respectively.

Lemma 2.1. Assume u is the solution of problem (2.3), then when h is small enough, the

discrete variational problem (2.5) exists a unique solution uh ∈ Vh, and the following priori

error estimates hold:

‖u− uh‖1,p . hr if u ∈ W r+1,p(Ω), 2 ≤ p ≤ ∞. (2.6)
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3. Iterative Two-grid Algorithms

In this section, we present an iterative two-grid algorithm for the variational problems (2.3).

Let Th and TH be two quasi-uniform, conforming and nested mesh in Ω. Furthermore, the mesh

size h of Th and H of TH satisfy that, for some 0 < λ < 1,

H = O(hλ), h < H < 1.

To present the iterative two-grid algorithm, we introduce the form B(w; v, χ) (induced by L′)

by for a fixed w and any v, χ ∈ H1
0 (Ω),

B(w; v, χ) =
(

ay(w)v,∇χ
)

+
(

az(w)∇v,∇χ
)

+
(

fy(w)v, χ
)

+
(

fz(w)∇v, χ
)

. (3.1)

Remark 3.1. The form B(w; · , ·) is a bilinear form with fixed w.

To our knowledge, the two-grid algorithms of strongly nonlinear problems are firstly pro-

posed in [8]. Here one of two-grid algorithms from [8, Algorithm 3.3] is given.

Algorithm 3.1: Two-grid Algorithm ([8, Algorithm 3.3]).

1 Find uH ∈ VH such that A(uH , vH) = 0, ∀ vH ∈ VH .

2 Find uh ∈ Vh such that B(uH ;uh, vh) = B(uH ;uH , vh)−A(uH , vh), ∀ vh ∈ Vh.

Remark 3.2. In Algorithm 3.1, we first solve a nonlinear problem in a coarse space VH . How-

ever, because dim(VH) is relatively small, the calculated amount of solving a nonlinear problem

in VH is not excessive. As for the second step of Algorithm 3.1, noticing that B(uH ; · , ·) is

a bilinear form with given uH , we simply need to solve a linear problem in Vh, for which there

are numerous concerning fast algorithms.

Xu [8] had showed that the solution uh of Algorithm 3.1 could be a good approximation

with respect to finite element solution uh at a low cost, namely,
∥

∥uh − uh
∥

∥

1
. H2. (3.2)

Using triangle inequality, (2.6) with r = 1 and (3.2), we obtain the error estimate of Algo-

rithm 3.1

‖u− uh‖1 ≤ ‖u− uh‖1 + ‖uh − uh‖1 . h+H2. (3.3)

Next, putting Algorithm 3.1 into a successive fashion, we obtain our iterative two-grid

algorithm.

Algorithm 3.2: Iterative Two-grid Algorithm.

Let u0
h = uH be the solution of (2.5) in VH . Assume that uk

h ∈ Vh has been obtained,

then uk+1
h ∈ Vh can be obtained by the following two steps.

Step 1. Find ekH ∈ VH such that, for any vH ∈ VH ,

A
(

uk
h + ekH , vH

)

= 0. (3.4)

Step 2. Find uk+1
h ∈ Vh such that, for any vh ∈ Vh,

B
(

uk
h + ekH ;uk+1

h , vh
)

= B
(

uk
h + ekH ;uk

h + ekH , vh
)

−A
(

uk
h + ekH , vh

)

. (3.5)
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Remark 3.3. Noticing the uniqueness of finite element solution (see Lemma 2.1), (2.5), u0
h=uH

and (3.4) with k = 0, we can see that e0H = 0, which means u0
h + e0H = uH . By observing

the Step 2 of Algorithm 3.2 and the second step of Algorithm 3.1, the conclusion is that

Algorithm 3.2 is same with Algorithm 3.1 when k = 0.

In comparison to [8], our method is still valid for high order conforming finite elements,

whereas [8] only considered piecewise linear finite element space. Here gives the error estimate

of our algorithm (see Theorem 4.1),

∥

∥u− uk
h

∥

∥

1
. hr +Hr+k. (3.6)

Specially, if we choose finite element space Vh as piecewise linear finite element space, i.e. r = 1,

the error estimate (3.6) of Algorithm 3.2 could be written as

∥

∥u− uk
h

∥

∥

1
. h+H1+k.

To achieve the optimal convergence order, the relationship h = H2 should be satisfied in

Algorithm 3.1 (see (3.3)). But in Algorithm 3.2, we could expand the distance between the

mesh size H and h by increasing the iteration counts k.

4. Convergence Analysis

In this section, we provide the corresponding convergence analysis of Algorithm 3.2. To this

end, we need to introduce some preliminaries based on form B(w; v, χ) at first.

4.1. Some preliminaries based on form B(w; v, χ)

In this subsection, we present some properties of form B(w; v, χ) and introduce two discrete

Green function. Firstly, with fixed w, by Remark 2.1 and the Cauchy-Schwarz inequality, it is

easy to obtain that the form B(w; · , ·) is continuous, i.e.

B(w; v, χ) . ‖v‖1‖χ‖1, ∀ v, χ ∈ H1
0 (Ω). (4.1)

Secondly, we present a lemma which provides the Babuška-Brezzi (BB) conditions of form

B(· ; · , ·) in Vh. And this lemma can be proved using similar arguments in [9, Lemma 2.2].

Lemma 4.1. Assume u is the solution of problem (2.3), then when h is small enough, we have,

for any wh ∈ Vh,

‖wh‖1 . sup
vh∈Vh

B(u;wh, vh)

‖vh‖1
, ‖wh‖1 . sup

vh∈Vh

B(u; vh, wh)

‖vh‖1
. (4.2)

Proof. For the solution u of (2.3), a projection operator Ph : H1
0 (Ω) → Vh is defined by

(

az(u)∇Phv,∇χh

)

=
(

az(u)∇v,∇χh

)

, ∀ v ∈ H1
0 (Ω), χh ∈ Vh. (4.3)

By (2.4), we can know that the projection operator Ph is well-defined. Taking v=vh∈Vh⊂H1
0 (Ω)

and χh = Phvh−vh, and using (2.4), we could prove that the projection operator Ph is identity

operator for space Vh. Substituting χh = Phv into (4.3), and using (2.4), Poincaré inequality,

Remark 2.1 and the Cauchy-Schwarz inequality, it holds that

‖Phv‖1 . ‖v‖1, ∀ v ∈ H1
0 (Ω). (4.4)
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By using (2.4), duality argument and (4.4), we can obtain (see [2, Theorem 3.2.5])

‖v − Phv‖0 . h‖v‖1, ∀ v ∈ H1
0 (Ω). (4.5)

For any wh ∈ Vh, v ∈ H1
0 (Ω), by (3.1), Green formula, (4.3), Remark 2.1, the Cauchy-Schwarz

inequality and (4.5), we have

B(u;wh, v − Phv) =
(

ay(u)wh,∇(v − Phv)
)

+
(

az(u)∇wh,∇(v − Phv)
)

+
(

fy(u)wh, v − Phv
)

+
(

fz(u)∇wh, v − Phv
)

=
((

∇ · ay(u)
)

wh, v − Phv
)

+
(

ay(u) · ∇wh, v − Phv
)

+
(

fy(u)wh, v − Phv
)

+
(

fz(u)∇wh, v − Phv
)

. ‖wh‖1‖v − Phv‖0

. h‖wh‖1‖v‖1. (4.6)

Noticing that L′(u) : H1
0 (Ω) → H−1(Ω) is an isomorphism, using (4.6) and (4.4), we obtain that

‖wh‖1 . sup
v∈H1

0
(Ω)

B(u;wh, v)

‖v‖1

. sup
v∈H1

0
(Ω)

B(u;wh, v − Phv)

‖v‖1
+ sup

v∈H1

0
Ω

B(u;wh, Phv)

‖v‖1

. h‖wh‖1 + sup
v∈H1

0
(Ω)

B(u;wh, Phv)

‖Phv‖1
.

Taking h sufficiently small in the above inequality with projection operator Ph being identity

operator for Vh, we could obtain the first estimate of (4.2). The proof of the second estimate

of (4.2) is similar. �

Next, we provide another BB condition of form B(· ; · , ·).

Lemma 4.2. Assume u is the solution of (2.3) and Ψ satisfying ‖u−Ψ‖1,∞ . H, then when H

is small enough, for any wh ∈ Vh, it holds that

‖wh‖1 . sup
vh∈Vh

B(Ψ;wh, vh)

‖vh‖1
, ‖wh‖1 . sup

vh∈Vh

B(Ψ; vh, wh)

‖vh‖1
. (4.7)

Proof. Using the definition (3.1) of form B, Taylor expansion

h(y, z) = h(y0, z0) + ∂yh
(

θ̃1, θ̃2
)

(y − y0) + ∂zh
(

θ̃1, θ̃2
)

(z − z0),

where θ̃1 is between y and y0 and θ̃2 is between z and z0, Remark 2.1, and Hölder inequality,

we obtain

B(u;wh, vh)−B(Ψ;wh, vh)

=
((

ay(u)− ay(Ψ)
)

wh,∇vh
)

+
((

az(u)− az(Ψ)
)

∇wh,∇vh
)

+
((

fy(u)− fy(Ψ)
)

wh, vh
)

+
((

fz(u)− fz(Ψ)
)

∇wh, vh
)

=
(

ayy(θ1)(u−Ψ)wh,∇vh
)

+
(

ayz(θ1)∇(u −Ψ)wh,∇vh
)

+
(

azy(θ2)(u−Ψ)∇wh,∇vh
)

+
(

∇(u−Ψ)Tazz(θ2)∇wh,∇vh
)

+
(

fyy(θ3)(u−Ψ)wh, vh
)

+
(

fyz(θ3) · ∇(u−Ψ)wh, vh
)
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+
(

fzy(θ4) · ∇wh(u−Ψ), vh
)

+
(

∇(u−Ψ)T fzz(θ4)∇wh, vh
)

. ‖u−Ψ‖1,∞‖wh‖1‖vh‖1, (4.8)

where θi, i = 1, 2, 3, 4, are between u and Ψ.

By Lemma 4.1, (4.8) and ‖u−Ψ‖1,∞ . H , it is obtained that

‖wh‖1 . sup
vh∈Vh

B(u;wh, vh)−B(Ψ;wh, vh)

‖vh‖1
+ sup

vh∈Vh

B(Ψ;wh, vh)

‖vh‖1

. ‖u−Ψ‖1,∞‖wh‖1 + sup
vh∈Vh

B (Ψ;wh, vh)

‖vh‖1

. H‖wh‖1 + sup
vh∈Vh

B (Ψ;wh, vh)

‖vh‖1
.

Taking H sufficiently small into the above inequality, we can derive the first estimate of (4.7).

The proof of the second estimate of (4.7) is similar. �

Remark 4.1. According to (2.6), Lemma 4.2 still holds with replacing Ψ by the finite element

solution uh of (2.5).

For more concise notations and the subsequent analysis, we denote

Ek = uh − uk
h, (4.9)

uk,1
h = uk

h + ekH , (4.10)

where uh is the solution of problem (2.5), and uk
h and ekH are given by Algorithm 3.2. It is

noted that these notation will be used frequently in the rest of this paper.

Remark 4.2. For k ≥ 0, assume that Ek, u
k,1
h and ekH are given by (4.9), (4.10) and Al-

gorithm 3.2, respectively. If ‖Ek‖1,∞ . H and ‖ekH‖1,∞ . H , Lemma 4.2 still holds with

replacing Ψ by uk,1
h . In fact, using (4.10), (4.9), triangle inequality, (2.6) with r ≥ 1 and

h < H, ‖Ek‖1,∞ . H and ‖ekH‖1,∞ . H , we derive that

∥

∥u− uk,1
h

∥

∥

1,∞
≤ ‖u− uh‖1,∞ + ‖Ek‖1,∞ +

∥

∥ekH
∥

∥

1,∞
. H.

Therefore, Lemma 4.2 still holds with Ψ = uk,1
h .

And then, for the finite element solution uh of (2.5) and any fixed x ∈ Ω, we introduce the

Green functions gxH ∈ VH , which is defined by

B
(

uh; vH , gxH
)

= ∂vH(x), ∀ vH ∈ VH , (4.11)

where ∂ denotes either ∂/∂x1 or ∂/∂x2. It is easy to see that the Green function gxH is well-

defined by Remark 4.1.

Assume uk,1
h is given by (4.10), similarly, for any fixed x ∈ Ω, we introduce the Green

functions gk,xh ∈ Vh by

B
(

uk,1
h ; vh, g

k,x
h

)

= ∂vh(x), ∀ vh ∈ Vh. (4.12)

By Remark 4.2, we also can see that Green function gk,xh is well-defined.
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Here gives some estimates of the above two Green functions gxH and gk,xh (see [4, Lemma 3.3],

or [9, Eqs. (2.10), (2.11)])

∥

∥gxH
∥

∥

1,1
. | logH |,

∥

∥gk,xh

∥

∥

1,1
. | log h|. (4.13)

At last, for any v ∈ H1
0 (Ω) ∩W 1,∞(Ω), using [2, Eq. (3.1.11)], it could be obtained that

‖v‖1,∞ . |v|1,∞. (4.14)

4.2. Error estimate

In this subsection, we present the convergence analysis of Algorithm 3.2 by a series of

lemmas.

Lemma 4.3. Assume uk,1
h , Ek and ekH are given by (4.10), (4.9) and Algorithm 3.2, respectively,

then we have, for any vh ∈ Vh,

B
(

uk,1
h ;Ek+1, vh

)

.
(

‖Ek‖1,∞ +
∥

∥ekH
∥

∥

1,∞

)(

‖Ek‖1 +
∥

∥ekH
∥

∥

1

)

‖vh‖1, (4.15)

B
(

uk,1
h ;Ek+1, vh

)

.
(

‖Ek‖
2
1,∞ +

∥

∥ekH
∥

∥

2

1,∞

)

‖vh‖1,1. (4.16)

Proof. Using (4.9), Remark 3.1, (3.5), (2.5) and (2.2), it is obtained that

B
(

uk,1
h ;Ek+1, vh

)

= B
(

uk,1
h ;uh, vh

)

−B
(

uk,1
h ;uk+1

h , vh
)

= B
(

uk,1
h ;uh, vh

)

−B
(

uk,1
h ;uk

h + ekH , vh
)

+A
(

uk,1
h , vh

)

−A(uh, vh)

= B
(

uk,1
h ;Ek − ekH , vh

)

+
(

a
(

uk,1
h ,∇uk,1

h

)

, vh
)

+
(

f
(

uk,1
h ,∇uk,1

h

)

, vh
)

−
(

a(uh,∇uh), vh
)

−
(

f(uh,∇uh), vh
)

=: A1 −A2 −A3, (4.17)

where

A1 = B
(

uk,1
h ;Ek − ekH , vh

)

,

A2 =
(

a(uh,∇uh), vh
)

−
(

a
(

uk,1
h ,∇uk,1

h

)

, vh
)

,

A3 =
(

f(uh,∇uh), vh
)

−
(

f
(

uk,1
h ,∇uk,1

h

)

, vh
)

.

For A1, using the definition (3.1) of B, we have

A1 =
(

ay

(

uk,1
h

)(

Ek − ekH
)

,∇vh
)

+
(

az

(

uk,1
h

)

∇
(

Ek − ekH
)

,∇vh
)

+
(

fy
(

uk,1
h

)(

Ek − ekH
)

, vh
)

+
(

fz
(

uk,1
h

)

∇
(

Ek − ekH
)

, vh
)

. (4.18)

For A2, using second order Taylor expansion, (4.10) and (4.9), we obtain

A2 =
(

ay

(

uk,1
h

)(

Ek − ekH
)

,∇vh
)

+
(

az

(

uk,1
h

)

∇
(

Ek − ekH
)

,∇vh
)

+
(

ayy(θ5)
(

Ek − ekH
)2
,∇vh

)

+ 2
(

ayz(θ5)∇
(

Ek − ekH
)(

Ek − ekH
)

,∇vh
)

+
(

∇
(

Ek − ekH
)T

azz(θ5)∇
(

Ek − ekH
)

,∇vh
)

, (4.19)

where θ5 is between uh and uk,1
h . Similarly for A3, using second order Taylor expansion, (4.10)

and (4.9), it is obtained that

A3 =
(

fy
(

uk,1
h

)(

Ek − ekH
)

, vh
)

+
(

fz
(

uk,1
h

)

∇
(

Ek − ekH
)

, vh
)
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+
(

fyy(θ6)
(

Ek − ekH
)2
, vh

)

+ 2
(

fyz(θ6) · ∇
(

Ek − ekH
)(

Ek − ekH
)

, vh
)

+
(

∇
(

Ek − ekH
)T

fzz(θ6)∇
(

Ek − ekH
)

, vh
)

, (4.20)

where θ6 is between uh and uk,1
h .

Noticing the sum of the first order derivative items about a(· , · , ·) and f(· , · , ·) in (4.19)

and (4.20) exactly equal A1. Substituting (4.18)-(4.20) into (4.17), it is obtained that

B(uk,1
h ;Ek+1, vh) = −

(

ayy(θ5)
(

Ek − ekH
)2
,∇vh

)

− 2
(

ayz(θ5)∇
(

Ek − ekH
)(

Ek − ekH
)

,∇vh
)

−
(

∇
(

Ek − ekH
)T

azz(θ5)∇
(

Ek − ekH
)

,∇vh
)

−
(

fyy(θ6)
(

Ek − ekH
)2
, vh

)

− 2
(

fyz(θ6) · ∇
(

Ek − ekH
)(

Ek − ekH
)

, vh
)

−
(

∇
(

Ek − ekH
)T

fzz(θ6)∇
(

Ek − ekH
)

, vh
)

. (4.21)

Applying Remark 2.1, Hölder inequality and triangle inequality into (4.21), we could obtain

B
(

uk,1
h ;Ek+1, vh

)

.
∥

∥Ek − ekH
∥

∥

1,∞

∥

∥Ek − ekH
∥

∥

1
‖vh‖1

≤
(

‖Ek‖1,∞ +
∥

∥ekH
∥

∥

1,∞

)(

‖Ek‖1 +
∥

∥ekH
∥

∥

1

)

‖vh‖1,

which completes the proof of (4.15). Similarly, we could obtain (4.16) by (4.21). �

Lemma 4.4. Assume that uk,1
h , ekH and Ek are defined by (4.10), Algorithm 3.2 and (4.9),

respectively, then we have

B
(

uk,1
h ; ekH , vH

)

. (‖Ek‖1 + ‖Ek+1‖1)‖vH‖1, ∀ vH ∈ VH . (4.22)

Proof. Taking vh = vH into (3.5) and using (3.4), we obtain

B
(

uk,1
h ;uk+1

h , vH
)

= B
(

uk,1
h ;uk

h + ekH , vH
)

.

Rewriting the above equation with Remark 3.1, and then using (4.9), (4.1) and triangle in-

equality, we have

B
(

uk,1
h ; ekH , vH

)

= B
(

uk,1
h ;uk+1

h − uk
h, vH

)

= B
(

uk,1
h ;uk+1

h − uh + uh − uk
h, vH

)

= B
(

uk,1
h ;Ek − Ek+1, vH

)

. ‖Ek − Ek+1‖1‖vH‖1

≤ (‖Ek‖1 + ‖Ek+1‖1)‖vH‖1,

which completes the proof. �

Lemma 4.5. Assume that Ek and ekH are given by (4.9) and Algorithm 3.2, respectively, and

r ≥ 1, when h is small enough, then for any integer k ≥ 1,

‖Ek‖1 . Hr+k, ‖Ek‖1,∞ . | log h|H2,
∥

∥ekH
∥

∥

1,∞
. H,

∥

∥ekH
∥

∥

1
. Hr+k. (4.23)

Proof. Here we use mathematical induction to prove that (4.23) is true.
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By (3.4), u0
h = uH , (2.5) and the uniqueness of finite element solution (see Lemma 2.1), it

could be seen that e0H = 0. Making use of triangle inequality, (2.6) and h ≤ H , we have

‖E0‖1 ≤ ‖u− uh‖1 + ‖u− uH‖1 . hr +Hr ≤ Hr, (4.24)

‖E0‖1,∞ ≤ ‖u− uh‖1,∞ + ‖u− uH‖1,∞ . hr +Hr ≤ Hr. (4.25)

Next, we will prove (4.23) is true when k = 1.

(i) For ‖E1‖1 . Hr+1. Noticing that r≥1 and e0H=0, and using (4.25), we have ‖E0‖1,∞ . H

and ‖e0H‖1,∞ . H , which could derive the BB condition of form B(u0,1
h ; · , ·) (see Remark 4.2).

Using the BB condition of form B(u0,1
h ; · , ·), (4.15), (4.25), ekH = 0, (4.24), r ≥ 1 and H < 1, it

is obtained that

‖E1‖1 . sup
vh∈Vh

B
(

u0,1
h ;E1, vh

)

‖vh‖1

.
(

‖E0‖1,∞ +
∥

∥e0H
∥

∥

1,∞

)(

‖E0‖1 +
∥

∥e0H
∥

∥

1

)

. (Hr + 0)(Hr + 0)

. Hr+1. (4.26)

(ii) For ‖E1‖1,∞ . | log h|H2. Remark 3.3 shows that Algorithm 3.2 is identical to Algo-

rithm 3.1 when k = 1. Then, the convergence analysis of Algorithm 3.1 (the specific proof is

referred to [8]) provides the following error estimates:

‖E1‖1,∞ . | log h|H2. (4.27)

(iii) For ‖e1H‖1,∞ . H . Using ‖E1‖1,∞ . | log h|H2 and Lemma A.1 (the specific content of

lemma and proof are referred to Appendix A), we obtain

∥

∥e1H
∥

∥

1,∞
. H.

(iv) For ‖e1H‖1 . Hr+1. Noticing that ‖E1‖1,∞ . | log h|H2 and ‖e1H‖1,∞ . H are satisfied,

therefore the BB condition of form B(u1,1
h ; · , ·) holds (see Remark 4.2). Using the BB condition

of B(u1,1
h ; · , ·) and (4.15), it is obtained that

‖E2‖1 . sup
vh

B
(

u1,1
h ;E2, vh

)

‖vh‖1

.
(

‖E1‖1,∞ +
∥

∥e1H
∥

∥

1,∞

)(

‖E1‖1 +
∥

∥e1H
∥

∥

1

)

. (4.28)

Using the BB condition of form B(u1,1
h ; · , ·), (4.22) with k = 1, (4.28), ‖E1‖1,∞ . | log h|H2

and ‖e1H‖1,∞ . H , we have

‖e1H‖1 . sup
vH∈VH

B
(

u1,1
h ; e1H , vH

)

‖vH‖1

. ‖E1‖1 + ‖E2‖1

. ‖E1‖1 +
(

‖E1‖1,∞ +
∥

∥e1H
∥

∥

1,∞

)(

‖E1‖1 +
∥

∥e1H
∥

∥

1

)

. ‖E1‖1 +
(

| log h|H2 +H
)(

‖E1‖1 +
∥

∥e1H
∥

∥

1

)

.
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Taking H be small enough in the above inequality, and using (4.26), it is obtained that
∥

∥e1H
∥

∥

1
. ‖E1‖1 . Hr+1. (4.29)

We assume (4.23) is true when k = l, i.e.

‖El‖1 . Hr+l, ‖El‖1,∞ . | log h|H2,
∥

∥elH
∥

∥

1,∞
. H,

∥

∥elH
∥

∥

1
. Hr+l. (4.30)

Next, we will prove (4.23) also holding when k = l + 1.

(i) For ‖El+1‖1 . Hr+l+1. Similarly to (4.26), by applying ‖El‖1,∞ . | log h|H2 and

‖elH‖1,∞ . H , we can deduce that

‖El+1‖1 . Hr+l+1. (4.31)

(ii) For ‖El+1‖1,∞ . | log h|H2. Taking vh = El+1 into (4.12) with k = l, using (4.16), (4.30)

and (4.13), we obtain

∂El+1(x) = B
(

ul,1
h ;El+1, g

l,x
h

)

.
(

‖El‖
2
1,∞ +

∥

∥elH
∥

∥

2

1,∞

)∥

∥gl,xh

∥

∥

1,1

.
(

| log h|2H4 +H2
)

| log h|

. | log h|H2,

which combining the arbitrariness of x and (4.14), it could be derived that

‖El+1‖1,∞ . | log h|H2. (4.32)

(iii) For ‖el+1
H ‖1,∞ . H . Using ‖El+1‖1,∞ . | log h|H2 and Lemma A.1, we obtain

∥

∥el+1
H

∥

∥

1,∞
. H. (4.33)

(iv) For ‖el+1
H ‖1 . Hr+l+1. Employing a technique similar to the one used in deriving (4.29),

and using ‖El+1‖1,∞ . | log h|H2, ‖el+1
H ‖1,∞ . H and (4.31), we can prove that

∥

∥el+1
H

∥

∥

1
. ‖El+1‖1 . Hr+l+1.

By mathematical induction, the conclusion is obtained. �

Remark 4.3. Although we just use the estimation ‖Ek+1‖1 . Hr+k+1 in our main result

(see Theorem 4.1), the availability of ‖Ek+1‖1 . Hr+k+1 requires the support of ‖Ek‖1,∞ .

| log h|H2, ‖ekH‖1,∞ . H and ‖ekH‖1 . Hr+k.

Remark 4.4. The error estimate (4.27) can also be derived using similar techniques as em-

ployed in deriving (4.32).

Here gives the main result of this paper.

Theorem 4.1. Assume that u is the solution of (2.3) and uk
h is given by Algorithm 3.2, then

we have
∥

∥u− uk
h

∥

∥

1
. hr +Hr+k. (4.34)

Proof. Using triangle inequality, (4.9), (2.6) and Lemma 4.5, we could obtain that
∥

∥u− uk
h

∥

∥

1
≤ ‖u− uh‖1 + ‖Ek‖1 . hr +Hr+k,

which completes the proof. �
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5. Numerical Experiments

In this section, we present some numerical investigations for the following nonlinear problems

to show the efficiency of the proposed iterative two-grid algorithm. We implemented these

experiments by the software package FEALPy of programming language Python [5]. Specially

in the Step 1 of Algorithm 3.2, we solve the nonlinear systems by Newton iteration methods

with relative residual 10−8.

We adopt the following mean curvature flow problem as our model problem:

−∇ ·

(

∇u

(1 + |∇u|2)
1

2

)

= g in Ω, u = 0 on ∂Ω,

where the computational domain Ω = (0, 1)× (0, 1), the exact solution u = x(1−x)2y(1− y)ex,

and g is so chosen according to the exact solution.

Firstly, we choose conforming piecewise linear finite element space as Vh, namely choose

r = 1. According to Theorem 4.1, we should keep hr = Hr+k hold in order to achieve the

optimal convergence order. Therefore in Table 5.1, we present some numerical results in different

mesh size with h = H2 for k = 1. In this case, our algorithm is same with Algorithm 3.1 (see

Remark 3.3). Furthermore, we could observe that ‖u − u1
h‖1 ∗ max{H2, h}−1 are stable in

Table 5.1, which agrees with (4.34) in Theorem 4.1.

And then, we increase the iterative counts k to expand the distance between H and h, which

is shown in Tables 5.2 and 5.3. We also observe that ‖u− u1
h‖1 ∗max{H1+k, h}−1 are stable.

Table 5.1: k = 1, r = 1.

H h ‖u− u1
h‖1 ‖u− u1

h‖1 ∗max{H2, h}−1

1/8 1/64 3.47E-03 0.221929

1/9 1/81 2.74E-03 0.221953

1/10 1/100 2.22E-03 0.221967

1/11 1/121 1.83E-03 0.221977

1/12 1/144 1.54E-03 0.221983

Table 5.2: k = 2, r = 1.

H h ‖u− u2
h‖1 ‖u− u2

h‖1 ∗max{H3, h}−1

1/2 1/8 2.73E-02 0.218321

1/3 1/27 8.20E-03 0.221524

1/4 1/64 3.47E-03 0.221784

1/5 1/125 1.77E-03 0.221826

1/6 1/216 1.03E-03 0.221836

Table 5.3: k = 3, r = 1.

H h ‖u− u3
h‖1 ‖u− u3

h‖1 ∗max{H4, h}−1

1/2 1/16 1.38E-02 0.220944

1/3 1/81 2.74E-03 0.221805

1/4 1/256 8.67E-04 0.221837
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At last, we implement similar numerical experiments for high order finite element space

with r = 2 and r = 3 in Tables 5.4-5.9. By observation, all these numerical experiments are in

support of (4.34) in Theorem 4.1.

Table 5.4: k = 1, r = 2.

H h ‖u− u1
h‖1 ‖u− u1

h‖1 ∗max{H3, h2}−1

1/4 1/8 2.57E-03 0.164578

1/9 1/27 2.30E-04 0.167320

1/16 1/64 4.09E-05 0.167553

1/25 1/125 1.07E-05 0.167590

1/36 1/216 3.59E-06 0.167599

Table 5.5: k = 2, r = 2.

H h ‖u− u2
h‖1 ‖u− u2

h‖1 ∗max{H4, h2}−1

1/8 1/64 4.09E-05 0.167552

1/9 1/81 2.55E-05 0.167571

1/10 1/100 1.68E-05 0.167582

1/11 1/121 1.14E-05 0.167589

1/12 1/144 8.08E-06 0.167593

Table 5.6: k = 3, r = 2.

H h ‖u− u3
h‖1 ‖u− u3

h‖1 ∗max{H5, h2}−1

1/5 1/55 5.54E-05 0.167534

1/6 1/90 2.07E-05 0.160874

1/7 1/126 1.06E-05 0.167590

1/8 1/184 4.95E-06 0.162211

1/9 1/243 2.84E-06 0.167600

Table 5.7: k = 1, r = 3.

H h ‖u− u1
h‖1 ‖u− u1

h‖1 ∗max{H4, h3}−1

1/8 1/16 1.83E-05 0.075054

1/27 1/81 1.40E-07 0.074662

1/64 1/256 4.44E-09 0.074543

Table 5.8: k = 2, r = 3.

H h ‖u− u2
h‖1 ‖u− u2

h‖1 ∗max{H5, h3}−1

1/8 1/32 2.28E-06 0.074870

1/9 1/36 1.60E-06 0.074838

1/10 1/40 1.17E-06 0.074810

1/11 1/55 4.49E-07 0.072343

1/12 1/60 3.46E-07 0.074716
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Table 5.9: k = 3, r = 3.

H h ‖u− u3
h‖1 ‖u− u3

h‖1 ∗max{H6, h3}−1

1/8 1/64 2.85E-07 0.074703

1/9 1/81 1.40E-07 0.074662

1/10 1/100 7.46E-08 0.074630

1/11 1/121 4.21E-08 0.074606

1/12 1/144 2.50E-08 0.074588

Appendix A

The purpose of this appendix is to provide the proof of Lemma A.1.

Lemma A.1. Assume ekH is given in (3.4) and ‖Ek‖1,∞ . | log h|H2, when H is small enough,

it holds that
∥

∥ekH
∥

∥

1,∞
. H. (A.1)

Before we present the proof of Lemma A.1, we need to introduce some preliminaries and

lemmas.

For the finite element solution uh of (2.5), we introduce a projection operator P̂H : H1
0 (Ω) →

VH , which be defined by

B
(

uh; P̂Hw, vH
)

= B(uh;w, vH), ∀w ∈ H1
0 (Ω), vH ∈ VH . (A.2)

It is easy to derive that P̂H is well-defined by the BB-conditions of form B(uh; · , ·) which could

be obtained by Remark 4.1. Furthermore, the projection operator P̂H satisfies the following

estimate:
∥

∥P̂Hw
∥

∥

1,∞
. | logH | ‖w‖1,∞, ∀w ∈ W 1,∞(Ω). (A.3)

In fact, taking vH = P̂Hw in (4.11), and using (A.2), (3.1), Remark 2.1, Hölder inequality and

(4.13), we obtain

∂P̂Hw(x) = B
(

uh; P̂Hw, gxH
)

= B
(

uh;w, g
x

H

)

=
(

ay(uh)w,∇gxH
)

+
(

az(uh)∇w,∇gxH
)

+
(

fy(uh)w, g
x

H

)

+
(

fz(uh)∇w, gxH
)

. ‖w‖1,∞
∥

∥gxH
∥

∥

1,1

. | logH | ‖w‖1,∞.

Finally using of the arbitrariness of x and (4.14), we could obtain (A.3).

By Taylor expansion, we have (the detailed proof can be found in [9, Lemma 3.1])

A(w, χ) = A(v, χ) +B(v;w − v, χ) +R(η; v, w, χ), ∀w, v, χ ∈ H1
0 (Ω), (A.4)

where the forms A(· , ·) and B(· ; · , ·) are given by (2.2) and (3.1), respectively, η = v+ t(w− v)

and

R(η; v, w, χ) =

∫ 1

0

[

(

ayy(η)(v − w)2,∇χ
)

+ 2
(

ayz(η)∇(v − w)(v − w),∇χ
)
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+
(

∇(v − w)Tazz(η)∇(v − w),∇χ
)

+
(

fyy(η)(v − w)2, χ
)

+ 2
(

fyz(η) · ∇(v − w)(v − w), χ
)

+
(

∇(v − w)T fzz(η)∇(v − w), χ
)

]

(1 − t)dt.

For the proof of Lemma A.1, we introduce a operator Φ as follow. Assume uh is the solution

of (2.5), Ek, R, uk
h are given in (4.9), (A.4) and Algorithm 3.2, respectively, we defined operator

Φ : VH → VH by, for any wH ∈ VH ,

B
(

uh; Φ(wH), vH
)

= B(uh;Ek, vH)−R
(

η;uh, u
k
h + wH , vH

)

, ∀ vH ∈ VH , (A.5)

where η = uh + t(wH − Ek). By the BB-conditions of form B(uh; · , ·) (see Remark 4.1), it is

easy to prove that operator Φ is well-defined.

We define a space

QH =
{

vH ∈ VH :
∥

∥vH − P̂HEk

∥

∥

1,∞
≤ H

}

, (A.6)

where P̂H is a projection operator defined by (A.2). Since QH is a finite dimensional space, it

is easy to see that QH is a non-empty compact convex subset. Next, we will use Brouwer fixed

point theorem to prove that (A.5) has a fixed point w̄H in QH .

Lemma A.2. Assume ‖Ek‖1,∞.|log h|H2, then when H is small enough, we have Φ(QH)⊂QH.

Proof. For any wH ∈ QH , vH ∈ VH , rewriting (A.5) with (A.2), we have

B
(

uh; Φ(wH)− P̂HEk, vH
)

= −R
(

uh + t(wH − Ek);uh, u
k
h + wH , vH

)

. (A.7)

Substituting vH = Φ(wH)− P̂HEk into (4.11) and using (A.7), Remark 2.1, Hölder inequality,

(4.9), triangle inequality, (4.13), (A.3), (A.6) and ‖Ek‖1,∞ . | log h|H2, it is obtained that

∂
(

Φ(wH)− P̂HEk

)

(x) = B
(

uh; Φ(wH)− P̂HEk, g
x

H

)

= −R
(

uh + t(wH − Ek);uh, u
k
h + wH , gxH

)

. ‖Ek − wH‖21,∞
∥

∥gxH
∥

∥

1,1

.
(

‖Ek − P̂HEk‖
2
1,∞ + ‖P̂HEk − wH‖21,∞

)

| logH |

.
(

(1 + | logH |)2‖Ek‖
2
1,∞ +H2

)

| logH |

.
(

(1 + | logH |)2| log h|2H4 +H2
)

| logH |.

Further using the arbitrariness of x and (4.14), the proof is finished. �

Lemma A.3. Assume ‖Ek‖1,∞ . | log h|H2, then the operator Φ is continuous in VH .

Proof. For any w1, w2 ∈ QH , by (A.5), we have

B
(

uh; Φ(w1)− Φ(w2), vH
)

= R
(

uh + t(w2 − Ek);uh, u
k
h + w2, vH

)

−R
(

uh + t(w1 − Ek);uh, u
k
h + w1, vH

)

. (A.8)
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Noticing that the definition of R in (A.4), for the terms concerning ayy on the right-hand side

of (A.8), we can use Remark 2.1 and Hölder inequality to obtain that
(

ayy

(

uh + t(w2 − Ek)
)

(Ek − w2)
2,∇vH

)

−
(

ayy

(

uh + t(w1 − Ek)
)

(Ek − w1)
2,∇vH

)

=
(

ayy

(

uh + t(w2 − Ek)
)

(Ek − w2)
2,∇vH

)

−
(

ayy

(

uh + t(w1 − Ek)
)

(Ek − w2)
2,∇vH

)

+
(

ayy

(

uh + t(w1 − Ek)
)

(Ek − w2)
2,∇vH

)

−
(

ayy

(

uh + t(w1 − Ek)
)

(Ek − w1)
2,∇vH

)

=
(

[

ayy

(

uh + t(w2 − Ek)
)

− ayy

(

uh + t(w1 − Ek)
)]

(Ek − w2)
2,∇vH

)

+
(

ayy

(

uh + t(w1 − Ek)
)(

− 2Ekw2 + w2
2 + 2Ekw1 − w2

1

)

,∇vH
)

=
(

[

ayy

(

uh + t(w2 − Ek)
)

− ayy

(

uh + t(w1 − Ek)
)]

(Ek − w2)
2,∇vH

)

+
(

ayy

(

uh + t(w1 − Ek)
)

(2Ek − w1 − w2)(w1 − w2),∇vH
)

.
∥

∥ayy

(

uh + t(w2 − Ek)
)

− ayy

(

uh + t(w1 − Ek)
)∥

∥

0,∞

∥

∥(Ek − w2)
2
∥

∥

0
‖vH‖1

+ ‖2Ek − w1 − w2‖0‖w1 − w2‖0,∞‖vH‖1. (A.9)

For ‖(Ek − w2)
2‖0, we use triangle inequality, (A.3), (A.6) and ‖Ek‖1,∞ . | log h|H2, it is

obtained that

‖(Ek − w2)
2‖0 ≤ ‖Ek − w2‖

2
1,∞

. ‖Ek‖
2
1,∞ + ‖P̂HEk‖

2
1,∞ + ‖P̂HEk − w2‖

2
1,∞

. ‖Ek‖
2
1,∞ + | logH |2‖Ek‖

2
1,∞ +H2

. | log h|2H4 + | logH |2| log h|2H4 +H2

:= C1(H), (A.10)

where C1(H) is a constant depending on H .

Similarly, for ‖2Ek − w1 − w2‖0, there also exists a constant C2(H) such that

‖2Ek − w1 − w2‖0 . C2(H). (A.11)

Substituting (A.10) and (A.11) into (A.9), it could be obtained that
(

ayy

(

uh + t(w2 − Ek)
)

(Ek − w2)
2,∇vH

)

−
(

ayy

(

uh + t(w1 − Ek)
)

(Ek − w1)
2,∇vH

)

. C(H)
[

∥

∥ayy

(

uh + t(w2 − Ek)
)

− ayy

(

uh + t(w1 − Ek)
)∥

∥

0,∞
+ ‖w1 − w2‖0,∞

]

‖vH‖1,

where C(H) = max{C1(H), C2(H)} . The rest of the items on the right-hand side of (A.8)

have similar results, and here is omitted. The conclusion follows from the above discussion,

(A.8), the BB-conditions of form B(uh; · , ·) (see Remark 4.1) and the continuity of second

order derivatives of a(· , · , ·) and f(· , · , ·) (see the assumptions about a(· , · , ·) and f(· , · , ·) in

Section 2). �

At last, we present the proof of Lemma A.1 by Brouwer fixed point theorem.

Proof. Making use of Lemmas A.2 and A.3 and Brouwer fixed point theorem, we know that

(A.5) exists a fixed point w̄H in QH . Taking w = uk
h + w̄H , v = uh and χ = vH into (A.4), and

then using (2.5) with VH ⊂ Vh, Remark 3.1, (4.9), w̄H = Φ(w̄H) and (A.5), we obtain that

A
(

uk
h + w̄H , vH

)

= A(uh, vH) +B
(

uh;u
k
h + w̄H − uh, vH

)

+ R
(

η̃;uh, u
k
h + w̄H , vH

)

= B(uh; w̄H , vH)−B(uh;Ek, vH) +R
(

η̃;uh, u
k
h + w̄H , vH

)

= B
(

uh; Φ(w̄H), vH
)

−B(uh;Ek, vH) +R
(

η̃;uh, u
k
h + w̄H , vH

)

= 0, (A.12)
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where η̃ = uh + t(w̄H − Ek). By the uniqueness of finite element solution (see Lemma 2.1),

(3.4) and (A.12), we can see that w̄H = ekH , which implies ekH ∈ QH .

At last, using triangle inequality, (A.6), (A.3) and ‖Ek‖1,∞ . | log h|H2, we obtain

∥

∥ekH
∥

∥

1,∞
≤

∥

∥ekH − P̂HEk

∥

∥

1,∞
+ ‖P̂HEk‖1,∞

. H + | logH | ‖Ek‖1,∞

. H + | logH | | log h|H2,

which completes the proof. �
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