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Abstract. In error estimates of various numerical approaches for solving decoupled for-

ward backward stochastic differential equations (FBSDEs), the rate of convergence for

one variable is usually less than for the other. Under slightly strengthened smoothness

assumptions, we show that the fully discrete Euler scheme admits a first-order rate of

convergence for both variables.
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1. Introduction

On a filtered complete probability space (Ω,F , (Ft )0¶t¶T , P) whereFt is generated by

the standard Brownian motion Ws, 0¶ s ¶ t and T is a fixed time horizon, we consider the

decoupled forward-backward stochastic differential equations (FBSDEs):

dX t = b(t, X t ) d t +σ(t, X t) dWt , X0 = x0 , (1.1)

− d yt = f (t, X t , yt , zt) d t − zt dWt , yT = g(XT ) , (1.2)

where X0 = x0 is the initial condition of the forward equation, yT = g(XT ) is the terminal

condition of the backward equation, and b,σ, f and g are deterministic functions in R. A

triple (X t , yt , zt) : [0, T ] × Ω → R × R × R is called a solution of Eqs. (1.1) and (1.2) if
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its components are Ft -adapted, square integrable, and satisfy the respective forward and

backward integral equations

X t = X0 +

∫ t

0

b(s, X s) ds+

∫ t

0

σ(s, X s) dWs , t ∈ [0, T ] ,

yt = g(XT ) +

∫ T

t

f (s, X s, ys, zs) ds−
∫ T

t

zs dWs , t ∈ [0, T ] ,

where the two integrals with respect to the Brownian motion Ws are Itô-type.

Pardoux & Peng [10] proved the existence and uniqueness of the solution of nonlinear

backward stochastic differential equations (BSDEs) with the FT -measurable terminal con-

dition ξ, and Peng [12] gave the following probabilistic representation for the nonlinear

Feynman-Kac solutions of Eqs. (1.1) and (1.2):

yt = u(t, X t ) , zt = ∂xu(t, X t )σ(t, X t ) , t ∈ [0, T ) , (1.3)

where u(t, x) is the smooth solution of the partial differential equation

∂tu(t, x) + b(t, x)∂x u(t, x) +
1

2
σ(t, x)2∂x xu(t, x) = − f

�

t, x ,u(t, x),∂x u(t, x)σ(t, x)
�

,

with the terminal condition u(T, x) = g(x). Subsequently, FBDSEs have been studied exten-

sively and applied in many fields — e.g. mathematical finance, stochastic optimal control,

nonlinear expectation, risk measure, and related problems [4, 5, 11, 13]. It is very diffi-

cult to find solutions in explicit closed form, so considerable attention has been paid to

the numerical solution of FBSDEs and many numerical schemes have already been pro-

posed [1–3, 6, 14–21]. Here we reconsider the fully discrete Euler scheme for decoupled

FBSDEs proposed in Ref. [14], and under certain regular conditions on the data b, σ, f

and g we prove its first-order sup-norm convergence in solving Eqs. (1.1) and (1.2). In

Section 2, some preliminaries are introduced, and the fully discrete Euler scheme is dis-

cussed in Section 3. Our error estimates of the scheme are derived in Section 4, and some

concluding remarks are made in Section 5.

2. Preliminaries

Let us first list some notation — viz.

• C
ℓ,k,k,k

b
: the set of continuously differentiable functions ψ : [0, T ]×R×R×R→ R

with uniformly bounded partial derivatives ∂
ℓ1

t ∂
k1
x ∂

k2
y ∂

k3
z ψ for 0 ¶ ℓ1 ¶ ℓ and 0 ¶

k1 + k2 + k3 ¶ k. Analogous definition applies for C
ℓ,k

b
.

• (X r,x
t , y

r,x
t , z

r,x
t ) : solution (X t , yt , zt) of (1.1), (1.2) with initial condition replaced by

X r = x , for r ¶ t. And (X x
t , y x

t , zx
t ) := (X

t,x
t , y

t,x
t , z

t,x
t ).

• F r,x
t : the σ-field generated by {X r,x

s
| r ¶ s ¶ t}, for r ¶ t.
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• Er,x
t [·] := E[·|F r,x

t ], E
x
t
[·] := E[·|F t,x

t ].

Given x ∈ R, let X
r,x
t , y

r,x
t and z

r,x
t denote the solutions of the FBSDEs (1.1) and (1.2)

for t ∈ [r, T ] with the initial condition X r = x and terminal condition yT = g(X
r,x
T
)— i.e.

for t ∈ [r, T ],

X
r,x
t = x +

∫ t

r

b(s, X r,x
s ) ds+

∫ t

r

σ(s, X r,x
s ) dWs , (2.1)

y
r,x
t = g(X

r,x
T ) +

∫ T

t

f (s, X r,x
s , y r,x

s , zr,x
s ) ds−

∫ T

t

zr,x
s dWs . (2.2)

We introduce ∇h to denote the difference quotient operator with respect to the space point

x at time r with space step h — e.g. the difference quotient

∇hX
r,x
t =

X
r,x+h
t − X

r,x
t

h
,

and for a smooth function ψ : R→ R the difference quotient

∇hψ(X
r,x
t ) =

ψ(X
r,x+h
t )−ψ(X r,x

t )

h
. (2.3)

From the mean value theorem, we have the identity

∇hψ(X
r,x
t ) =ψ

′�θX
r,x+h
t + (1− θ)X r,x

t

�∇hX
r,x
t

for some θ ∈ [0,1]. Applying ∇h to Eq. (2.1) and assuming smoothness conditions on the

coefficients b and σ, we have

∇hX
r,x
t = 1+

∫ t

r

∂x b(s,Θr,x
s
)∇hX r,x

s
ds+

∫ t

r

∂xσ(s,Λ
r,x
s
)∇hX r,x

s
dWs ,

where Θr,x
s = θX r,x+h

s + (1− θ)X r,x
s and Λr,x

s = λX r,x+h
s + (1− λ)X r,x

s with θ and λ in the

interval [0,1]. Assuming b,σ ∈ C
0,1

b
, for p ¾ 1 we have that E[(∇hX

r,x
t )

p] is bounded by a

constant that is independent of r, t,h, x , and X
r,x
t .

Let Dt denote the Malliavin derivative, and assume b andσ are smooth functions. Then

the Malliavin derivative DsX
r,x
t of X

r,x
t satisfies the equation

DsX
r,x
t = σ(s, X r,x

s ) +

∫ t

s

∂x b(ν, X r,x
ν )DsX

r,x
ν dν+

∫ t

s

∂xσ(ν, X r,x
ν )DsX

r,x
ν dWν

for r ¶ s ¶ t. Assuming that b,σ ∈ C
0,1

b
, for p ¾ 1 we therefore have that E[(DsX

r,x
t )

p]

is bounded by a constant independent of r, t,h, x , and X
r,x
t . There is similar result for the

second-order Malliavin derivative of X
r,x
t . Thus we have the following lemma:

Lemma 2.1. Assuming that b,σ ∈ C
0,2

b
, we have

E
�

(∇hX
r,x
t )

p
�

+E[(DsX
r,x
t )

p] +E
�

(Ds1
Ds2

X
r,x
t )

p
�

¶ C ,

where r ¶ s ¶ t, r ¶ s1 ¶ s2 ¶ t, and C is a that is constant independent of r, s, s1, s2, t, x ,h,

and X
r,x
t .
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3. Fully Discrete Euler Scheme

We now introduce the fully discrete Euler method for the FBSDEs [14]. Let N denote a

positive integer and Z the set of all integers, and define the time-space partition

Tp× Sp =
�

(tn, xk) : k ∈ Z , n = 0,1, · · · , N
	

,

where Tp : {tn| n= 0,1, · · · , N , 0= t0 < · · ·< tN = T}, tn+1− tn =∆t, n= 0,1, · · · , N −1

is the time partition and Sp : {xk| k ∈ Z} , xk+1 − xk =∆x , k ∈ Z is the partition of space

R. Then given the Feynman-Kac solutions (1.3), we solve for yt and zt on the time-space

partition Tp× Sp with the initial value x0 in Eq. (1.1) a grid point.

For t ∈ [tn, tn+1], let X
tn,xk

t , y
tn ,xk

t and z
tn ,xk

t be the the solutions of the FBSDEs (2.1)

and (2.2) with r and x replaced by tn and xk, respectively. Then we have the following

equations:

X
tn,xk

tn+1
= xk +

∫ tn+1

tn

b(t, X
tn ,xk

t ) d t +

∫ tn+1

tn

σ(t, X
tn ,xk

t ) dWt ,

y
xk

tn
= y

tn,xk

tn+1
+

∫ tn+1

tn

f (t, X
tn ,xk

t , y
tn ,xk

t , z
tn ,xk

t ) d t −
∫ tn+1

tn

z
tn ,xk

t dWt . (3.1)

Taking the expectation operation E[·] on (3.1), we deduce that

y
xk

tn
= E[y

tn ,xk

tn+1
] +∆t f

xk

tn
+ R̄k

y,n , (3.2)

where f
xk

tn
= f (tn, xk, y

xk

tn
, z

xk

tn
) and the residue is defined by

R̄k
y,n =

∫ tn+1

tn

E
�

f (t, X
tn ,xk

t , y
tn ,xk

t , z
tn ,xk

t )
�

d t −∆t f
xk

tn
. (3.3)

Multiplying (3.1) by ∆Wtn+1
:=Wtn+1

−Wtn
and then taking the expectation E[·] gives

∆t z
xk

tn
= E[y

tn ,xk

tn+1
∆Wtn+1

] + R̄k
z,n (3.4)

with the residue

R̄k
z,n =

∫ tn+1

tn

E
�

f (t, X
tn ,xk

t , y
tn ,xk

t , z
tn ,xk

t )∆Wtn+1

�

d t +∆t z
xk

tn
−
∫ tn+1

tn

E[z
tn ,xk

t ]d t . (3.5)

It is notable that the expectation terms in Eqs. (3.2) and (3.4) contain the values of ytn+1

on the whole real line, and in computing them in practice we hope that only the values of

ytn+1
on Sp are involved. Initially, we need approximations of the X

tn,xk

tn+1
, so we introduce

the Euler formula for the forward process:

X̃
tn,xk

tn+1
= xk + b(tn, xk)∆t +σ(tn, xk)∆Wtn+1

=: xk(∆W ) , (3.6)
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where we denote the Euler approximation X̃
tn,xk

tn+1
for fixed n by xk(∆W ) to emphasise the

dependence of X̃
tn,xk

tn+1
on the increment ∆Wtn+1

. Using Eq. (3.6), we define ỹ
tn ,xk

tn+1
as the

value of y at the time-space point (tn+1, X̃
tn,xk

tn+1
)— i.e.

ỹ
tn,xk

tn+1
= u(tn+1, X̃

tn,xk

tn+1
) = u

�

tn+1, xk(∆W )
�

.

Then writing R̃k
y,n

and R̃k
z,n

for the remainders arising from this approximation of the for-

ward process, we have the expectations

E[y
tn ,xk

tn+1
] = E[ ỹ

tn ,xk

tn+1
] + R̃k

y,n
, (3.7)

E[y
tn ,xk

tn+1
∆Wtn+1

] = E[ ỹ
tn ,xk

tn+1
∆Wtn+1

] + R̃k
z,n , (3.8)

which can both be written as integrals involving the Gaussian density function 1p
2π

e−ξ
2/2

— e.g.

E[ ỹ
tn ,xk

tn+1
] =

1p
2π

∫

R

u
�

tn+1, xk(
p
∆t ξ)

�

e−ξ
2/2dξ .

We can readily approximate the integral using the L-point Gauss-Hermite quadrature rule

with nodes ξℓ and weights ωℓ, ℓ= 1,2, · · · , L such that we have

E[ ỹ
tn ,xk

tn+1
] =

L
∑

ℓ=1

u(tn+1, xk,ℓ)ωℓ + Rk
E,y,n

(3.9)

as the discrete approximation to the above equation, where

xk,ℓ := xk(
p
∆t ξℓ) = xk + b(tn, xk)∆t +σ(tn, xk)

p
∆t ξℓ . (3.10)

Similarly, the expectation of ỹ∆W (3.8) can be approximated by

E[ ỹ
tn ,xk

tn+1
∆Wtn+1

] =

L
∑

ℓ=1

u(tn+1, xk,ℓ)
p
∆t ξℓωℓ + Rk

E,z,n . (3.11)

Here Rk
E,y,n

and Rk
E,z,n

denote the residues under the quadrature rule. Generally, xk,ℓ /∈ Sp

and u(tn+1, xk,ℓ) should be approximated by some method involving only {u(tn+1, x j)} j ,
and here we use the linear interpolation

u(tn+1, xk,ℓ) = I u(tn+1, xk,ℓ) + R
k,ℓ
I ,y,n , (3.12)

where R
k,ℓ
I ,y,n is the residue of the interpolation, and I is the linear interpolation operator

over the space partition Sp defined by

I u(·, xk,ℓ) = βk,ℓ u(·, x+
k,ℓ
) + (1− βk,ℓ)u(·, x−

k,ℓ) , βk,ℓ =
xk,ℓ− x−

k,ℓ

∆x
,

with x+
k,ℓ

(x−
k,ℓ

) the closest grid point on the right-hand (left-hand) side of xk,ℓ.
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From the previous procedure for approximating the expectations, we note the following

definition. Given a sequence φ = {φx}x∈Sp
(indexed by Sp), for a natural number m the

discrete expectation of the product of φ and (∆Wtn+1
)m is

Ê
xk

tn

�

φ (∆Wtn+1
)m
�

=

L
∑

ℓ=1

�

βk,ℓφ
x+

k,ℓ + (1− βk,ℓ)φ
x−

k,ℓ

�

(
p
∆t ξℓ)

mωℓ . (3.13)

Then using the above definitions and Eqs. (3.7), (3.8), (3.9), (3.11) and (3.12), from

Eqs. (3.2) and (3.4), we obtain

y
xk

tn
= Ê

xk

tn
[ytn+1

] +∆t f
xk

tn
+ Rk

y,n , (3.14)

∆t z
xk

tn
= Ê

xk

tn
[ytn+1

∆Wtn+1
] + Rx

z,n , (3.15)

where the residues are

Rk
y,n = R̄k

y,n+ R̃k
y,n + Rk

E,y,n+

L
∑

ℓ=1

R
k,ℓ
I ,y,nωℓ , (3.16)

Rk
z,n = R̄k

z,n + R̃k
z,n + Rk

E,z,n +

L
∑

ℓ=1

R
k,ℓ
I ,y,n

p
∆t ξℓωℓ . (3.17)

In Eqs. (3.14) and (3.15), the discrete expectations Ê
xk

tn
[ytn+1

] and Ê
xk

tn
[ytn+1

∆Wtn+1
] refer

to Ê
xk

tn
[(ytn+1

)Sp
] and Ê

xk

tn
[(ytn+1

)Sp
∆Wtn+1

], where (ytn+1
)Sp
= {y xk

tn+1
}xk∈Sp

is the solution

confined to the space partition Sp.

We now introduce ŷ and ẑ to denote the corresponding numerical solutions for the

variables y and z on the time-space partition Tp× Sp — i.e. we write ŷtn
= { ŷ xk

tn
}xk∈Sp

,

ẑtn
= {ẑxk

tn
}xk∈Sp

for n = 0,1, · · · , N . On omitting the residues Rk
y,n

and Rk
z,n

in Eqs. (3.14)

and (3.15), we obtain the fully discrete Euler scheme for (1.1) and (1.2) as follows.

Given ŷ
xk

tN
= g(xk) for xk ∈ Sp, for n= N − 1, N − 2, · · · , 1,0, backwardly solve for ŷtn

and

ẑtn
using

xk,ℓ = xk + b(tn, xk)∆t +σ(tn, xk)
p
∆t ξℓ , (3.18)

ŷ
xk

tn
= Ê

xk

tn
[ ŷtn+1

] +∆t f̂
xk

tn
, (3.19)

∆t ẑ
xk

tn
= Ê

xk

tn
[ ŷtn+1

∆Wtn+1
] , (3.20)

where xk ∈ Sp and f̂
xk

tn
= f (tn, xk, ŷ

xk

tn
, ẑ

xk

tn
).

4. Error Estimates

Under certain smoothness and boundedness conditions on b, σ, f and g, we now prove

the first-order sup-norm convergence of the fully discrete Euler scheme (3.18)-(3.20). The

arguments used in the proof are much the same as in Ref. [6], which basically consists
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of two parts — proving stability, and estimating the bound of the residues. Henceforth,

∇h denotes the difference quotient defined in Eq. (2.3) with h = ∆x . In particular, when

applied to a sequence φ = {φxk}xk∈Sp
, the difference quotient is

∇hφ
xk =

φxk+1 −φxk

∆x
.

We first subtract Eqs. (3.19) and (3.20) from the respective Eqs. (3.14) and (3.15) to

get two error equations, on which the difference quotient operator ∇h is applied to obtain

two more equations, so we have the following four equations:

µ
xk

tn
= Ê

xk

tn
[µtn+1

] +∆t( f
xk

tn
− f̂

xk

tn
) + Rk

y,n , (4.1)

∆t ν
xk

tn
= Ê

xk

tn
[µtn+1

∆Wtn+1
] + Rk

z,n , (4.2)

∇hµ
xk

tn
=∇hÊ

xk

tn
[µtn+1

] +∆t(∇h f
xk

tn
−∇h f̂

xk

tn
) +∇hRk

y,n , (4.3)

∆t∇hν
xk

tn
=∇hÊ

xk

tn

�

µtn+1
∆Wtn+1

�

+∇hRk
z,n , (4.4)

where µ
xk

tn
= y

xk

tn
− ŷ

xk

tn
and ν

xk

tn
= z

xk

tn
− ẑ

xk

tn
are the errors. To prove the stability of the

numerical scheme, we also note some basic properties of the operator Ê
xk

tn
[·], and its dif-

ference quotient ∇hÊ
xk

tn
[·]. Let ‖ · ‖∞ denote the supremum norm of functions defined on

Sp — i.e., ‖φ‖∞ = supxk∈Sp
|φxk |.

Proposition 4.1. Let Ê
xk

tn
[·] be the operator defined in (3.13). For fixed n and k, there are

non-negative numbers α j , j = 0,±1,±2, · · · where only a finite number are positive, such

that for the sequence φ indexed by Sp we have that

∑

j

α j = 1 ,

Ê
xk

tn
[φ] =

∑

j

α j φ
x j .

Consequently,

�

�Ê
xk

tn
[φ]

�

� ¶ ‖φ‖∞,
�

Ê
xk

tn
[φ]

�2
¶ Ê

xk

tn

�

(φ)2
�

,

and moreover
�

Ê
xk

tn
[φ]

�2
+

1

∆t

�

Ê
xk

tn
[φ∆Wtn+1

]
�2
¶ Ê

xk

tn

�

(φ)2
�

.

The proof of Proposition 4.1 readily follows, as the “non-negative with sum one” property

holds for the coefficients of both the quadrature rule and the linear interpolation. Further,

the quadrature rule outputs the exact value for polynomials with degree less than or equal

to 2L − 1.

Under additional smoothness and boundedness conditions, we obtain the two estimates

in the following proposition.
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Proposition 4.2. Assuming that b,σ ∈ C
0,1

b
, we have the estimate

�∇hÊ
xk

tn
[φ]

�2
+

1

4∆t

�∇hÊ
xk

tn
[φ∆Wtn+1

]
�2
¶ (1+ C∆t)‖∇hφ‖2∞ . (4.5)

Furthermore,
1

∆t

�

Ê
xk

tn
[φ∆Wn+1]

�2
¶ C∆t‖∇hφ‖2∞ . (4.6)

Here C is some constant independent of n, k, ∆t, ∆x and the solutions of the fully discrete

scheme.

Proof. First, in the notation of Eq. (3.10) we have

xk+1,ℓ − xk,ℓ

∆x
= 1+∇h b(tn, xk)∆t +∇hσ(tn, xk)

p
∆t ξℓ ,

and it is easy to check that xk+1,ℓ − xk,ℓ ¾ 0 holds for sufficiently small ∆t. Hence on

denoting the index of x−
k,ℓ

as the natural number such that x ik,ℓ
= x−

k,ℓ
, we have ik,ℓ ¶ ik+1,ℓ

so that the difference quotient of Ê
xk

tn
[φ] is

∇hÊ
xk

tn
[φ] =

L
∑

ℓ=1

1

∆x

�

βk+1,ℓφ
x+

k+1,ℓ + (1− βk+1,ℓ)φ
x−

k+1,ℓ − βk,ℓφ
x+

k,ℓ − (1− βk,ℓ)φ
x−

k,ℓ

�

ωℓ

=

L
∑

ℓ=1

∑

j

λk,ℓ, j∇hφ
x jωℓ,

where

λk,ℓ, j =χ{ik,ℓ= j<ik+1,ℓ}(1− βk,ℓ) +χ{ik,ℓ< j<ik+1,ℓ} +χ{ik,ℓ< j=ik+1,ℓ}βk+1,ℓ

+χ{ik,ℓ= j=ik+1,ℓ}(βk+1,ℓ− βk,ℓ) ,

and we note that

∑

j

λk,ℓ, j = βk+1,ℓ− βk,ℓ + ik+1,ℓ − ik,ℓ =
xk+1,ℓ− xk,ℓ

∆x
.

Consequently, for the natural number m, we define the new discrete expectation

Ė
xk

tn

�

φ (∆Wtn+1
)m
�

:=

L
∑

ℓ=1

 

∑

j

λ̄k,ℓ, jφ
x j

!

(
p
∆t ξℓ)

mωℓ , (4.7)

where the coefficients

λ̄k,ℓ, j =
∆x

xk+1,ℓ− xk,ℓ

λk,ℓ, j

satisfy the “non-negative with sum one” property

λ̄k,ℓ, j ¾ 0 ,
∑

j

λ̄k,ℓ, j = 1 . (4.8)
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Consequently, we have the two representations

∇hÊ
xk

tn
[φ] =

�

1+∇h b(tn, xk)∆t
�

Ė
xk

tn
[∇hφ] +∇hσ(tn, xk)Ė

xk

tn
[∇hφ∆Wtn+1

] , (4.9)

∇hÊ
xk

tn
[φ∆Wtn+1

] =
�

1+∇h b(tn, xk)∆t
�

Ė
xk

tn
[∇hφ∆Wtn+1

]

+∇hσ(tn, xk)Ė
xk

tn
[∇hφ (∆Wtn+1

)2] , (4.10)

hence we obtain inequality (4.5) on invoking the definition (4.7) and the property (4.8).

For the second estimate (4.6), we suppose {ξℓ} is sorted in ascending order (i.e. ξℓ <

ξℓ+1) and define ℓ′ := L+1−ℓ. We observe that ξℓ′ = −ξℓ andωℓ′ =ωℓ, and define ik,ℓ as

before. Thus again noting (3.10), if σ(tn, xk) > 0 we have that ik,ℓ ¶ ik,ℓ′ for 1¶ ℓ¶ ⌊L/2⌋,
and if σ(tn, xk) < 0 then ik,ℓ′ ¶ ik,ℓ for 1 ¶ ℓ ¶ ⌊L/2⌋, so rearranging the summation in

Ê
xk

tn
[φ∆Wtn+1

] we deduce that

Ê
xk

tn
[φ∆Wtn+1

] =

⌊L/2⌋
∑

ℓ=1

�

βk,ℓ′φ
x+

k,ℓ′ + (1− βk,ℓ′)φ
x−

k,ℓ′ − βk,ℓφ
x+

k,ℓ − (1− βk,ℓ)φ
x−

k,ℓ

�p
∆t |ξℓ|ωℓ

=∆x

⌊L/2⌋
∑

ℓ=1

∑

j

ρk,ℓ, j∇hφ
x j
p
∆t |ξℓ|ωℓ ,

where the coefficients ρk,ℓ, j are defined by

ρk,ℓ, j =χ{ik,ℓ= j<ik,ℓ′ }(1− βk,ℓ) +χ{ik,ℓ< j<ik,ℓ′ } +χ{ik,ℓ< j=ik,ℓ′ }βk,ℓ′ +χ{ik,ℓ= j=ik,ℓ′ }(βk,ℓ′ − βk,ℓ)

−χ{ik,ℓ′= j<ik,ℓ}(1− βk,ℓ′)− χ{ik,ℓ′< j<ik,ℓ} −χ{ik,ℓ′< j=ik,ℓ}βk,ℓ .

We note that

∆x

⌊L/2⌋
∑

ℓ=1

∑

j

ρk,ℓ, j

p
∆t |ξℓ|ωℓ =∆x

⌊L/2⌋
∑

ℓ=1

�

βk,ℓ′ − βk,ℓ + ik,ℓ′ − ik,ℓ

�p
∆t |ξℓ|ωℓ

= 2σ(tn, xk)∆t

⌊L/2⌋
∑

ℓ=1

ξ2
ℓωℓ = σ(tn, xk)∆t ,

and so denote ρ̄k,ℓ, j = (σ(tn, xk)∆t)−1
∆x ρk,ℓ, j

p
∆t |ξℓ|ωℓ such that the “non-negative

with sum one” property holds for ρ̄k,ℓ, j in the sense that

ρ̄k,ℓ, j ¾ 0 ,

⌊L/2⌋
∑

ℓ=1

∑

j

ρ̄k,ℓ, j = 1 . (4.11)

Now we define the new discrete expectation

Ë
xk

tn
[φ] =

⌊L/2⌋
∑

ℓ=1

∑

j

ρ̄k,ℓ, jφ
x j , (4.12)
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when the discrete expectation of φ∆Wtn+1
has another representation

Ê
xk

tn
[φ∆Wtn+1

] = σ(tn, xk)∆t Ë
xk

tn
[∇hφ] . (4.13)

From Eq. (4.13), property (4.11) and definition (4.12) we have the second estimate (4.6).

Remark 4.1. Unlike the semi-discretised scheme (only discretised in the time variable), due

to the interpolation in approximating the expectation some properties may not be preserved

for the scheme (3.19) and (3.20). For example, from Eqs. (4.9), (4.10) and (4.13) we

fail to represent those terms on the left-hand side of the equality by the same discrete

expectation Ê
xk

tn
[·] of∇hφ, which is not an issue for the semi-discretised scheme. As shown

in Proposition 2, we choose to add the boundedness condition and keep the estimate under

the supremum norm.

Denoting

Rn =
q

‖R y,n‖2∞ + ‖Rz,n‖2∞ + ‖∇hR y,n‖2∞ + ‖∇hRz,n‖2∞ ,

we obtain conditions for the stability of the scheme (3.19) and (3.20) as follows.

Theorem 4.1. Assume f ∈ C
0,2,2,2

b
, u ∈ C

0,2

b
and b,σ ∈ C

0,1

b
. Then we have the estimates

‖µtn
‖2∞ ¶ C‖µtN

‖2∞ +
C

∆t

N−1
∑

i=n

�‖R y,i‖2∞ + ‖Rz,i‖2∞
�

,

‖νtn
‖2∞ ¶ C

�‖µtN
‖2∞ + ‖∇hµtN

‖2∞
�

+
2

(∆t)2
‖Rz,n‖2∞ +

C

∆t

N−1
∑

i=n

(Ri)
2 .

Proof. From Eqs. (4.1)–(4.4), we obtain the inequalities

(µ
xk

tn
)2 ¶ (1+ γ1∆t)

�

Ê
xk

tn
[µtn+1

]
�2
+ (1+ γ1∆t)

2

γ1

�

∆t( f
xk

tn
− f̂

xk

tn
)2 +

1

∆t
(Rk

y,n
)2
�

, (4.14)

∆t(ν
xk

tn
)2 ¶

2

∆t

�

Ê
xk

tn
[µtn+1

∆Wtn+1
]
�2
+

2

∆t
(Rk

z,n)
2 , (4.15)

(∇hµ
xk

tn
)2 ¶ (1+ γ2∆t)

�∇hÊ
xk

tn
[µtn+1

]
�2
+ (1+ γ2∆t)

2

γ2

�

∆t(∇h f
xk

tn
−∇h f̂

xk

tn
)2

+
1

∆t
(∇hRk

y,n
)2
�

, (4.16)

∆t(∇hν
xk

tn
)2 ¶

2

∆t

�∇hÊ
xk

tn
[µtn+1

∆Wtn+1
]
�2
+

2

∆t
(∇hRk

z,n)
2 . (4.17)
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In inequality (4.16), we have

∇h f
xk

tn
−∇h f̂

xk

tn
=∂x f

xk ;θ
tn

+ ∂y f
xk;θ

tn
∇h y

xk

tn
+ ∂z f

xk ;θ
tn
∇hz

xk

tn

−
�

∂x f̂
xk ;θ

tn
+ ∂y f̂

xk;θ
tn
∇h ŷ

xk

tn
+ ∂z f̂

xk ;θ
tn
∇hẑ

xk

tn

�

=∂x f
xk ;θ

tn
− ∂x f̂

xk ;θ
tn

+ (∂y f
xk ;θ

tn
− ∂y f̂

xk;θ
tn
)∇h y

xk

tn
+ ∂y f̂

xk;θ
tn
∇hµ

xk

tn

+ (∂z f
xk;θ

tn
− ∂z f̂

xk ;θ
tn
)∇hz

xk

tn
+ ∂z f̂

xk;θ
tn
∇hν

xk

tn
,

where θ ∈ [0,1], ∂x f
xk ;θ

tn
= ∂x f (tn, xk + θ∆x , y

xk

tn
+ θ∆x∇h y

xk

tn
, z

xk

tn
+ θ∆x∇hz

xk

tn
), and

other terms containing the superscript θ are defined similarly. Under the smoothness con-

ditions, we therefore have

( f
xk

tn
− f̂

xk

tn
)2 ¶ C

�

(µ
xk

tn
)2 + (ν

xk

tn
)2
�

, (4.18)

(∇h f
xk

tn
−∇h f̂

xk

tn
)2 ¶ C

�

(µ
xk

tn
)2 + (ν

xk

tn
)2 + (∇hµ

xk

tn
)2 + (∇hν

xk

tn
)2
�

. (4.19)

Using Proposition 4.1, inequalities (4.14), (4.15) and (4.18), and letting γ1 = 8C , we thus

have the following estimate for sufficiently small ∆t:

(µ
xk

tn
)2 +

∆t

2
(ν

xk

tn
)2 ¶(1+ 4C∆t)‖µtn+1

‖2∞ +
∆t

2

�

(µ
xk

tn
)2 + (ν

xk

tn
)2
�

+
1

2∆t

�

(Rk
y,n
)2 + (Rk

z,n
)2
�

.

Consequently,

‖µtn
‖2∞ ¶ (1+ C∆t)‖µtn+1

‖2∞ +
1

∆t

�‖R y,n‖2∞ + ‖Rz,n‖2∞
�

¶ C‖µtN
‖2∞ +

C

∆t

N−1
∑

i=n

�‖R y,i‖2∞ + ‖Rz,i‖2∞
�

, (4.20)

so letting γ2 = 32C and combining with Eqs. (4.16), (4.17) and (4.19), using Proposition

4.2 we obtain for sufficiently small ∆t that

(∇hµ
xk

tn
)2 +

∆t

8
(∇hν

xk

tn
)2 ¶(1+ C∆t)‖∇hµtn+1

‖2∞ +
∆t

8

�

(µ
xk

tn
)2 + (∇hµ

xk

tn
)2 + (∇hν

xk

tn
)2
�

+
1

2∆t

�

(Rk
z,n)

2 + (∇hRk
y,n)

2 + (∇hRk
z,n)

2
�

,

hence

‖∇hµtn
‖2∞ ¶(1+ C∆t)‖∇hµtn+1

‖2∞ + C∆t ‖µtn
‖2∞

+
1

∆t

�‖Rz,n‖2∞ + ‖∇hR y,n‖2∞ + ‖∇hRz,n‖2∞
�

¶C
�‖µtN
‖2∞ + ‖∇hµtN

‖2∞
�

+
C

∆t

N−1
∑

i=n

(Ri)
2 (4.21)
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on using the previous result (4.20). Then using inequalities (4.15), (4.21) and Proposi-

tion 4.2 we have

‖νtn
‖2∞ ¶ C

�‖µtN
‖2∞ + ‖∇hµtN

‖2∞
�

+
C

∆t

N−1
∑

i=n

(Ri)
2 +

1

(∆t)2
‖Rz,n‖2∞ , (4.22)

so invoking the estimates (4.20) and (4.22) we complete the proof.

From Theorem 4.1, in order to get the estimates of µtn
and νtn

it remains to estimate

the residues R y,n, Rz,n, ∇hR y,n and ∇hRz,n defined in Eqs. (3.16) and (3.17), which we do

after introducing the following Lemmas 4.1–4.4.

Lemma 4.1. For f ∈ C
1,3,3,3

b
, u ∈ C

1,4

b
and b,σ ∈ C

1,3

b
we have the estimates

|R̄k
y,n
| = O

�

(∆t)2
�

, |R̄k
z,n
|= O

�

(∆t)2
�

,

|∇hR̄k
y,n| = O

�

(∆t)2
�

, |∇hR̄k
z,n| = O

�

(∆t)2
�

.

Proof. From the definitions in (3.3) and (3.5) for R̄k
y,n

and R̄k
z,n

and the Itô formula, we

have

R̄k
y,n =

∫ tn+1

tn

E[ f (t, X
tn ,xk

t , y
tn ,xk

t , z
tn ,xk

t )]d t −∆t f
xk

tn

=

∫ tn+1

tn

(E[ f
tn,xk

t ]− f
xk

tn
) d t =

∫ tn+1

tn

∫ t

tn

E[L (0) f tn,xk
s

]ds d t , (4.23)

R̄k
z,n =

∫ tn+1

tn

E[ f (t, X
tn ,xk

t , y
tn ,xk

t , z
tn ,xk

t )∆Wtn+1
]d t +∆t z

xk

tn
−
∫ tn+1

tn

E[z
tn ,xk

t ]d t

=

∫ tn+1

tn

∫ t

tn

�

E
�L (0) f tn ,xk

s ∆Wtn+1
+L (1) f tn ,xk

s

�
�

ds d t −
∫ tn+1

tn

∫ t

tn

E[L (0)z tn,xk
s ]ds d t ,

(4.24)

where f t,x
s = f (s, X t,x

s , y t,x
s , z t,x

s ), and for v ∈ C1,2 the operators L (0) and L (1) are

L (0)v(t, x) = ∂t v(t, x) + b(t, x)∂x v(t, x) +
1

2
σ(t, x)2∂x x v(t, x) ,

L (1)v(t, x) = σ(t, x)∂x v(t, x) .

The four estimates stated then follow from Eqs. (4.23) and (4.24) with the difference op-

erator ∇h defined in (2.3), under the conditions of the lemma.

Lemma 4.2. For u ∈ C
0,4

b
and b,σ ∈ C

1,3

b
we have the estimates

�

�R̃k
y,n

�

� = O
�

(∆t)2
�

,
�

�∇hR̃k
y,n

�

�= O
�

(∆t)2
�

,
�

�R̃k
z,n

�

�= O
�

(∆t)2
�

,
�

�∇hR̃k
z,n

�

� = O
�

(∆t)2
�

.
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Proof. Subtracting ỹ from y gives

y
tn ,xk

tn+1
− ỹ

tn ,xk

tn+1
= ∂x u(tn+1,Θ

tn ,xk

tn+1
)(X

tn ,xk

tn+1
− X̃

tn,xk

tn+1
) ,

where Θ
tn ,xk

tn+1
= θX

tn,xk

tn+1
+ (1 − θ)X̃ tn ,xk

tn+1
, θ ∈ [0,1]. From the Itô-Taylor expansion, X − X̃

has the form

X
tn,xk

tn+1
− X̃

tn,xk

tn+1
=

∫ tn+1

tn

∫ t

tn

�

L (0)b(s, X tn ,xk
s )ds d t +L (1)b(s, X tn ,xk

s ) dWs d t

+L (0)σ(s, X tn ,xk
s )ds dWt +L (1)σ(s, X tn ,xk

s ) dWs dWt

�

,

so from Eq. (3.7) we deduce that

R̃k
y,n
= E

�

∂xu(tn+1,Θ
tn ,xk

tn+1
)(X

tn ,xk

tn+1
− X̃

tn,xk

tn+1
)
�

= E
�

∫ tn+1

tn

∫ t

tn

�

∂xu(tn+1,Θ
tn ,xk

tn+1
)L (0)b(s, X tn ,xk

s ) + Ds∂xu(tn+1,Θ
tn ,xk

tn+1
)L (1)b(s, X tn ,xk

s )

+ Dt∂xu(tn+1,Θ
tn ,xk

tn+1
)L (0)σ(s, X tn ,xk

s ) + DsDt∂xu(tn+1,Θ
tn ,xk

tn+1
)L (1)σ(s, X tn ,xk

s )
�

ds d t
�

.

(4.25)

Using (4.25), Lemma 4.1 and the smoothness conditions of the lemma, we get the estimates

of R̃k
y,n and ∇hR̃k

y,n. Similarly, from Eq. (3.8) we have

R̃k
z,n
=E

�

∂x u(tn+1,Θ
tn ,xk

tn+1
)(X

tn ,xk

tn+1
− X̃

tn,xk

tn+1
)

∫ tn+1

tn

dWt

�

=E

�
∫ tn+1

tn

�

Dt∂xu(tn+1,Θ
tn ,xk

tn+1
)(X

tn ,xk

tn+1
− X̃

tn,xk

tn+1
)

+ ∂xu(tn+1,Θ
tn ,xk

tn+1
)(Dt X

tn ,xk

tn+1
− Dt X̃

tn,xk

tn+1
)
�

d t

�

=E

�∫ tn+1

tn

�

Dt∂x u(tn+1,Θ
tn ,xk

tn+1
)(X

tn ,xk

tn+1
− X̃

tn,xk

tn+1
) + ∂xu(tn+1,Θ

tn ,xk

tn+1
)

∫ t

tn

L (0)σ(s, X tn ,xk
s )ds

+ ∂xu(tn+1,Θ
tn ,xk

tn+1
)

∫ tn+1

t

∂x b(s, X tn ,xk
s
)Dt X

tn,xk
s

ds

+

∫ t

tn

Ds∂xu(tn+1,Θ
tn ,xk

tn+1
)L (1)σ(s, X tn ,xk

s )ds

+

∫ tn+1

t

Ds∂x u(tn+1,Θ
tn ,xk

tn+1
)∂xσ(s, X tn ,xk

s )Dt X
tn,xk
s ds

�

d t

�

.

Under the conditions of the lemma, from Lemma 4.1 we then obtain R̃k
z,n and ∇hR̃k

z,n.
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Lemma 4.3. For u ∈ C
0,5

b
and b,σ ∈ C

0,1

b
we have

|Rk
E,y,n| = O

�

(∆t)2
�

, |Rk
E,z,n| = O

�

(∆t)2
�

,

|∇hRk
E,y,n
| = O

�

(∆t)2
�

, |∇hRk
E,z,n
| = O

�

(∆t)2
�

.

Proof. In the error estimate of the Gauss quadrature rule [8], it is proved that given

f ∈ C r , 0< ε < 1 we have

�

�

�

�

�

1p
2π

∫

R

f (ξ)e−ξ
2/2dξ−

L
∑

ℓ=1

f (ξℓ)ωℓ

�

�

�

�

�

¶
C L−r/2

p
2π

∫

R

�

� f (r)(ξ)e−(1−ε)ξ
2/2
�

�dξ ,

with constant C independent of L and f but dependent on r. Thus there is ξ̄ such that

|Rk
E,y,n| ¶ C(∆t)r/2

�

�

�σ(tn, xk)
r∂ r

x u
�

tn+1, xk(
p
∆t ξ̄)

�

�

�

� ,

and ξ̄1 and ξ̄2 such that

|Rk
E,z,n
| ¶C(∆t)(r+1)/2

�

�σ(tn, xk)
r∂ r

x
u
�

tn+1, xk(
p
∆t ξ̄1)

�

�

�

�

+ C(∆t)r/2
�

�

�σ(tn, xk)
r−1∂ r−1

x u
�

tn+1, xk(
p
∆t ξ̄2)

�

�

�

� .

Similar estimates hold for the difference quotients of the residues, so under the conditions

of the lemma and letting r = 4 we complete the proof.

Lemma 4.4. For u ∈ C
0,3

b
and b,σ ∈ C

0,1

b
we have

�

�

�

�

�

L
∑

ℓ=1

R
k,ℓ
I ,y,nωℓ

�

�

�

�

�

= O
�

(∆x)2
�

,

�

�

�

�

�

L
∑

ℓ=1

R
k,ℓ
I ,y,n

p
∆t ξℓωℓ

�

�

�

�

�

= O
�p
∆t (∆x)2

�

,

�

�

�

�

�

∇h

L
∑

ℓ=1

R
k,ℓ
I ,y,n
ωℓ

�

�

�

�

�

= O
�

(∆x)2
�

+O(
p
∆t∆x) ,

�

�

�

�

�

∇h

L
∑

ℓ=1

R
k,ℓ
I ,y,n

p
∆t ξℓωℓ

�

�

�

�

�

= O
�p
∆t (∆x)2

�

+O(∆t∆x) .

Proof. From the error estimate of the linear interpolation there is θk,ℓ ∈ [x−k,ℓ
, x+

k,ℓ
] such

that

R
k,ℓ
I ,y,n = u(tn+1, xk,ℓ)−I u(tn+1, xk,ℓ) =

1

2
u′′x x (tn+1,θk,ℓ)(xk,ℓ − x−

k,ℓ
)(xk,ℓ − x+

k,ℓ
) .

Taking the difference quotient ∇h of R
k,ℓ
I ,y,n, we obtain

∇hR
k,ℓ
I ,y,n =

1

∆x
(R

k+1,ℓ
I ,y,n − R

k,ℓ
I ,y,n) =: S

k,ℓ
1
+ S

k,ℓ
2

, (4.26)
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where we denote

S
k,ℓ
1
=

1

2

u′′
x x
(tn+1,θk+1,ℓ)− u′′

x x
(tn+1,θk,ℓ)

θk+1,ℓ − θk,ℓ

θk+1,ℓ− θk,ℓ

∆x
(xk+1,ℓ − x−

k+1,ℓ
)(xk+1,ℓ − x+

k+1,ℓ
) ,

(4.27)

S
k,ℓ
2
=

1

2∆x
u′′x x(tn+1,θk,ℓ)

�

(xk+1,ℓ − x−
k+1,ℓ)(xk+1,ℓ − x+

k+1,ℓ
)− (xk,ℓ − x−

k,ℓ)(xk,ℓ − x+
k,ℓ
)
�

.

(4.28)

From the definition (3.10),

xk+1,ℓ − xk,ℓ

∆x
= 1+∇h b(tn, xk)∆t +∇hσ(tn, xk)

p
∆t ξℓ ,

so for sufficiently small ∆t we have 0¶ x−
k+1,ℓ
− x−

k,ℓ
¶ 2∆x such that

�

�

�

θk+1,ℓ − θk,ℓ

∆x

�

�

� ¶ 3 ,

and therefore from Eq. (4.27) there is γk,ℓ in between of θk+1,ℓ and θk,ℓ such that

|Sk,ℓ
1
|¶ C

�

�u′′′x x x(tn+1,γk,ℓ)
�

�(∆x)2 . (4.29)

For the second term S
k,ℓ
2

, we discuss its upper bound for the three cases x−
k+1,ℓ
− x−

k,ℓ
= 0,

x−
k+1,ℓ
− x−

k,ℓ
=∆x and x−

k+1,ℓ
− x−

k,ℓ
= 2∆x .

• If x−
k+1,ℓ
− x−

k,ℓ
=∆x , then there is θk,ℓ in between of xk+1,ℓ −∆x and xk,ℓ such that

�

�

�

1

∆x

�

(xk+1,ℓ − x−
k+1,ℓ

)(xk+1,ℓ − x+
k+1,ℓ

)− (xk,ℓ− x−
k,ℓ
)(xk,ℓ − x+

k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x

�

(xk+1,ℓ −∆x − x−
k,ℓ
)(xk+1,ℓ −∆x − x+

k,ℓ
)− (xk,ℓ− x−

k,ℓ
)(xk,ℓ − x+

k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x
(θk,ℓ − x−

k,ℓ + θk,ℓ − x+
k,ℓ
)(xk+1,ℓ −∆x − xk,ℓ)

�

�

� ¶

�

�

�xk+1,ℓ−∆x − xk,ℓ

�

�

�

=∆x

�

�

�∇h b(tn, xk)∆t +∇hσ(tn, xk)
p
∆t ξℓ

�

�

� ¶ C∆x
p
∆t .

• If x−
k+1,ℓ
−x−

k,ℓ
= 2∆x , then there is θk,ℓ in between of xk+1,ℓ−2∆x and x+

k,ℓ
+x−

k,ℓ
−xk,ℓ

such that
�

�

�

1

∆x

�

(xk+1,ℓ − x−
k+1,ℓ

)(xk+1,ℓ − x+
k+1,ℓ

)− (xk,ℓ− x−
k,ℓ
)(xk,ℓ − x+

k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x

�

(xk+1,ℓ − 2∆x − x−
k,ℓ)(xk+1,ℓ − 2∆x − x+

k,ℓ
)

− (x+
k,ℓ
+ x−

k,ℓ− xk,ℓ − x−
k,ℓ)(x

+
k,ℓ
+ x−

k,ℓ− xk,ℓ− x+
k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x
(θk,ℓ − x−

k,ℓ
+ θk,ℓ − x+

k,ℓ
)(xk+1,ℓ − x−

k+1,ℓ
− x+

k,ℓ
+ xk,ℓ)

�

�

�

¶

�

�

�xk+1,ℓ− x−
k+1,ℓ
− (x+

k,ℓ
− xk,ℓ)

�

�

� ¶

�

�

�xk+1,ℓ − x−
k+1,ℓ

+ x+
k,ℓ
− xk,ℓ

�

�

�

=∆x

�

�

�∇h b(tn, xk)∆t +∇hσ(tn, xk)
p
∆t ξℓ

�

�

� ¶ C∆x
p
∆t .
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• If x−
k+1,ℓ
− x−

k,ℓ
= 0, then there is θk,ℓ in between of xk+1,ℓ and x+

k,ℓ
+ x−

k,ℓ
− xk,ℓ such

that
�

�

�

1

∆x

�

(xk+1,ℓ − x−
k+1,ℓ

)(xk+1,ℓ − x+
k+1,ℓ

)− (xk,ℓ − x−
k,ℓ
)(xk,ℓ − x+

k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x

�

(xk+1,ℓ−x−
k,ℓ
)(xk+1,ℓ−x+

k,ℓ
)−(x+

k,ℓ
+x−

k,ℓ
−xk,ℓ−x−

k,ℓ
)(x+

k,ℓ
+x−

k,ℓ
−xk,ℓ− x+

k,ℓ
)
�

�

�

�

=

�

�

�

1

∆x
(θk,ℓ − x−

k,ℓ+ θk,ℓ − x+
k,ℓ
)(xk+1,ℓ − x+

k,ℓ
− x−

k,ℓ+ xk,ℓ)

�

�

�

¶

�

�

�− (x+k,ℓ
− xk+1,ℓ) + (xk,ℓ− x−

k,ℓ)

�

�

� ¶

�

�

�x+k,ℓ
− xk+1,ℓ + xk,ℓ− x−

k,ℓ

�

�

�

=∆x

�

�

�−∇h b(tn, xk)∆t −∇hσ(tn, xk)
p
∆t ξℓ

�

�

� ¶ C∆x
p
∆t.

Thus from Eq. (4.28) we have

|Sk,ℓ
2
| ¶ C

�

�u′′x x (tn+1,θk,ℓ)
�

�∆x
p
∆t , (4.30)

and from Eqs. (4.26), (4.29) and (4.30), we complete the proof.

Using Theorem 4.1 and Lemmas 4.1–4.4, we obtain error estimates for our fully discrete

scheme summarised in the following theorem.

Theorem 4.2. For f ∈ C
1,3,3,3

b
and u ∈ C

1,5

b
, b,σ ∈ C

1,3

b
we have the error estimates

‖µtn
‖2∞ = O

�

(∆t)2
�

+O
�

(∆t)−2(∆x)4
�

,

‖νtn
‖2∞ = O

�

(∆t)2
�

+O
�

(∆t)−2(∆x)4
�

+O
�

(∆t)−1(∆x)2
�

.

Proof. Under the specified conditions, from Eqs. (3.16), (3.17), and Lemmas 4.1–4.4,

we have the following estimates:

�

�Rk
y,n

�

� ¶

�

�R̄k
y,n

�

�+
�

�R̃k
y,n

�

�+
�

�Rk
E,y,n

�

�+

�

�

�

�

�

L
∑

ℓ=1

R
k,ℓ
I ,y,nωℓ

�

�

�

�

�

= O
�

(∆t)2
�

+O
�

(∆x)2
�

,

�

�Rk
z,n

�

�¶

�

�R̄k
z,n

�

�+
�

�R̃k
z,n

�

�+
�

�Rk
E,z,n

�

�+

�

�

�

�

�

L
∑

ℓ=1

R
k,ℓ
I ,y,n

p
∆t ξℓωℓ

�

�

�

�

�

= O
�

(∆t)2
�

+O
�p
∆t (∆x)2

�

,

�

�∇hRk
y,n

�

� ¶

�

�∇hR̄k
y,n

�

�+
�

�∇hR̃k
y,n

�

�+
�

�∇hRk
E,y,n

�

�+

�

�

�

�

�

∇h

L
∑

ℓ=1

R
k,ℓ
I ,y,nωℓ

�

�

�

�

�

= O
�

(∆t)2
�

+O
�

(∆x)2
�

+O(
p
∆t∆x) ,

�

�∇hRk
z,n

�

�¶

�

�∇hR̄k
z,n

�

�+
�

�∇hR̃k
z,n

�

�+
�

�∇hRk
E,z,n

�

�+

�

�

�

�

�

∇h

L
∑

ℓ=1

R
k,ℓ
I ,y,n

p
∆t ξℓωℓ

�

�

�

�

�

= O
�

(∆t)2
�

+O
�p
∆t (∆x)2

�

+O(∆t∆x) .

The results then follow from Theorem 4.1.

Furthermore, by relating∆t to∆x we obtain first-order convergence for the numerical

scheme.



564 B. Gong and W. Zhao

Corollary 4.1. Under the assumptions of Theorem 4.2, if we let ∆x = (∆t)3/2 then we have

the first-order error estimates

‖µtn
‖∞ = O(∆t) , ‖νtn

‖∞ = O(∆t) .

5. Conclusions

We have considered a fully discrete Euler scheme for solving decoupled forward back-

ward stochastic differential equations. Under conditions slightly stronger than traditional

assumptions, we proved the convergence rate is first-order. The technique used to ob-

tain our error estimates is general, and may be extended to more complicated numerical

schemes.
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