with the condition that σ, b are Lipschitz continuous functions.

Recently, under some non-Lipschitz conditions, Luo [12] obtained the existence and uniqueness of the solution to the following doubly stochastic functional equation

$$
X_t = X_0 + \int_0^t b(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_s + \int_0^t \int_{-1}^0 h(X_{s-}, y)N(ds, dy) + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,
$$

(1.3)

Hu and Ren [13] studied the existence and uniqueness of the solution to the following doubly perturbed neutral stochastic functional equation

$$
X_t = X_0 + G(t, X_t) - G(0, X_0) + \int_0^t f(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_s + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s,
$$

(1.4)

and Liu and Yang [14] proved the existence and uniqueness of the solution to the following doubly perturbed neutral stochastic functional equation with Markovian switching and Poisson jumps

$$
X_t = X_0 + G(X_t, r(t)) - G(0, r_0) + \int_0^t f(s, r(s), X_s)ds + \int_0^t \sigma(s, r(s), X_s)dW_s + \int_0^t \int_{-1}^0 h(X_{s-}, y)N(ds, dy) + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s.
$$

(1.5)

One solution for many SDEs is a semimartingale as well a Markov process. However, many objects in real world are not always such processes since they have long-range aftereffects. Since the work of Mandelbrot and Van Ness [15], there is an increasing interest in stochastic models based on the fractional Brownian motion. A fractional Brownian motion (fBm) of Hurst parameter $H \in (0, 1)$ is a centered Gaussian process $B^H = \{B^H(t), t \geq 0\}$ with the covariance function

$$
R_H(t, s) = \mathbb{E}(B^H_t B^H_s) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t-s|^{2H} \right).
$$

When $H = 1/2$ the fBm becomes the standard Brownian motion, and the fBm B^H neither is a semimartingale nor a Markov process if $H \neq 1/2$. However, the fBm B^H, $H > 1/2$ is a long-memory process and presents an aggregation behavior. The long-memory property make fBm as a potential candidate to model noise in mathematical finance (see [16]); in biology (see [17]); in communication networks (see, for instance [18]); the analysis of global temperature anomaly [19] electricity markets [20] etc.

In [15], Mandelbrot et al. have given a representation of B^H_t of the form:

$$
B^H_t = \frac{1}{\Gamma(1+\alpha)} \left(U(t) + \int_0^t (t-s)^\alpha dW_s \right),
$$

where $\alpha = H - 1/2$, $U(t)$ is a stochastic process of absolutely continuous trajectories, and $W^H_t := \int_0^t (t-s)^\alpha dW_s$ is called a fBm of the Liouville form (LfBm). Because a LfBm shares
Doubly Perturbed Neutral Stochastic Functional Equations Driven by Fractional Brownian Motion

\[+ |G(t, X_t) - G(t, Y_t)| + |a| \max_{0 \leq s \leq t} X_s - \max_{0 \leq s \leq t} Y_s| + |b| \min_{0 \leq s \leq t} X_s - \min_{0 \leq s \leq t} Y_s| \]

\[\leq K |X_t - Y_t| + \int_0^t |f(s, X_s) - f(s, Y_s)| ds \]

\[+ \int_0^t \rho(s, X_s - \sigma(s, Y_s)) d\beta_s + (|a| + |b|) \max_{0 \leq s \leq t} |X_s - Y_s|. \]

(3.7)

Taking the maximal value on both sides of (3.6), by Hölder inequality, the Burkhölder inequality and (H2), we can get

\[\mathbb{E}(\max_{0 \leq s \leq t} |X_s - Y_s|^2) \leq C \left(\frac{1}{1 - K - |a| - |b|} \right)^2 \left[\int_0^t \mathbb{E}|f(s, X_s) - f(s, Y_s)|^2 ds \right] \]

\[+ \int_0^t \mathbb{E}|\sigma(s, X_s) - \sigma(s, Y_s)|^2 ds \]

\[\leq C \int_0^t B(s, \mathbb{E}(\max_{0 \leq u \leq s} |X_u - Y_u|^2)) ds. \]

(3.8)

By (H2), it is deduced that \(\mathbb{E}(\max_{0 \leq s \leq t} |X_s - Y_s|^2) \equiv 0 \), then the solution to Eq. (1.6) is unique, and the proof is completed. \(\square \)

Remark 3.1. When \(g \equiv 0 \), Eq. (1.6) reduces to

\[X_t = X_0 + G(t, X_t) - G(0, X_0) + \int_0^t f(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s, \]

(3.9)

which was recently studied in Hu and Ren [13], that is to say, Theorem 5 of [13] has been generalized.

4 An example

In this section, an example is provided to illustrate the obtained theory.

Consider the following doubly perturbed stochastic functional equation driven by fractional Brownian motion of the Liouville form:

\[X_t = \int_0^t \alpha X_s ds + \int_0^t \beta X_s dB_s + \int_0^t g(s) dW^H_s + a \max_{0 \leq s \leq t} X_s + b \min_{0 \leq s \leq t} X_s, \]

(4.1)

with the initial condition \(X_0 = \varepsilon \geq 0 \) (constant), where \(a, b, \alpha, \beta \) are constants and \(|a| + |b| < 1 \), \(g \in L^2[0, T] \). In order to get a unique \(F_t \)-adapted solution \(X_t \), \(t \geq 0 \) to Eq. (4.1) by Theorem 3.1, let \(B(t, u) = \phi(t) \varphi(u) \) where \(\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a continuous nondecreasing function such that \(\varphi(0) = 0 \) and \(\int_0^1 \frac{1}{\varphi(u)} du = +\infty \). \(\phi(t) \) is locally integrable. Here we present an example of such a function \(\varphi \). Define

\[\varphi(u) = \begin{cases}
 u \log(u^{-1}), & 0 \leq u \leq \varepsilon, \\
 e \log(e^{-1}) + \varphi'(u)(u - \varepsilon), & u > \varepsilon,
\end{cases} \]

where \(\varepsilon > 0 \) is sufficiently small.
Acknowledgement

This research is partially supported by the NNSF of China (No. 11271093) and the Science Research Project of Hubei Provincial Department of Education (No.Q20141306).

We are grateful to anonymous referees for many helpful comments and valuable suggestions on this paper.

References

[4] Davis B., Weak limits of perturbed random walks and the equation $Y_t = B_t + a \sup_{s \leq t} Y_s + \beta \inf_{s \leq t} Y_s$. Ann. Probab. 24 (1997), 2007-2023.