Doubly Perturbed Neutral Stochastic Functional Equations Driven by Fractional Brownian Motion

XU Liping and LI Zhi*

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China.

Received 14 May 2015; Accepted 24 August 2015

Abstract. In this paper, we study a class of doubly perturbed neutral stochastic functional equations driven by fractional Brownian motion. Under some non-Lipschitz conditions, we will prove the existence and uniqueness of the solution to these equations by providing a semimartingale approximation of a fractional stochastic integration.

AMS Subject Classifications: 60H15, 60G15, 60H05

Chinese Library Classifications: O211.63, O175.2

Key Words: Fractional Brownian motion; doubly perturbed neutral functional equations; non-Lipschitz condition.

1 Introduction

As the limit process from a weak polymer model, the following doubly perturbed Brownian motion

$$X_t = B_t + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,$$

(1.1)

was presented in Norris, Rogers and Williams [1], also as the scaling limit of some self-interacting random walks [2], has attracted much interest from several directions, see Le Gall and Yor [3], Davis [4, 5], Carmona, Petit and Yor [6], Perman and Werner [7], Chaumont and Doney [8, 9], Werner [10], etc.

Following them, Doney and Zhang [11] have studied the following single perturbed stochastic functional equation:

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s + a \max_{0 \leq s \leq t} X_s,$$

(1.2)

*Corresponding author. Email addresses: lizhi_csu@126.com (Z. Li), xlp2110126.com (L. P. Xu)
with the condition that σ, b are Lipschitz continuous functions.

Recently, under some non-Lipschitz conditions, Luo [12] obtained the existence and uniqueness of the solution to the following doubly stochastic functional equation

$$X_t = X_0 + \int_0^t b(s,X_s) \, ds + \int_0^t \sigma(s,X_s) \, dB_s + \int_0^t \int_{-1}^{0} h(X_{s-},y) \tilde{N}(ds,dy) + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,$$

(1.3)

Hu and Ren [13] studied the existence and uniqueness of the solution to the following doubly perturbed neutral stochastic functional equation

$$X_t = X_0 + G(t,X_t) - G(0,X_0) + \int_0^t f(s,X_s) \, ds + \int_0^t \sigma(s,X_s) \, dB_s + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,$$

(1.4)

and Liu and Yang [14] proved the existence and uniqueness of the solution to the following doubly perturbed neutral stochastic functional equation with Markovian switching and Poisson jumps

$$X_t = X_0 + G(X_t,r(t)) - G(0,r_0) + \int_0^t f(s,r(s),X_s) \, ds + \int_0^t \sigma(s,r(s),X_s) \, dB_s + \int_0^t \int_{-\tau}^{0} h(X_{s-},y) \tilde{N}(ds,dy) + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s.$$

(1.5)

One solution for many SDEs is a semimartingale as well a Markov process. However, many objects in real world are not always such processes since they have long-range aftereffects. Since the work of Mandelbrot and Van Ness [15], there is an increasing interest in stochastic models based on the fractional Brownian motion. A fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ is a centered Gaussian process $B^H = \{ B^H(t), t \geq 0 \}$ with the covariance function

$$R_H(t,s) = \mathbb{E}(B^H_t B^H_s) = \frac{1}{2} (t^2H + s^2H - |t-s|^{2H}).$$

When $H = 1/2$ the fBm becomes the standard Brownian motion, and the fBm B^H neither is a semimartingale nor a Markov process if $H \neq 1/2$. However, the fBm B^H, $H > 1/2$ is a long-memory process and presents an aggregation behavior. The long-memory property make fBm as a potential candidate to model noise in mathematical finance (see [16]); in biology (see [17]); in communication networks (see, e.g., [18]); the analysis of global temperature anomaly [19] electricity markets [20] etc.

In [15], Mandelbrot et al. have given a representation of B^H_t of the form:

$$B^H_t = \frac{1}{\Gamma(1+\alpha)} \left(U(t) + \int_0^t (t-s)^\alpha \, dW_s \right),$$
where $\alpha = H - 1/2$, $U(t)$ is a stochastic process of absolutely continuous trajectories, and $W_t^H := \int_0^t (t-s)^\alpha dW_s$ is called a fBm of the Liouville form (LfBm). Because a LfBm shares many properties of a fBm (except that it has non-stationary increments) and for simplicity we use W_t^H standing for B_t^H throughout this paper.

The aim of this paper is to study the existence and uniqueness of solution of the following doubly perturbed neutral stochastic functional equation

$$X_t = X_0 + G(t, X_t) - G(0, X_0) + \int_0^t f(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s + \int_0^t g(s) dW^H_s + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,$$

(1.6)

where W_t^H is a LfBm with $H > 1/2$, B_t is a standard Brownian motion independent of W_t^H and $f : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$, $\sigma : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ and $G : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ are appropriate mappings specified later.

The rest of this paper is organized as follows. In Section 2, we recall the definition of a stochastic integral with respect to LfBm from an approximate approach. Section 3 is devoted to giving the main results of the paper. An example is presented in Section 4 to illustrate the theory.

2 Preliminaries

In the last few decades, many differential ways have been introduced to constructed the fractional stochastic calculus (see, for instance, [21]). The main difficulties in studying fractional stochastic systems are that we cannot apply stochastic calculus developed by Itô since fBm is neither a Markov process nor a semimartingale, except for $H = 1/2$. Recently, an approximate approach has been developed to avoid those difficulties (see, [22, 23] and the references therein). Let us recall some fundamental results about this approach.

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ be a filtered complete probability space satisfying the usual condition, which means that the filtration is a right continuous increasing family and \mathcal{F}_0 contains all \mathbb{P}-null sets. For every $\varepsilon > 0$ we define

$$W_t^{H, \varepsilon} := \int_0^t (t-s+\varepsilon)^\alpha dW_s.$$

In [22], author proved that $W_t^{H, \varepsilon}$ is a semimartingale with the following decomposition

$$W_t^{H, \varepsilon} = \varepsilon^\alpha W_t + \int_0^t q^\varepsilon(s) ds,$$

(2.1)

where $q^\varepsilon(s) = \int_s^0 a(s+\varepsilon-u)^{\alpha-1} dW_u$. Moreover, $W_t^{H, \varepsilon}$ converges to W_t^H in $L^p(\Omega)$, $p > 1$ uniformly in $t \in [0, T]$ as $\varepsilon \rightarrow 0$:

$$\mathbb{E} |W_t^{H, \varepsilon} - W_t^H|^p \leq c_{p, T} \varepsilon^{\beta H}.$$
For f is a deterministic function in $L^2[0,T]$, from the decomposition (2.1) we have

$$
\int_0^t f(s) dW^H_s = \int_0^t e^\alpha f(s) dW_s + \int_0^t \int_0^s \alpha f(s)(s+\varepsilon-u)^\alpha - 1 dW_u ds
$$

$$
= \int_0^t e^\alpha f(s) dW_s + \int_0^t \int_s^t \alpha f(u)(u+\varepsilon-s)^\alpha - 1 du dW_s. \quad (2.2)
$$

As $\varepsilon \to 0$, each term in the right-hand side of (2.2) converges in $L^2(\Omega)$ to the same term where $\varepsilon = 0$. Then, it is ‘natural’ to define (we can refer the reader to [24, 25] for a general definition).

Definition 2.1. For f is a deterministic function in $L^2[0,T]$. The stochastic integral of f with respect to LfBm is defined by

$$
\int_0^t f(s) dW^H_s := \lim_{\varepsilon \to 0} \int_0^t f(s) dW^H_s = \alpha \int_0^t \int_0^s f(u)(u-s)^\alpha - 1 du dW_s. \quad (2.3)
$$

Lemma 2.1. For f is a deterministic function in $L^2[0,T]$. We can obtain the following estimate for the integral (2.3):

$$
\mathbb{E} \left(\max_{0 \leq s \leq t} \left| \int_0^s f(u) dW^H_u \right|^2 \right) \leq 4t^2 \alpha \int_0^t f^2(u) du. \quad (2.4)
$$

Proof. By applying Hölder’s inequality and Burkholder’s inequality we have

$$
\mathbb{E} \left(\max_{0 \leq s \leq t} \left| \int_0^s f(u) dW^H_u \right|^2 \right) \leq 4t^2 \alpha \int_0^t \left(\int_0^s f(u)(u-s)^\alpha - 1 \right)^2 du ds
$$

$$
\leq 4t^2 \alpha \int_0^t \left(\int_s^t f^2(u)(u-s)^\alpha - 1 du \right) \left(\int_0^s (u-s)^\alpha - 1 du \right) ds
$$

$$
= 4t^2 \alpha \int_0^t \left(\int_s^t f^2(u)(u-s)^\alpha - 1 du \right) ds
$$

$$
= 4t^2 \alpha \int_0^t \left(\int_0^s f^2(u)(u-s)^\alpha - 1 du \right) du
$$

$$
= 4t^2 \alpha \int_0^t f^2(u) du \leq 4t^2 \alpha \int_0^t f^2(u) du. \quad \square
$$

In order to obtain the existence and uniqueness of the solution to Eq. (1.6), we make the following assumptions:

(H1) There exists a function $A : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$
\mathbb{E} |f(t,X_t)|^2 + \mathbb{E} |\sigma(t,X_t)|^2 \leq A(t, \mathbb{E} \max_{0 \leq s \leq t} |X_s|^2),
$$
for all \(t \geq 0 \), where \(A(t,u) \) is locally integrable in \(t \) for each fixed \(u > 0 \) and is continuous nondecreasing in \(u \) for each fixed \(t \geq 0 \) and \(X_t : \mathbb{R}_+ \to \mathbb{R} \), and for any constant \(C \) the differential equation

\[
 u_t = u_0 + \int_0^t C A(s, u_s) \, ds,
\]

has a global solution.

(H2) There exists a function \(B : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \) such that

\[
 \mathbb{E} |f(t, X_t) - f(t, Y_t)|^2 + \mathbb{E} |\sigma(t, X_t) - \sigma(t, Y_t)|^2 \leq B(t, \mathbb{E} \max_{0 \leq s \leq t} |X_s - Y_s|^2),
\]

for all \(t \geq 0 \) and \(X_t, Y_t : \mathbb{R}_+ \to \mathbb{R} \), where \(B(t,u) \) is locally integrable in \(t \) for each fixed \(u > 0 \) and is continuous nondecreasing in \(u \) for each fixed \(t \geq 0 \) and for any constant \(C \), if a non-negative function \(Y_t \) satisfies the following inequality:

\[
 Y_t \leq \int_0^t CB(s, Y_s) \, ds,
\]

for all \(t \geq 0 \), then \(Y_t \equiv 0 \).

(H3) There exists a positive constant \(K > 0 \) such that

\[
 |G(t, X_t) - G(t, Y_t)| \leq K |X_t - Y_t| \quad \text{and} \quad G(t,0) = 0,
\]

for all \(t \geq 0 \) and \(X_t, Y_t : \mathbb{R}_+ \to \mathbb{R} \).

(H4) \(K + |a| + |b| < 1 \).

3 Main results

The main results of our paper is the following theorem on the existence and uniqueness of the solution to the stochastic differential Eq. (1.6).

Theorem 3.1. Assume that the random variable \(X_0 \) is independent of \(B_t, W_t^H \), and \(\mathbb{E}(|X_0|^2) < \infty \), \(g \in L^2[0,T] \) and (H1)-(H4) hold. There exists a unique \(\mathcal{F}_t \)-adapted solution \(X_t, t \geq 0 \), to Eq. (1.6) such that \(\mathbb{E}(\max_{0 \leq s \leq T} |X_s|^2) < \infty \) for all \(T > 0 \).

Proof. We introduce the following iteration procedure. Let

\[
 X_t^0 = \frac{X_0}{1-a-b}, \quad 0 \leq t < \infty.
\]

For each integer \(n > 0 \), we define \(X^n \) as follows:

\[
 X_t^{n+1} = X_0 + G(t, X_t^{n+1}) - G(0, X_0) + \int_0^t f(s, X_s^n) \, ds + \int_0^t \sigma(s, X_s^n) \, dB_s \quad (3.1)
\]
+ \int_0^t g(s) \, dW_t^H + a \max_{0 \leq s \leq t} X^n_{s+1} + b \min_{0 \leq s \leq t} X^n_{s+1}. \quad (3.2)

In order to get the conclusion, we give three steps as follows:

Step 1: Let us show that \(\{ X^n_{t+1}, t \geq 0 \} \) is bounded. For any \(s \geq 0 \), we have

\[
|X^n_{s+1}| \leq |X_0| + |G(s,X^n_s)| + \left| \int_0^s f(u,X^n_u) \, du \right| + \left| \int_0^s \sigma(u,X^n_u) \, dB_u \right| \\
+ \left| \int_0^s g(u) \, dW_t^H \right| + |a| \max_{0 \leq u \leq s} |X^n_{u+1}| + |b| \min_{0 \leq u \leq s} |X^n_{u+1}|
\]

\[
\leq |X_0| + K|X^n_s| + \left| \int_0^s f(u,X^n_u) \, du \right| + \left| \int_0^s \sigma(u,X^n_u) \, dB_u \right| \\
+ \left| \int_0^s g(u) \, dW_t^H \right| + (|a| + |b|) \max_{0 \leq u \leq s} |X^n_{u+1}|. \quad (3.3)
\]

Taking the maximal value on both sides of (3.3), by Hölder’s inequality, the Burkholder’s inequality, (H1) and Lemma 2.1, we use \(C \) to denote a generic constant which may change from line to line in the rest of the work and get

\[
\mathbb{E}(\max_{0 \leq s \leq t} |X^n_{s+1}|^2) \leq C \left(\frac{1}{1 - |a| - |b|} \right)^2 \left[\mathbb{E}|X_0|^2 + \int_0^t \mathbb{E}|f(s,X^n_s)|^2 \, ds + \int_0^t \mathbb{E}|\sigma(s,X^n_s)|^2 \, ds \right] \\
+ 4T^{2a} \int_0^t g^2(s) \, ds \leq C(\mathbb{E}|X_0|^2 + C \int_0^t \mathbb{E} \left[|f(s,X^n_s)|^2 + |\sigma(s,X^n_s)|^2 \right] \, ds + \int_0^t \mathbb{E}|\sigma(s,X^n_s)|^2 \, ds \\
+ 4T^{2a} \int_0^T g^2(s) \, ds \leq C \left(\mathbb{E}|X_0| + \int_0^T g^2(s) \, ds \right) + C \int_0^t A(s,\mathbb{E} \max_{0 \leq u \leq s} |X^n_u|^2) \, ds. \quad (3.4)
\]

Owing to \(\mathbb{E}|X_0|^2 + \int_0^T g^2(s) \, ds < \infty \), we obtain that

\[
\mathbb{E}(\max_{0 \leq s \leq t} |X^n_{s+1}|^2) \leq Y_t \leq Y_T < \infty,
\]

where \(n = 0,1,2,\ldots \), and \(Y_t \) is a solution to the following equation:

\[
Y_t = Y_0 + \int_0^t C A(s,Y_s) \, ds,
\]

and then the boundedness of \(\{ X^n_{t+1}, t \geq 0 \} \) has been proved.

Step 2: Let us show that \(\{ X^n_{t+1}, t \geq 0 \} \) is Cauchy. For any \(s \geq 0, m,n \geq 0 \), we have

\[
|X^n_{s+1} - X^m_{s+1}| \leq |G(s,X^n_{s+1}) - G(s,X^m_{s+1})| + \left| \int_0^s f(u,X^n_u) \, du - \int_0^s f(u,X^m_u) \, du \right| \\
+ \left| \int_0^s \sigma(u,X^n_u) \, dB_u - \int_0^s \sigma(u,X^m_u) \, dB_u \right|.
\]
Owing to (H2), it is easy to get
\[
\begin{align*}
+ \left| \int_0^s \sigma(u, X^n_u) \, dB_u \right| + \left| \int_0^s \sigma(u, X^m_u) \, dB_u \right| \\
+ |a| \max_{0 \leq u \leq s} |X^n_u - X^m_u| + |b| \min_{0 \leq u \leq s} |X^n_u - X^m_u| \\
\leq K |X^n_{s+1} - X^m_{s+1}| + \int_0^s |f(u, X^n_u) - f(u, X^m_u)| \, du \\
+ \left| \int_0^s (\sigma(u, X^n_u) - \sigma(u, X^m_u)) \, dB_u \right| + (|a| + |b|) \max_{0 \leq u \leq s} |X^n_u - X^m_u|.
\end{align*}
\] (3.5)

Taking the maximal value on both sides of (3.5), by Hölder’s inequality, the Burkholder’s inequality and (H2), we can get
\[
\begin{align*}
\mathbb{E} \left(\max_{0 \leq s \leq t} |X^n_{s+1} - X^m_{s+1}|^2 \right) \leq & \mathcal{C} \left(\int_0^t \mathbb{E} |f(s, X^n_s) - f(s, X^m_s)|^2 \, ds \right) \\
& \quad + \int_0^t \mathbb{E} |\sigma(s, X^n_s) - \sigma(s, X^m_s)|^2 \, ds \\
\leq & \mathcal{C} \int_0^t B(s, \mathbb{E} \left(\max_{0 \leq u \leq s} |X^n_u - X^m_u|^2 \right)) \, ds. \quad (3.6)
\end{align*}
\]

Let
\[
Z_t := \limsup_{n,m \to \infty} \mathbb{E} \left(\max_{0 \leq s \leq t} |X^n_s - X^m_s|^2 \right).
\]

By (3.5) and the Fatou lemma, we can obtain
\[
\begin{align*}
Z_t &= \limsup_{n,m \to \infty} \mathbb{E} \left(\max_{0 \leq s \leq t} |X^n_s - X^m_s|^2 \right) \\
&\leq \limsup_{n,m \to \infty} \int_0^t B(s, \mathbb{E} \left(\max_{0 \leq u \leq s} |X^n_u - X^m_u|^2 \right)) \, ds \\
&\leq \mathcal{C} \int_0^t B(s, Z_s) \, ds.
\end{align*}
\]

Owing to (H2), it is easy to get
\[
\limsup_{n,m \to \infty} \mathbb{E} \left(\max_{0 \leq s \leq t} |X^n_s - X^m_s|^2 \right) \equiv 0,
\]
and then \(\{X^n_{t+1}, t \geq 0\} \) is Cauchy.

Step 3: Let us show that the solution to Eq. (1.6) is unique. Now suppose that \(X_t, t \geq 0, \) and \(Y_t, t \geq 0, \) are two solutions to Eq. (1.6), we have
\[
|X_t - Y_t| \leq \left| \int_0^t f(s, X_s) \, ds - \int_0^t f(s, Y_s) \, ds \right| + \left| \int_0^t \sigma(s, X_s) \, dB_s - \int_0^t \sigma(s, Y_s) \, dB_s \right|.
\]
\begin{align*}
&+ |G(t, X_t) - G(t, Y_t)| + |a| \max_{0 \leq s \leq t} X_s - \max_{0 \leq s \leq t} Y_s | + |b| \min_{0 \leq s \leq t} X_s - \min_{0 \leq s \leq t} Y_s |
\leq & K |X_t - Y_t| + \int_0^t |f(s, X_s) - f(s, Y_s)| \, ds \\
&+ \int_0^t (\sigma(s, X_s) - \sigma(s, Y_s)) \, dB_s | + (|a| + |b|) \max_{0 \leq s \leq t} |X_s - Y_s|. \quad (3.7)
\end{align*}

Taking the maximal value on both sides of (3.7), by Hölder’s inequality, the Burkholder’s inequality and (H2), we can get
\begin{align*}
\mathbb{E} \left(\max_{0 \leq s \leq t} |X_s - Y_s|^2 \right) \leq C \left(\frac{1}{1 - K - |a| - |b|} \right)^2 \left[\int_0^t \mathbb{E} |f(s, X_s) - f(s, Y_s)|^2 \, ds \\
+ \int_0^t \mathbb{E} |\sigma(s, X_s) - \sigma(s, Y_s)|^2 \, ds \right] \\
\leq C \int_0^t B(s, \mathbb{E} \left(\max_{0 \leq u \leq s} |X_u - Y_u|^2 \right)) \, ds. \quad (3.8)
\end{align*}

By (H2), it is deduced that \(\mathbb{E} \left(\max_{0 \leq s \leq t} |X_s - Y_s|^2 \right) \equiv 0 \), then the solution to Eq. (1.6) is unique, and the proof is completed. \(\square \)

Remark 3.1. When \(g \equiv 0 \), Eq. (1.6) reduces to
\begin{align*}
X_t = & X_0 + G(t, X_t) - G(0, X_0) + \int_0^t f(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB_s \\
&+ a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s, \quad (3.9)
\end{align*}
which was recently studied in Hu and Ren [13], that is to say, Theorem 5 of [13] has been generalized.

4 An example

In this section, an example is provided to illustrate the obtained theory.

Consider the following doubly perturbed stochastic functional equation driven by fractional Brownian motion of the Liouville form:
\begin{align*}
X_t = & \int_0^t a X_s \, ds + \int_0^t b X_s \, dB_s + \int_0^t g(s) \, dW_s^H + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s, \quad (4.1)
\end{align*}
with the initial condition \(X_0 = \zeta \geq 0 \) (constant), where \(a, b, \alpha, \beta \) are constants and \(|a| + |b| < 1 \), \(g \in L^2[0, T] \). In order to get a unique \(\mathcal{F}_t \)-adapted solution \(X_t \), \(t \geq 0 \) to Eq. (4.1) by Theorem 3.1, let \(B(t, u) = \phi(t) \varphi(u) \) where \(\varphi: \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a continuous nondecreasing function such that
\(\varphi(0) = 0, \quad \int_0^\infty \frac{1}{\varphi(u)} \, du = +\infty, \)
\(\phi(t) \) is locally integrable. Here we present an example of such a function \(\varphi \). Define

\[
\varphi(u) = \begin{cases}
 u \log(u^{-1}), & 0 \leq u \leq \varepsilon, \\
 \varepsilon \log(\varepsilon^{-1}) + \varphi'(\varepsilon-)(u-\varepsilon), & u > \varepsilon,
\end{cases}
\]

where \(\varepsilon > 0 \) is sufficiently small.

Acknowledgement

This research is partially supported by the NNSF of China (No. 11271093) and the Science Research Project of Hubei Provincial Department of Education (No. Q20141306).

We are grateful to anonymous referees for many helpful comments and valuable suggestions on this paper.

References

[4] Davis B., Weak limits of perturbed random walks and the equation \(Y_t = B_t + \alpha \sup_{s \leq t} Y_s + \beta \inf_{s \leq t} Y_s \). *Ann. Probab.* **24** (1997), 2007-2023.

