A Novel Second-Order Scheme for the Molecular Beam Epitaxy Model with Slope Selection

Lizhen Chen¹, Jia Zhao²,* and Yuezheng Gong³

¹ Beijing Computational Science Research Center, Beijing, P.R. China.
² Department of Mathematics & Statistics, Utah State University, Logan, UT, USA.
³ College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.

Received 16 January 2018; Accepted (in revised version) 16 May 2018

Abstract. Molecular beam epitaxy (MBE) is an important and challenging research topic in material science. In this paper, we propose a new fully discrete scheme for the well-celebrated continuum MBE model with slope selection. First of all, we use a multi-step strategy to discretize the MBE model in time. The obtained semi-discrete scheme is proved to possess properties of total mass conservation, unconditionally energy stability and uniquely solvability. The rigorous error estimate is then conducted to show its second-order convergence. The semi-discrete scheme is further discretized in space using the Fourier pseudo-spectral method. The fully discrete scheme is also shown to preserve mass-conservation and energy-dissipation properties. Afterward, several numerical examples are presented to validate the accuracy and efficiency of our proposed scheme. In particular, the scaling law for the roughness growing and effective energy decaying are captured during long-time coarsening dynamic simulations. The idea proposed in this paper could be readily utilized to design accurate and stable numerical approximations for many other energy-based phase field models.

AMS subject classifications: 65N22, 65M12, 65M70

Key words: Phase field, linear scheme, molecular beam epitaxy, energy stable.

1 Introduction

Molecular beam epitaxy (MBE) method is a broadly used approach of thin-film deposition of a single crystal. So this strategy is widely applied in semiconductor manufacture. In recent years, MBE becomes an important and challenging research topic in material science. In the meanwhile, many mathematical models have been developed to study
the epitaxy dynamics, ranging from molecular dynamics simulations to continuum models [1, 6, 11, 16, 18, 20, 23, 24, 29, 32].

In this paper, we focus on one broadly-used continuum model for the MBE, which is derived via an energy variational approach and satisfies an energy dissipation law (i.e., thermodynamically consistent) [23, 24, 33, 35]. Consider a smooth domain \(\Omega \), and use \(\phi(x,t): \Omega \to \mathbb{R} \) to denote the height function of MBE, and the effective free energy is given as

\[
E(\phi) = \int_\Omega \left[\frac{\varepsilon^2}{2} |\Delta \phi|^2 + f(\nabla \phi) \right] d\Omega. \tag{1.1}
\]

Here the first term represents the isotropic surface diffusion effect, and the second term approximates the Enrlich-Schwoebel effect that the adatoms stick to the boundary from an upper terrace, contributing to the steepening of mounds in the film [3]. The evolution equation for \(\phi \) could be derived via a \(L^2 \) gradient flow associated with the effective free energy functional \(E(\phi) \), i.e., the equation reads as

\[
\partial_t \phi = -M \frac{\delta E}{\delta \phi}, \tag{1.2}
\]

where \(M \) is the mobility parameter (with \(\frac{1}{M} \) proportional to the relaxation time). For simplicity of notations, we consider periodic boundary condition in this paper.

If we choose the second term of (1.1) as \(f(\nabla \phi) = -\frac{1}{2} \ln(1+|\nabla \phi|^2) \), the corresponding equation would be

\[
\partial_t \phi = -M \left(\varepsilon^2 \Delta^2 \phi + \nabla \cdot \left(\frac{\nabla \phi}{1+|\nabla \phi|^2} \right) \right), \tag{1.3}
\]

and the energy dissipation rate of (1.2) could be calculated as

\[
\frac{dE}{dt} = -\int_\Omega M \left(\varepsilon^2 \Delta^2 \phi + \nabla \cdot \left(\frac{\nabla \phi}{1+|\nabla \phi|^2} \right) \right)^2 d\Omega. \tag{1.4}
\]

On the other hand, if we choose \(f(\nabla \phi) = \frac{1}{4}(|\nabla \phi|^2 - 1)^2 \), the corresponding equation would become

\[
\partial_t \phi = -M \left(\varepsilon^2 \Delta^2 \phi + \nabla \cdot ((1-|\nabla \phi|^2) \nabla \phi) \right), \tag{1.5}
\]

and the corresponding energy dissipation rate of (1.2) could be calculated as

\[
\frac{dE}{dt} = -\int_\Omega M \left(\varepsilon^2 \Delta^2 \phi + \nabla \cdot ((1-|\nabla \phi|^2) \nabla \phi) \right)^2 d\Omega. \tag{1.6}
\]

In addition, both models (1.3) and (1.5) obey the total mass conservation law

\[
\frac{d}{dt} \int_\Omega \phi(x,t) d\Omega = 0. \tag{1.7}
\]

When the surface gradient \(|\nabla \phi| \) is small (\(|\nabla \phi| \ll 1 \)), by the Taylor expansion, we can easily recognize \(\frac{1}{1+|\nabla \phi|^2} \approx 1 - |\nabla \phi|^2 \). Then model (1.5) could be formally derived from model
These two models (1.3) and (1.5) have been extensively applied to study coarsening dynamics in molecular beam epitaxial growth. The model (1.5) is usually named “MBE model with slope section”, as it has a slope selection preference, i.e., $|\nabla \phi| = 1$ is preferred. Correspondingly, the model (1.3) is usually named “MBE model without slope selection”.

Another view for the two models (1.3) and (1.5) is through conservation of mass. By Fick’s first law, we have

$$\partial_t \phi + \nabla \cdot J = 0,$$

where J is the surface current depending on the macroscopic gradient $\nabla \phi$ of the film surface. For model (1.3), the flux is

$$J = M \left(\varepsilon^2 \nabla \Delta \phi + \frac{1}{1 + |\nabla \phi|^2} \nabla \phi \right),$$

with the first term representing the isotropic surface diffusion due to the surface tension, and the second term representing the kinetic surface current due to the Ehrlich-Schwoebel effect. Similarly, for model (1.5), the flux is given as

$$J = M \left(\varepsilon^2 \nabla \Delta \phi + (1 - |\nabla \phi|^2) \nabla \phi \right).$$

We can easily see the difference between the two models (1.3) and (1.5) lies in the different approximation of Ehrlich-Schwoebel effect.

The two models (1.3) and (1.5) have been intensively investigated both analytically and numerically [2, 3, 9, 10, 17, 19, 22, 23, 26, 27, 30, 31, 33–35]. Define the roughness

$$W(t) = \sqrt{\frac{1}{|\Omega|} \int_{\Omega} \left(\phi(x,t) - \overline{\phi} \right)^2 d\Omega},$$

which is the standard deviation of the height profile, with $\overline{\phi} = \frac{1}{|\Omega|} \int_{\Omega} \phi(x,y,t) d\Omega$. It is shown that the scaling law is $W(t) \sim O(t^{1/2})$ for (1.3), the MBE model without slope section. In the meanwhile, for the MBE model with slope selection (1.5), the roughness $W(t)$ grows like $O(t^{1/3})$ and the energy $E(t)$ decays like $O(t^{-1/3})$ [22]. Thus in order to reach steady state, designing accurate and stable numerical schemes, for the MBE models for conducting long-time dynamic simulations, are essential. A great amount of work have been published in designing numerical schemes for the MBE models, including unconditionally energy stable schemes using convex splitting method [30, 33], adaptive in time method [28], operator splitting strategy [5, 21], invariant energy-quantization (IEQ) approach [2,35], SAV approach [31]. Error analysis have also been conducted [2,4,10,25–27]. The operator splitting strategy is very efficient, but lacks theoretical foundations. The convex splitting schemes are shown to be uniquely solvable and unconditionally energy stable, but at each time step a nonlinear system has to be solved. The IEQ approach and SAV approach provide uniquely solvable linear schemes, which however based on a modified free energy functional.
In this paper, we add to these available numerical schemes with a new one. Inspired by the framework in [7], we propose a multi-step method for solving the MBE model with slope selection. The inspiring work in [7] provides an elegant approach for developing conservative numerical integrators for dispersive partial differential equations with polynomial nonlinearities. We apply it for the MBE model with slope selection. Our newly proposed numerical scheme is linear, such that we only need to solve a linear algebra problem at every time marching step. The scheme is second-order in time and proven to be unconditionally energy stable and uniquely solvable, such that large time step is durable for long-time dynamic simulation. To our best knowledge, this efficient and accurate multi-step scheme for the MBE model has never been studied. Thus, the results in this paper provide a new contribution to the numerical analysis of MBE models.

The rest of the paper is organized as follows. In Section 2, we develop the numerical scheme and prove its unconditional energy stability, unique solvability and error estimate in the semi-discretized case in time, and we discrete the space using Fourier pseudo-spectral method. In Section 3, we present some numerical simulations to demonstrate the accuracy and efficiency of the proposed scheme. Finally, some concluding remarks are presented in Section 4.

2 Numerical schemes

Here we briefly recall the MBE model with slope selection and present the numerical scheme afterward. Denote \(\Omega \) the computational domain. Let \(\phi \) represents the epitaxy surface height, \(\varepsilon \) be a model parameter controlling the strength of surface diffusion, and \(M \) be the mobility coefficient. The MBE model reads

\[
\begin{cases}
\partial_t \phi(x,t) = -M \left(\varepsilon^2 \Delta^2 \phi - \nabla \cdot \left((|\nabla \phi|^2 - 1) \nabla \phi \right) \right), & (x,t) \in \Omega \times (0,T], \\
\phi(x,0) = \phi_0, & x \in \Omega,
\end{cases}
\]

(2.1)

with the periodic boundary condition or any other proper boundary condition that can satisfy the flux free condition at the boundary \(\partial_n \phi |_{\partial \Omega} = 0 \) and \(\partial_n \Delta \phi |_{\partial \Omega} = 0 \), where \(n \) is the outward normal on the boundary.

The model (2.1) has two major properties. First of all, we can easily obtain the mass conservation property

\[
\frac{d}{dt} \int_\Omega \phi(x,t) d\Omega = 0.
\]

(2.2)

Secondly, the model is thermodynamically consistent in the sense that its energy is dissipative in time. As a matter of fact, the energy dissipation rate could be calculated as

\[
\frac{dE(t)}{dt} = \int_\Omega \left(\frac{\delta E}{\delta \phi} \frac{\delta \phi}{\partial t} \right) d\Omega = -\int_\Omega M \left(\varepsilon^2 \Delta^2 \phi - \nabla \cdot \left((|\nabla \phi|^2 - 1) \nabla \phi \right) \right)^2 d\Omega.
\]

(2.3)

Thus, we would like to propose an accurate and efficient numerical scheme to preserve the properties: (1) mass conservation; (2) energy dissipation. So the results calculated
via the discrete numerical scheme would be physically consistent. Such kinds of numerical schemes that preserve the non-negative energy dissipation law are unusually named energy stable numerical approximations [8, 13–15, 36–38].

2.1 The new multi-step Crank-Nicolson scheme

Next, we propose the semi-discrete numerical approximations to the MBE model (2.1). For simplicity of notation, we assume periodic boundary condition. Here we present a second-order in time, unconditionally energy stable scheme based on a multi-step Crank-Nicolson time discretization approach. The temporal semi-discrete scheme reads

Scheme 2.1. Given the initial condition $\phi^0 = \phi_0$, we calculate ϕ^1 via a first order time marching scheme with smaller time steps, such that ϕ^1 is second-order accurate in term of δt. For instance, we update $\phi^1 = \tilde{\phi}^1_N$, where

$$
\frac{\tilde{\phi}^1_{i+1} - \tilde{\phi}^1_{i}}{\delta t} = -M \left[2\Delta^2 \tilde{\phi}^1_{i+1} - \nabla \cdot (|\nabla \tilde{\phi}^1_{i}|^2 \nabla \tilde{\phi}^1_{i+1}) + \Delta \tilde{\phi}^1_{i+1} \right], \quad i = 0, 1, \ldots, N-1,
$$

with $\delta t = \frac{\delta t}{1 + 1}$, $N = \left[\frac{1}{\delta t} \right]$ and $\tilde{\phi}^1_0 = \phi^0$. After we obtained ϕ^n, ϕ^{n+1}, $\forall n \geq 0$, we update ϕ^{n+2} via

$$
\frac{\phi^{n+2} - \phi^n}{2\delta t} = -M \left[2\Delta^2 \phi^{n+2} + \phi^n \right] - \nabla \cdot \left(|\nabla \phi^{n+1}|^2 \nabla \frac{\phi^{n+2} + \phi^n}{2} \right) - \gamma \Delta \phi^{n+2} + \phi^n + (1 + \gamma) \Delta \phi^{n+1},
$$

where $\gamma \geq 0$ is a regularization parameter.

Theorem 2.1. Under the periodic boundary condition, Scheme 2.1 possesses the discrete mass conservation law

$$(\phi^n, 1) = (\phi^0, 1), \quad \forall n \geq 0.
$$

Proof. Computing the inner product of Eq. (2.5) with $2\delta t$ and using some proper integration formulas, we have

$$(\phi^{n+2}, 1) = (\phi^n, 1), \quad \forall n \geq 0.
$$

Similarly, we can deduce from (2.4)

$$(\phi^1, 1) = (\phi^0, 1).
$$

Therefore, it holds

$$(\phi^n, 1) = (\phi^0, 1), \quad \forall n \geq 0.
$$

This completes the proof.

Theorem 2.2. For Scheme 2.1, there exists a unique solution $\phi^{n+2} \in H^2_{per}(\Omega)$, $\forall n \geq 0$.

Proof. First of all, let us look at the Scheme 2.1. For any $n \geq 0$, it is equivalent to solve a linear system

$$T\phi = f,$$ \hspace{1cm} (2.9)

where the linear operator T and right-hand-side f are given as

$$T\phi = \frac{1}{2\delta t}\Delta^2\phi - \frac{1}{2}\nabla \cdot (|\nabla \phi|^2\nabla \phi) - \frac{\gamma}{2}\Delta \phi,$$

$$f = \frac{1}{2\delta t}\Delta^2\phi - \frac{1}{2}\nabla \cdot (|\nabla \phi|^2\nabla \phi) - \frac{\gamma}{2}\Delta \phi + (1 + \gamma)\Delta \phi + 1.$$ \hspace{1cm} (2.10)

Then the weak form of (2.9) reads as, find $\phi \in H^2_{per}(\Omega)$ such that

$$a(\phi, \psi) = f(\psi), \hspace{1cm} \forall \psi \in H^2_{per}(\Omega),$$ \hspace{1cm} (2.10)

where $\phi^n, \phi^{n+1} \in H^2_{per}(\Omega)$ and

$$a(\phi, \psi) = \frac{1}{2\delta t}(\phi, \psi) + \frac{Me^2}{2}(\Delta \phi, \Delta \psi) + \frac{M}{2}(|\nabla \phi^{n+1}|^2\nabla \phi, \nabla \psi) + \frac{M\gamma}{2}(\nabla \phi, \nabla \psi),$$

$$f(\psi) = (f, \psi).$$

It could be easily verified that the bilinear form $a(\cdot, \cdot)$ is continuous and coercive, and the linear form f is continuous. Using the Lax-Milgram theorem, we obtain that there exists a unique solution $\phi^{n+2} \in H^2_{per}(\Omega)$ in (2.10), for all $n \geq 0$. This completes the proof. \hfill \square

Theorem 2.3. Under the periodic boundary condition, Scheme 2.1 satisfies the following discrete energy dissipation law

$$\frac{E[\phi^{n+1}, \phi^{n+2}] - E[\phi^n, \phi^{n+1}]}{\delta t} = -\frac{1}{M}\left\|\frac{\phi^{n+2} - \phi^n}{2\delta t}\right\|^2, \hspace{1cm} \forall n \geq 0, \hspace{1cm} (2.11)$$

where the discrete free energy is defined as

$$E[\phi^n, \phi^{n+1}] = \frac{\varepsilon^2}{4}(\|\Delta \phi^n\|^2 + \|\Delta \phi^{n+1}\|^2) + \frac{1}{4}(\|\nabla \phi^n\|^2 + \|\nabla \phi^{n+1}\|^2)$$

$$+ \frac{\gamma}{4}(\|\nabla \phi^n\|^2 + \|\nabla \phi^{n+1}\|^2) - \frac{1 + \gamma}{2}((\nabla \phi^n, \nabla \phi^{n+1}) + (\frac{1}{4}, 1).$$
Proof. By a straightforward calculation, we have

\[
E[\phi^{n+1}, \phi^{n+2}] - E[\phi^n, \phi^{n+1}]
\]
\[
= \frac{1}{4} (|| \Delta \phi^{n+2} ||^2 - || \Delta \phi^n ||^2) + \frac{1}{4} (|| \nabla \phi^{n+2} ||^2 - || \nabla \phi^n ||^2)
\]
\[
+ \frac{1}{4} (|| \nabla \phi^{n+2} ||^2 - || \nabla \phi^n ||^2) - \frac{1}{2} (\Delta \phi^{n+2} - \Delta \phi^n, \nabla \phi^{n+1})
\]
\[
= \frac{\varepsilon^2}{4} (\Delta(\phi^{n+2} + \phi^n), \Delta(\phi^{n+2} - \phi^n)) + \frac{1}{4} (|| \nabla \phi^{n+1} ||^2 \nabla(\phi^{n+2} + \phi^n), \nabla(\phi^{n+2} - \phi^n))
\]
\[
+ \frac{\gamma}{4} (\nabla(\phi^{n+2} + \phi^n), \nabla(\phi^{n+2} - \phi^n)) - \frac{1+\gamma}{2} (\Delta \phi^{n+1}, \phi^{n+2} - \phi^n)
\]
\[
= \delta t \left(\frac{\varepsilon^2 \Delta \phi^{n+2} + \phi^n}{2} - \nabla \cdot \left(\frac{|| \nabla \phi^{n+1} ||^2 \nabla \phi^{n+2} + \phi^n}{2} \right) \right.
\]
\[
\left. - \gamma \Delta \phi^{n+2} + \phi^n \right) + (1+\gamma)\Delta \phi^{n+1}, \frac{\phi^{n+2} - \phi^n}{2\delta t}
\]
\[
= - \frac{\delta t}{M} \left\| \phi^{n+2} - \phi^n \right\|^2,
\]

where some integration formulas and Eq. (2.5) are used. This completes the proof. \(\square\)

Remark 2.1. It could be easily seen that \(E[\phi^n, \phi^{n+1}]\) (for all \(n \geq 0\)) is bounded from below, by noticing the fact

\[
\frac{1}{4} \nabla \phi^n \nabla \phi^{n+1} \geq \frac{1}{2} \nabla \phi^n \cdot \nabla \phi^{n+1} + \frac{1}{4} \left(\nabla \phi^n \cdot \nabla \phi^{n+1} - 1 \right)^2 \geq 0
\]

and

\[
\frac{\gamma}{4} (|| \nabla \phi^n ||^2 + || \nabla \phi^{n+1} ||^2) - \frac{\gamma}{2} \nabla \phi^n \cdot \nabla \phi^{n+1} = \frac{\gamma}{4} \left| \nabla \phi^n - \nabla \phi^{n+1} \right|^2 \geq 0, \quad \forall \gamma \geq 0.
\]

2.2 Error analysis

To simplify the notations, we let \(M = \varepsilon = 1\) in the below without loss of generality. We use \(x \lesssim y\) to denote there exists a constant \(C\) that is independent of \(\delta t\) and \(n\) such that \(x \leq Cy\). Denote \(L^p(\Omega)\) the usual Lebesgue space on \(\Omega\) with the norm \(\| \cdot \|_{L^p}\). The inner product and norm in \(L^2(\Omega)\) are denoted by \((\cdot, \cdot)\) and \(\| \cdot \|\), respectively. \(W^{k,p}(\Omega)\) stands for the standard Sobolev spaces equipped with the standard Sobolev norms \(\| \cdot \|_{k,p}\). For \(p = 2\), we write \(H^k(\Omega)\) for \(W^{k,2}(\Omega)\), and the corresponding norm is \(\| \cdot \|_k\).
Lemma 2.1. Under the regularity conditions

\[\| \Delta^2 \phi (t_{n+2}) + \phi (t_n) \|_2 \leq C \| \phi (t_{n+2}) + \phi (t_n) \|_2 \]

Then by the Sobolev inequality \(\| \phi (t_{n+2}) + \phi (t_n) \|_2 \leq C \| \phi (t_{n+2}) + \phi (t_n) \|_2 \). With the help of Lemma 2.1, we further have

\[\| \phi (t_{n+2}) - \phi (t_n) \|_2 \leq C \| \phi (t_{n+2}) + \phi (t_n) \|_2 \]

Proof. From (2.11), there exists a constant \(C \) such that

\[\| \Delta \phi (t_{n+2}) + \phi (t_n) \|_2 \leq C \| \phi (t_{n+2}) + \phi (t_n) \|_2 \]

Noticing the mass conservation \(\int_\Omega \phi (t_{n+2}) d\Omega = \text{constant} \), we have \(\phi (t_{n+2}) \in H^2_{\text{per}} (\Omega), \forall n \geq 0 \).

Then by the Sobolev inequality

\[\| \phi^2 \|_{\infty} \leq C_\Omega \| \phi^2 \|_{L^1} \leq C_\Omega \| \phi^2 \|_{L^2} \]

where \(C_\Omega \) is a constant that only depends on \(\Omega \). This means that \(\phi^2 \in L^\infty_{\text{per}} (\Omega), \forall n \geq 0 \).

Lemma 2.2. The numerical solution \(\phi^n \), \(\forall n \geq 0 \), from Scheme 2.1 has an \(H^2_{\text{per}} (\Omega) \) bound, thus it is \(L^\infty_{\text{per}} (\Omega) \) bounded.

Proof. From (2.11), there exists a constant \(C \) such that

\[\| \Delta \phi (t_{n+2}) + \phi (t_n) \|_2 \leq C \| \phi (t_{n+2}) + \phi (t_n) \|_2 \]

Then by the Sobolev inequality

\[\| \phi^2 \|_{\infty} \leq C_\Omega \| \phi^2 \|_{L^1} \leq C_\Omega \| \phi^2 \|_{L^2} \]

where \(C_\Omega \) is a constant that only depends on \(\Omega \). This means that \(\phi^2 \in L^\infty_{\text{per}} (\Omega), \forall n \geq 0 \).
To derive the error estimates, we denote the error functions as
\[e^n = \phi(t_n) - \phi^n. \] (2.16)

By subtracting (2.14) from (2.5), we derive the error equations:
\[
\frac{e^{n+2} - e^n}{2\delta t} + \Delta^2 e^{n+2} + e^n - \gamma \Delta e^{n+2} + e^n = \gamma e^{n+1} + (1 + \gamma) \Delta e^{n+1}
\]
\[+ \nabla \cdot \left(|\nabla \phi(t_{n+1})|^2 \nabla \frac{\phi^{n+2} + \phi^n}{2} \right) + R_{n+1}. \] (2.17)

Theorem 2.4. Under the regularity conditions of (2.15), for \(0 \leq m \leq \left\lfloor \frac{T}{\delta t} \right\rfloor - 1 \), it holds
\[\| \Delta e^{n+1} \|^2 + \gamma \| \nabla e^{n+1} \|^2 \leq \delta t^4. \] (2.18)

Proof. Here we present the proof by induction. Given \(\| \Delta e^k \|^2 + \gamma \| \nabla e^k \|^2 \leq \delta t^4, \forall k \leq m \), we are going to show \(\| \Delta e^{m+1} \|^2 + \gamma \| \nabla e^{m+1} \|^2 \leq \delta t^4 \).

By taking the \(L^2 \) inner product of (2.17) with \(2\delta t (e^{n+2} - e^n) \), we obtain
\[
\| e^{n+2} - e^n \|^2 + \delta t \left(\| \Delta e^{n+2} \|^2 - \| \Delta e^n \|^2 \right) + \gamma \delta t \left(\| \nabla e^{n+2} \|^2 - \| \nabla e^n \|^2 \right) = 2(1 + \gamma) \delta t (\nabla e^{n+1}, \nabla (e^{n+2} - e^n))
\]
\[- \delta t \left(|\nabla \phi(t_{n+1})|^2 \nabla (e^{n+2} + e^n), \nabla (e^{n+2} - e^n) \right) - \delta t \left(\left| \nabla \phi(t_{n+1}) \right|^2 - |\nabla \phi^n|^2 \right) \nabla (\phi^{n+2} + \phi^n), \nabla (e^{n+2} - e^n) \right)
\]
\[+ 2\delta t (R_{n+1}, e^{n+2} - e^n). \]

We estimate the terms on the right hand side one by one as follows. For the first term, we have
\[2(1 + \gamma) \delta t (\nabla e^{n+1}, \nabla (e^{n+2} - e^n)) \leq \delta t^2 \| \Delta e^{n+1} \|^2 + \frac{1}{4} \| e^{n+2} - e^n \|^2, \] (2.19)
and for the second term, we have
\[
- \delta t \left(|\nabla \phi(t_{n+1})|^2 \nabla (e^{n+2} + e^n), \nabla (e^{n+2} - e^n) \right) \leq \delta t^2 \left(\| \Delta e^{n+2} \|^2 + \| \Delta e^n \|^2 + \| \nabla e^{n+2} \|^2 + \| \nabla e^n \|^2 \right) + \frac{1}{4} \| e^{n+2} - e^n \|^2. \] (2.20)

Notice that the fact
\[
\left| (\nabla \phi(t_{n+1}))^2 - (\nabla \phi^n)^2 \right| \leq \left| \nabla \phi(t_{n+1}) - \nabla \phi^{n+1} \right| \left| \nabla \phi^{n+1} + \nabla \phi(t_{n+1}) \right|
\]
\[= \left| \nabla \phi(t_{n+1}) - \nabla \phi^n \right| \left| \nabla \phi^{n+1} - \nabla \phi(t_{n+1}) + 2 \nabla \phi(t_{n+1}) \right| \leq \delta t^2, \] (2.21)
by acknowledging Lemma 2.2. Then for the third term, we have

\[-\delta t (|\nabla \phi(t_{n+1})|^2 - |\nabla \phi^{n+1}|^2) \leq \delta t^2 (|\nabla e^{n+2} + \phi(t_{n+2}) + \phi(t_n)|, \nabla (e^{n+2} - e^n)) \leq \delta t^2 (|\nabla e^{n+2} + e^n + \phi(t_n)|, \nabla |\nabla e^{n+2} - e^n|) \leq \delta t^2 (||\Delta e^{n+2}||^2 + ||\Delta e^n||^2) + \delta t^2 + \frac{1}{4} ||e^{n+2} - e^n||^2.\] (2.22)

For the last term, we have

\[2\delta t (R^{n+1}, e^{n+2} - e^n) \leq \delta t^2 ||R^{n+1}||^2 + \frac{1}{4} ||e^{n+2} - e^n||^2.\] (2.23)

By combining the above estimates, we obtain

\[||\Delta e^{n+2}||^2 - ||\Delta e^n||^2 + \gamma \left(||\nabla e^{n+2}||^2 - ||\nabla e^n||^2\right) \leq \delta t (||\Delta e^{n+2}||^2 + ||\Delta e^n||^2 + ||\nabla e^{n+2}||^2 + ||\nabla e^n||^2 + ||R^{n+1}||^2).\] (2.24)

Summing up the above inequality from \(n = 0\) to \(m \leq \left\lfloor \frac{T}{\delta t} \right\rfloor - 1\), using Lemma 2.1 and dropping some unnecessary terms, we obtain

\[||\Delta e^{m+1}||^2 + \gamma ||\nabla e^{m+1}||^2 \leq \delta t \sum_{n=0}^{m} (||\Delta e^{n+1}||^2 + \gamma ||\nabla e^{n+1}||^2) + \delta t^4.\] (2.25)

For the first step \(\phi^1\), we can use similar analysis and obtain

\[||\Delta e^1||^2 + \gamma ||\nabla e^1||^2 \leq (\delta t)^2 \leq \delta t^4.\] (2.26)

Thus, the induction can start.

By applying the discrete Gronwall Lemma to the inequality (2.25), we have

\[||\Delta e^{m+1}||^2 + \gamma ||\nabla e^{m+1}||^2 \leq \delta t^4,\] (2.27)

which concludes the theorem. \(\square\)

2.3 Fourier pseudospectral discretization in space

Since the periodic boundary condition is considered in this paper, it is nature to employ the Fourier pseudospectral method for spatial discretization. Let \(N_x, N_y\) be two positive even integers. The spatial domain \(\Omega = [0, L_x] \times [0, L_y]\) is uniformly partitioned with mesh size \(h_x = L_x / N_x, h_y = L_y / N_y\) and

\[\Omega_h = \{(x_j, y_k) \mid x_j = jh_x, y_k = kh_y, 0 \leq j \leq N_x - 1, 0 \leq k \leq N_y - 1\}.\]
Let \(V_h = \{ u | u = \{ u_{j,k} | (x_j, y_k) \in \Omega_h \} \} \) be the space of grid functions on \(\Omega_h \). For any two matrix grid functions \(F,G (F_{m,n}, G_{m,n} \in V_h) \), define the discrete inner product and norm as follows

\[
(F,G)_h = \sum_{m,n} \sum_{j,k} (F_{m,n})_{j,k} (G_{m,n})_{j,k} h_x h_y, \quad \|F\|_h = (F,F)_h^{1/2}.
\]

We define

\[
S_N = \text{span}\{X_j(x)Y_k(y), j = 0,1,\ldots,N_x - 1; k = 0,1,\ldots,N_y - 1\}
\]

as the interpolation space, where \(X_j(x) \) and \(Y_k(y) \) are trigonometric polynomials of degree \(N_x/2 \) and \(N_y/2 \), given respectively by

\[
X_j(x) = \frac{1}{N_x} \sum_{m=-N_x/2}^{N_x/2} a_m \frac{1}{a_m} e^{i\mu_x (x-x)}, \quad (2.28)
\]

\[
Y_k(y) = \frac{1}{N_y} \sum_{m=-N_y/2}^{N_y/2} b_m \frac{1}{b_m} e^{i\mu_y (y-y)}, \quad (2.29)
\]

where

\[
a_m = \begin{cases} 1, & |m| < N_x/2, \\ 2, & |m| = N_x/2, \end{cases} \quad b_m = \begin{cases} 1, & |m| < N_y/2, \\ 2, & |m| = N_y/2, \end{cases}
\]

and \(\mu_x = 2\pi/L_x, \mu_y = 2\pi/L_y \). We define the interpolation operator \(I_N : C(\Omega) \to S_N \) as follows:

\[
I_N u(x,y) = \sum_{j=0}^{N_x-1} \sum_{k=0}^{N_y-1} u_{j,k} X_j(x)Y_k(y), \quad (2.30)
\]

where \(u_{j,k} = u(x_j,y_k) \).

To obtain derivative \(\partial^2_x \partial^2_y I_N u(x,y) \) at collocation points, we differentiate (2.30) and evaluate the resulting expressions at point \((x_j,y_k) \):

\[
\partial^2_x \partial^2_y I_N u(x_j,y_k) = \sum_{m_1=0}^{N_x-1} \sum_{m_2=0}^{N_y-1} u_{m_1,m_2} (D^x_{m_1})_{j,m_1} (D^y_{m_2})_{k,m_2},
\]

where \(D^x_{m_1} \) and \(D^y_{m_2} \) are \(N_x \times N_x, N_y \times N_y \) matrices, respectively, with elements given by

\[
(D^x_{m_1})_{j,m} = \frac{d^2 X_m(x_j)}{dx^{m_1}}, \quad (D^y_{m_2})_{k,m} = \frac{d^2 Y_m(y_k)}{dy^{m_2}}.
\]

Define two operators \(\otimes \) and \(\odot \) as follows:

\[
(A \otimes u)_{j,k} = \sum_{m=0}^{N_x-1} A_{j,m} u_{m,k},
\]

\[
(B \odot u)_{j,k} = \sum_{m=0}^{N_y-1} B_{k,m} u_{j,m},
\]
where \(u \in V_h \). It is easy to show that the two operators possess the following properties:
\[
A \otimes B u = B \otimes A u, \\
A @ B @ u = (AB) @ u, \quad @ = \otimes \text{ or } \otimes.
\]
Then we have
\[
\partial_x \partial_y^2 u(x_j, y_k) = (D_x^y \otimes D_y^x u)_{j,k}.
\]

Lemma 2.3 ([12]). Denote
\[
\Lambda_{\alpha,s} = \begin{cases}
 \sum_{\mu} \alpha \text{diag}\left(0, 1, \cdots, \frac{N}{2} - 1, 0, \cdots, \frac{N}{2} + 1, \cdots, -1\right), & \text{when } s \text{ odd}, \\
 \sum_{\mu} \alpha \text{diag}\left(0, 1, \cdots, \frac{N}{2} - 1, \frac{N}{2}, \cdots, \frac{N}{2} + 1, \cdots, -1\right), & \text{when } s \text{ even},
\end{cases}
\]
\(\alpha = x \text{ or } y \),
we have
\[
D_s^{\alpha} = F_{N_{\alpha}}^{-1} \Lambda_s^x \otimes F_{N_{\alpha}},
\]
(2.31)
where \(F_{N_{\alpha}} \) is the discrete Fourier transform, and \(F_{N_{\alpha}}^{-1} \) is the discrete inverse Fourier transform.

Remark 2.3. With the help of (2.31), we can evaluate the derivatives by using the FFT algorithm instead of the spectral differentiation matrix.

Remark 2.4. If \(s \) is odd, \(D_s^x \) is a real antisymmetric matrix; if \(s \) is even, \(D_s^x \) is a real symmetric matrix.

In order to derive the algorithm conveniently, we define discrete gradient operators and the discrete Laplace operator as follows
\[
\nabla_h = \begin{pmatrix} D_x^y \otimes \nabla \nabla_h \cdot \nabla_h = (D_x^y)^2 \otimes + (D_y^x)^2 \otimes.
\end{pmatrix}
\]
Applying the Fourier pseudospectral method in space to the system (2.5), we obtain the following fully discrete scheme:

Scheme 2.2. Give the initial condition \(\phi^0 = \phi_0 \in V_h \). After we obtained \(\phi^n, \phi^{n+1} \in V_h \), we update \(\phi^{n+2} \in V_h \) via
\[
\frac{\phi^{n+2} - \phi^n}{2\delta t} = -M \left(\varepsilon^2 \Delta_h^2 \phi^{n+2} + \phi^n \right) - \nabla_h \cdot \left(\nabla_h \phi^{n+1} |^2 \nabla_h \phi^{n+2} + \phi^n \right) - \gamma \Delta_h \frac{\phi^{n+2} + \phi^n}{2} + (1 + \gamma) \Delta_h \phi^{n+1},
\]
(2.32)
where \(\gamma \geq 0 \).
Next we present some useful results and prove that Scheme 2.2 possesses the discrete mass conservation and energy dissipation laws.

Lemma 2.4. For real matrix $A \in \mathbb{R}_{N_a \times N_a}$, $a = x$ or y, and $u,v \in V_h$,
\[
(A \odot u, v)_h = (u, A^T \odot v)_h. \tag{2.33}
\]

Using anti-symmetry of D_a^1 ($a=x$ or y) and the identity (2.33), we obtain the following discrete integration-by-parts formulae:
\[
(f, D_a^1 \odot g)_h + (D_a^1 \odot f, g)_h = 0, \tag{2.34}
\]
and
\[
(f, \nabla_h \cdot v)_h + (\nabla_h f, v)_h = 0. \tag{2.35}
\]

Due to the discrete integration-by-parts formula (2.35), we have the following theorem.

Theorem 2.5. Scheme 2.2 conserves the discrete mass conservation law
\[
(\phi^n, 1)_h = (\phi^0, 1)_h, \tag{2.36}
\]
and the following discrete energy dissipation law
\[
\frac{E_h[\phi^{n+1}, \phi^{n+2}] - E_h[\phi^n, \phi^{n+1}]}{\delta t} = \frac{1}{M} \left\| \frac{\phi^{n+2} - \phi^n}{2 \delta t} \right\|^2_h, \quad \forall n \geq 0, \tag{2.37}
\]
where
\[
E_h[\phi^n, \phi^{n+1}] = \frac{\epsilon^2}{4} \left(\left\| \Delta_h \phi^n \right\|^2_h + \left\| \Delta_h \phi^{n+1} \right\|^2_h \right) + \frac{1}{4} \left(\left\| \nabla_h \phi^n \right\|^2_h \left\| \nabla_h \phi^{n+1} \right\|^2_h \right)_h
\]
\[+ \frac{\gamma}{4} \left(\left\| \nabla_h \phi^n \right\|^2_h + \left\| \nabla_h \phi^{n+1} \right\|^2_h \right) - \frac{1+\gamma}{2} \left(\nabla_h \phi^n, \nabla_h \phi^{n+1} \right)_h + \left(\frac{1}{4} \right)_h.
\]

Proof. The proof for the fully discrete case is analogous to that of Theorems 2.1-2.3 and thus is omitted. \(\square \)

3 Numerical results

In this section, we will give several numerical simulations of the MBE model by the Scheme 2.2. The efficiency and accuracy of the proposed numerical scheme will be demonstrated as well. We choose periodic boundary conditions on the square domain $[0,L]^2$ in this paper, and use the roughness measure function in (1.11).
3.1 Accuracy test

Consider the MBE model (2.1) with the initial condition
\[
\phi(x,y,t=0) = 0.1(\sin 3x \sin 2y + \sin 5x \sin 5y).
\] (3.1)

We take the computational domain as \([0,2\pi]^2\). Furthermore, the space is discretized by 128 \times 128 grid points.

Firstly, we begin with time accuracy test for the Scheme 2.2. We use numerical results of Scheme 2.2 with \(\gamma = 0, \delta t = 2 \times 10^{-5}\) and \(N = 128\) as the exact solution since the exact solution for MBE growth model is unknown. We take \(\varepsilon = 1\) and compute the numerical errors at \(t = 1\). Table 1 lists the \(L^2\)-errors versus time step \(\delta t\) for the MBE growth model using the Scheme 2.2 with \(\gamma = 0, 1, 2, 5\). We can observe that the expected second order convergence rate in time is obtained with different stabilized parameter \(\gamma\).

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\delta t)</th>
<th>(L^2)-error</th>
<th>Order</th>
<th>(\delta t)</th>
<th>(L^2)-error</th>
<th>Order</th>
<th>(\delta t)</th>
<th>(L^2)-error</th>
<th>Order</th>
<th>(\delta t)</th>
<th>(L^2)-error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(8.0 \times 10^{-4})</td>
<td>2.039e-08</td>
<td>-</td>
<td>1.826e-08</td>
<td>-</td>
<td>1.983e-08</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>4.0 \times 10^{-4}</td>
<td>5.657e-09</td>
<td>1.850</td>
<td>4.598e-09</td>
<td>1.971</td>
<td>4.677e-09</td>
<td>1.993</td>
<td>4.988e-09</td>
<td>1.991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>(2.0 \times 10^{-4})</td>
<td>1.588e-09</td>
<td>1.832</td>
<td>1.149e-09</td>
<td>2.064</td>
<td>1.163e-09</td>
<td>2.06</td>
<td>1.202e-09</td>
<td>2.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>(1.0 \times 10^{-4})</td>
<td>3.907e-10</td>
<td>2.023</td>
<td>2.833e-10</td>
<td>1.999</td>
<td>2.845e-09</td>
<td>2.032</td>
<td>3.031e-09</td>
<td>2.033</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Example 1

Here we present a classical example by using the initial condition (3.1) and choosing \(\varepsilon^2 = 0.1\). In Fig. 1, we show the contour lines of the numerical solutions \(\phi\) up to the steady state \((t = 30)\) by Scheme 2.2. The transient dynamics agrees qualitatively well with those in published literatures, for instance [23, 33, 35].

In addition, the evolution of energy curves and the roughness are plotted in Fig. 2 and Fig. 3, respectively. We observe four transitions in the energy curve and roughness curve corresponding to the results in Fig. 1. These also agree quantitatively well with those in literature.

At the same time, we give the time evolution of the energy when \(t \in [0,15]\) with different time step \(\delta t\) and stabilizer \(\gamma\), shown in Fig. 4. Also, we enlarge time evolution of the energy with different time step and \(\gamma\) at time region \([0,0.012]\) (left) and \([4,12]\) (right) respectively (shown in Fig. 5), since the energy are decaying rapidly between this two time intervals. From Fig. 5, we observe the energy evolution is very close to the exact one with time step \(\delta t = 10^{-4}\), and \(\delta t = 10^{-3}\) by adding stabilizer \(\gamma = 1.0\). However, the results with \(\delta t = 10^{-3}\) without adding stabilizer \(\gamma\) is not accurate enough. Therefore, the stabilizer \(\gamma\) is crucial to the accuracy of the energy evolution.
Figure 1: The isolines of numerical solutions of the height function ϕ for the MBE growth model. With $\epsilon^2=0.1$, $\gamma=20$ and time step $\delta t=0.001$. Snapshots are taken at $t=0$, 0.05, 2.5, 5.5, 8, 30, respectively.

Figure 2: Time evolution of the energy for the MBE growth model when $t \in [0,30]$. The time step is set at $\delta t=10^{-3}$ and $\gamma=0$.

3.3 Example 2

In this example, we perform numerical simulations of coarsening dynamics in the domain $[0,L]^2$ with $L=12.8$ and $\epsilon=0.03$. The initial condition is a random state by assigning a random number which varies from -0.001 to 0.001 to each grid point.
Define δt_c as the largest possible time step which allows stable numerical computation. In Table 2, we list the values of δt_c for the MBE growth model using Scheme 2.2 with different stabilized parameter γ. The semi-discrete Scheme 2.1 is approximated by

<table>
<thead>
<tr>
<th>γ</th>
<th>0.0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>δt_c</td>
<td>$0.003 < \delta t_c < 0.004$</td>
<td>$0.01 < \delta t_c < 0.02$</td>
<td>$0.1 < \delta t_c < 0.2$</td>
<td>$\delta t_c > 1$</td>
</tr>
</tbody>
</table>
Figure 5: Enlarge time evolution of the energy for the MBE growth model with different time step and γ at time region \([0,0.012]\) (left) and \([4,12]\) (right) respectively.

Figure 6: Time evolution of the energy (left) and roughness (right) for the MBE growth model with random number condition when \(t \in [0.1,100]\) respectively. We observe that the energy decrease approximately like \(t^{-\frac{1}{3}}\) and the growth rate of the roughness function is \(t^{\frac{1}{3}}\).

The Fourier spectral methods in space with Fourier mode number \(N=512\). Table 2 demonstrate that the improvement on stability with the use of γ is significant and the scheme is unconditional stable when γ is sufficiently large.

In Fig. 6, we plot the time evolution of the energy (left) and roughness (right) with random number condition when \(t \in [0.1,100]\) respectively. We observe that the energy decrease approximately like \(t^{-\frac{1}{3}}\) and the growth rate of the roughness function is \(t^{\frac{1}{3}}\).

The contour lines of numerical solutions of the height function \(\phi\) and its Laplacian \(\Delta \phi\) for the MBE growth model with random initial condition are shown in Fig. 7. The time step is \(\delta t = 0.0001\). Snapshots are taken at \(t = 0,1,10,50,100,500\), respectively.
4 Conclusion

In this paper, we propose a new linear numerical scheme to solve the MBE model with slope selection by using a multi-step time discretization and Fourier pseudo-spectral method in space. This new second-order linear scheme is shown to be mass conserving, unconditionally energy stable and uniquely solvable. The error estimate is presented to show the second-order accurate in time. This newly proposed scheme is easy to implement and practical for long-time dynamics simulations. Several numerical tests are presented to verify the accuracy and efficiency. In addition, the idea used in developing this scheme can be readily applied to design accurate and stable linear numerical approximations for other energy-based thermodynamic consistent models.
Acknowledgments

Lizhen Chen would like to acknowledge the support from National Science Foundation of China through Grant 11671166 and U1530401, Postdoctoral Science Foundation of China through Grant 2015M580038. Jia Zhao’s work is partially supported by National Science Foundation under grant number NSF DMS-1816783 and a seed grant (Research Catalyst Grant) from Office of Research and Graduate Studies at Utah State University. Yuezheng Gong’s work is partially supported by the foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems (201703), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180413) and the National Natural Science Foundation of China (Grant No. 11801269).

References

[34] C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth