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Abstract. It is known that the solution to a Cauchy problem of linear differential
equations:

x′(t) = A(t)x(t), with x(t0) = x0,

can be presented by the matrix exponential as exp(
∫ t

t0
A(s) ds)x0, if the commuta-

tivity condition for the coefficient matrix A(t) holds:

[ ∫ t

t0

A(s) ds, A(t)
]

= 0.

A natural question is whether this is true without the commutativity condition.
To give a definite answer to this question, we present two classes of illustrative
examples of coefficient matrices, which satisfy the chain rule

d
dt

exp(
∫ t

t0

A(s) ds) = A(t) exp(
∫ t

t0

A(s) ds),

but do not possess the commutativity condition. The presented matrices consist of
finite-times continuously differentiable entries or smooth entries.
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1 Introduction

It is known that one of the important problems in the theory of differential equations
is how to solve Cauchy problems of linear differential equations [1]. If the funda-
mental matrix solution is found, unique solutions to the Cauchy problems of linear
differential equations can be automatically presented.

However, on one hand, it is not always possible to compute the fundamental ma-
trix solution explicitly. On the other hand, linear differential equations are also used
in solving nonlinear integrable equations, in both continuous and discrete cases [2, 3].
Therefore, the explicit representation of solutions to the Cauchy problems of linear
differential equations is a crucial issue in the theory of both linear and nonlinear dif-
ferential equations.

Let us specify a system of linear differential equations on an interval I=(a, b)⊆R

as follows:
x′(t) = A(t)x(t) + f (t), (1.1)

where f (t)∈Rn is continuous on I and A(t) is an n × n matrix of real continuous
functions on I. Any higher-order scalar linear differential equation of Kovalevskaia
type can be transformed into the above linear system. Of significant importance in the
theory of differential equations is how to solve the Cauchy problem on I:

x′(t) = A(t)x(t) + f (t), x(t0) = x0,

where t0∈I and x0∈Rn are given. Various examples of finding solutions to Cauchy
problems of differential equations, both linear and nonlinear, can be found in [1, 4].

If the coefficient matrix A(t) commutes with its integral
∫ t

t0
A(s) ds:

[A(t),
∫ t

t0

A(s) ds] = 0, t ∈ I, (1.2)

then the fundamental matrix solution U(t, t0) of the homogeneous system x′(t)=
A(t)x(t) is determined by the matrix exponential (see, say, [5]):

U(t, t0) = exp
∫ t

t0

A(s) ds, t ∈ I. (1.3)

That is to say, if we have the commutativity condition (1.2), the following chain rule
holds:

d
dt

exp
∫ t

t0

A(s) ds = A(t) exp
∫ t

t0

A(s) ds, t ∈ I, (1.4)

and so, the unique solution to the Cauchy problem (1) is given by the variation of
parameters formula:

x(t) = U(t, t0)x0 +
∫ t

t0

U(t, s) f (s) ds, t ∈ I. (1.5)



W.X. Ma, X. Gu, L. Gao / Adv. Appl. Math. Mech., 4 (2009), pp. 573-580 575

However, if the commutativity condition (1.2) does not hold, then we cannot ex-
pect to have the proceeding chain rule (1.4). A counterexample on the real line given
by Liu [6] is

A(t) =

[
t 1

0 0

]
. (1.6)

It is computed in [6] that

exp
∫ t

0
A(s) ds =

[
et2/2 2

t (et2/2 − 1)

0 1

]
,

and thus, the chain rule (1.4) does not hold for the matrix A(t) determined by (1.6).
It is natural that we wonder if the commutativity condition (1.2) is necessary to

guarantee the chain rule (1.4), at a given point t0∈I. Namely, is there any matrix A(t)
of real continuous functions, which satisfies the chain rule (1.4) but violates the com-
mutativity condition (1.2) at a point t0∈I? This is about the solution representation of
the Cauchy problem at a point t0∈I, and thus, will help us answer the question raised
by Ma and Shekhtman in [7]: Can we have the matrix exponential representation (1.3)
for the fundamental matrix solution without the commutativity condition (1.2)? This
is one of the most fundamental questions and should not be overlooked in the theory
of differential equations.

In this paper, we would like to present two classes of illustrative examples which
satisfy the chain rule (1.4) but do not satisfy the commutativity condition (1.2) at a
fixed point t0∈I. The paper is organized as follows. In Section 2, two classes of con-
crete examples of continuous matrices are constructed, in which matrices consist of
finite-times continuously differentiable entries or smooth entries. Other matrix forms
are also analyzed under two transformations to present different classes of the re-
quired matrices. In Section 3, a few further remarks are finally given.

2 Presenting illustrative examples

Let I=(a, b)∈R. We will use the following result by Ma and Shekhtman [7], in our
construction of illustrative examples. Assume that

B(t) =

[
c F(t)

0 0

]
, t ∈ I, (2.1)

where F(t) is a non-constant differentiable function and c is a nonzero complex num-
ber satisfying ec=1 + c (see [8] for more details on such complex numbers c). Then on
the interval I, we have

d
dt

eB(t) = B′(t) eB(t), but [B′(t), B(t)] 6≡ 0. (2.2)
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Let us now fix t0∈I. We are going to construct two classes of continuous matrices
A(t) on I, which satisfy our requirements:

d
dt

eB(t) = A(t) eB(t), but [A(t), B(t)] 6≡ 0 on I, (2.3)

where B(t)=
∫ t

t0
A(s) ds. That is to say, the matrix exponential eB(t) produces the unique

solution eB(t)x0 to the Cauchy problem of the corresponding homogeneous linear dif-
ferential equations with x(t0)=x0, but the commutativity condition (1.2) is not satis-
fied.

Example 2.1. (Matrices with Finite-times Continuously Differentiable Entries)
First, let m∈N, and we select t0<t1<b and a complex number d 6=0 so that

h :=
∫ t1

t0

sinm(s− t1) ds 6= 0,

and c :=dh satisfies ec=1 + c. Define a continuous matrix A(t) on I as follows:

A(t) =
{

A1, if t < t1,
A2, if t ≥ t1,

(2.4a)

A1 =
[

d sinm(t− t1) d sinm(t− t1)
0 0

]
, (2.4b)

A2 =
[

0 g(t) sinm (t− t1)
0 0

]
, (2.4c)

where g is a nonzero smooth function on [t1, b). Obviously, any matrix of this class is
(m − 1)-times continuously differentiable on I, but its m-th order derivative doesn’t
exist at t=t1. Actually at t=t1, its (1, 1)th entry has no m-th order derivative, but its
(1, 2)th entry may have the m-th order derivative, which depends on what kind of
functions g(t) the matrix A(t) involves. A direct computation yields

B(t) :=
∫ t

t0

A(s)ds =
{

B1, if t < t1,
B2, if t ≥ t1,

(2.5a)

B1 =


 d

∫ t

t0

sinm(s− t1) ds d
∫ t

t0

sinm(s− t1) ds

0 0


 , (2.5b)

B2 =


 c c +

∫ t

t1

g(s) sinm(s− t1) ds

0 0


 . (2.5c)

Example 2.2. (Matrices with Smooth Entries)
Second, we select t0<t1<b and a complex number d 6=0 so that the number

c = d e
1

t0−t1 ,
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satisfies ec=1 + c. Define a continuous matrix A(t) on I as follows:

A(t) =





A1, if t < t1,
A2, if t = t1,
A3, if t > t1,

(2.6a)

A1 =




d
(t− t1)2 e

1
t−t1

d
(t− t1)2 e

1
t−t1

0 0


 , (2.6b)

A2 =
[

0 0
0 0

]
, A3 =

[
0 g(t) e

1
t1−t

0 0

]
, (2.6c)

where g(t) is a nonzero Laurent polynomial (possibly polynomial) in t− t1. Obviously,
any matrix of this class is infinitely differentiable on I. Actually, any order left-sided
and right-sided derivatives of the (1, 1)th and (1, 2)th entries at t=t1 are equal to zero.
A direct computation gives rise to

B(t) :=
∫ t

t0

A(s) ds =





B1, if t < t1,
B2, if t = t1,
B3, if t > t1,

(2.7a)

B1 =

[
c− d e

1
t−t1 c− d e

1
t−t1

0 0

]
, (2.7b)

B2 =
[

c c
0 0

]
, B3 =


 c c +

∫ t

t1

g(s) e
1

t1−s ds

0 0


 . (2.7c)

Proof: Now, let us show that the above two classes of matrices provide the required
examples. Namely, we need to verify that the two classes of matrices defined above
satisfy the requirements in (2.3).

When t<t1, we have the commutativity condition:

[A(t), B(t)] = 0, (2.8)

and thus, the chain rule
d
dt

eB(t) = A(t) eB(t), (2.9)

holds on the sub-interval (a, t1).
When t>t1, the differentiable functions

F(t) = c +
∫ t

t1

g(s) sinm(s− t1) ds, F(t) = c +
∫ t

t1

g(s) e
1

t1−s ds, t > t1,

have nonzero derivatives on the sub-interval (t1, b), and so, they are not constant func-
tions on (t1, b). It then follows from the aforementioned result in (2.1) and (2.2) that
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the chain rule (2.9) holds but the commutativity condition (2.8) is not satisfied on the
sub-interval (t1, b).

When t=t1, the chain rule (2.9) follows from the continuity of

d
dt

eB(t), and A(t)eB(t).

To conclude, for the above two classes of matrices, the chain rule (2.9) holds for all
t∈I but the commutativity condition (2.8) is not satisfied on the whole interval I. ¤

Note that two transformations

B(t) 7→ PB(t)P−1, B(t) 7→ B(t) + α(t)I2, (2.10)

where

P = P−1 =

[
0 1

1 0

]
,

α(t) is an arbitrary differentiable function and I2 is the identity matrix of size 2, do not
change the properties in (2.2). Therefore, based on these two transformations, we can
also begin with the following forms of basic complex matrices:

B(t) =
[

0 0
F(t) c

]
,

[
0 F(t)
0 −c

]
,

[ −c 0
F(t) 0

]
,

which satisfy (2.2). Similarly, other classes of matrices satisfying our requirements in
(2.3) can be presented.

However, all examples of matrices constructed above have complex entries. To
construct examples of purely real matrices, we use the real matrix representation of
complex numbers as in [7]:

āij(t) =

[
Re(aij(t)) Im(aij(t))

−Im(aij(t)) Re(aij(t))

]
, (2.11)

and introduce real square matrices

Ā(t) :=

[
ā11(t) ā12(t)

ā21(t) ā22(t)

]

4×4

, (2.12)

associated with A(t)=(aij(t))2×2 defined by either (2.4) or (2.6). These matrices give
us the required matrices of real continuous functions, for which the chain rule (2.9)
holds without the commutativity condition (2.8).
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3 Conclusions and remarks

We have analyzed a few sets of possibilities to represent solutions to Cauchy problems
of linear differential equations by the matrix exponential. Two classes of illustrative
examples of continuous matrices were presented, whose entries are finite-times dif-
ferentiable and smooth, respectively. The corresponding systems of linear differential
equations have the matrix exponential form for solutions to their Cauchy problems,
but their coefficient matrices do not possess the commutativity condition.

We remark that as did in [7], we can construct much bigger size matrices to satisfy
our requirements in (2.3) by inserting arbitrary sub-matrices. Two of the key points
in our construction above are to use the complex number c satisfying ec=1 + c and to
define coefficient matrices piecewise. The presented examples are counterparts of the
insightful examples by Horn and Johnson [9] about the relation between

[A, B] = 0, and eA+B = eA eB,

where A and B are two square matrices of the same size. Furthermore, it is known [6]
that the chain rule (2.9) may not hold, if we do not require the commutativity condition
(2.8). Therefore, our results also provide a complete supplement to the chain rule
without the commutativity condition.

It is interesting to note that our illustrative examples using ec=1 + c does not obey
the condition [10]:

eλ1(t)−λ2(t) − [λ1(t)− λ2(t)]− 1 6= 0, (3.1)

where λ1(t) and λ2(t) are distinct eigenvalues of B(t). It is evident that every ma-
trix B(t) in Section 2, defined by either (2.1) with any t∈I, or (2.5) with t≥t1, or (2.7)
with t≥t1, has two eigenvalues c and 0. The above condition (3.1) with λ1=c and
λ2=0 clearly becomes ec 6=1 + c, which violates our selection criteria for the constant c.
Actually, the condition (3.1) at a point t∈I is sufficient to guarantee that the chain rule

d
dt

eB(t) = B′(t)eB(t),

implies the commutativity
[B(t), B′(t)] = 0,

at this point t∈I (see, e.g., [10,11] for details), but it is not necessary since the matrices
B(t) defined by either (2.5) or (2.7) with t=t1 generate counterexamples. Ziebur [11]
gave more general examples of matrices than the class of matrices B(t) in (2.1), which
satisfy (2.2) but violate (3.1). Discussions on chain rules for general functions of ma-
trices can also be found in [7, 12].

We finally point out that the definition of A(t) in our examples depends on the
initial time t0∈I. It remains an open question whether there is a continuous matrix
A(t) not depending on t0∈I such that the chair rule (2.9) holds without the commu-
tativity condition (2.8) over the interval I. This is the exact question on the matrix
fundamental solution of linear differential equations presented in [7].
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