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Abstract. A lattice Boltzmann �ux solver (LBFS) is presented in this wo rk for sim-
ulation of incompressible viscous and inviscid �ows. The ne w solver is based on
Chapman-Enskog expansion analysis, which is the bridge to l ink Navier-Stokes (N-S)
equations and lattice Boltzmann equation (LBE). The macroscopic differential equa-
tions are discretized by the �nite volume method, where the � ux at the cell interface
is evaluated by local reconstruction of lattice Boltzmann s olution from macroscopic
�ow variables at cell centers. The new solver removes the dra wbacks of conventional
lattice Boltzmann method such as limitation to uniform mesh , tie-up of mesh spacing
and time interval, limitation to viscous �ows. LBFS is valid ated by its application to
simulate the viscous decaying vortex �ow, the driven cavity �ow, the viscous �ow past
a circular cylinder, and the inviscid �ow past a circular cyl inder. The obtained numer-
ical results compare very well with available data in the lit erature, which show that
LBFS has the second order of accuracy in space, and can be wellapplied to viscous
and inviscid �ow problems with non-uniform mesh and curved b oundary.

AMS subject classi�cations : 20B40

Key words : Chapman-Enskog analysis, �ux solver, incompressible �ow , Navier-Stokes equation,
lattice Boltzmann equation.

1 Introduction

Currently, for the simulation of incompressible viscous �o ws, most of numerical solvers
can be roughly classi�ed into two categories. One is based on t he solution of Navier-
Stokes (N-S) equations, while the other is based on the solution of lattice Boltzmann
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equation (LBE). N-S equations are from the application of ma ss and momentum conser-
vation laws to a control volume. They have strong physical ba ckgrounds. LBE is from the
statistical physics. Both N-S solvers and LBE solvers have their distinguished features.

In the category of incompressible N-S solvers, the dependent variables are the macro-
scopic pressure and velocity. One approach in this category is the arti�cial compressibil-
ity method [1]. This method adds a weak compressibility into the incompressible N-S
equations so that the well-established compressible N-S solvers can be applied to sim-
ulate incompressible �ows. Its drawback is that the arti�cia l compressibility involves a
user-speci�ed parameter, which may not be easy to give for som e cases. The most popu-
lar solver in this category is to solve incompressible N-S eq uations directly. However, un-
like compressible N-S equations, there is no transport equation for pressure in the incom-
pressible N-S equations. In fact, the pressure is only appeared in the momentum equation
but the velocity is involved in both the continuity and momen tum equations. When the
velocity is obtained from the momentum equation, there is no guarantee that it will sat-
isfy the continuity equation. To overcome this dif�culty, a n umber of algorithms [2–9],
which are termed projection or pressure correction methods , have been proposed. These
methods mainly resolve the coupling problem between the pre ssure �eld and the veloc-
ity �eld through the fractional step process. Usually, the pr ocess involves the solution of
Poisson equation for pressure or pressure correction. The slow convergence of Poisson
equation degrades the computational ef�ciency of this kind o f N-S solvers, especially for
unsteady �ow simulation. In addition, to properly consider the effect of pressure oscilla-
tion in the numerical simulation, the staggered grid, on whi ch the velocity components
and pressure are de�ned at different locations, is often adop ted. The use of staggered
grid brings a great inconvenience in programming. Furtherm ore, as N-S equations are
partial differential equations, N-S solvers need to use num erical schemes such as �nite
difference (FD), �nite volume (FV) and �nite element (FE) meth ods to discretize the �rst
and second order spatial derivatives, and solve the resulta nt ordinary differential equa-
tions or algebraic equations. It is not a trivial job.

In contrast, LBE is a discrete model. At each physical location, a �nite number of �c-
titious particles with given velocity (provided by lattice velocity model) are distributed.
The density distribution functions of these particles are t aken as unknowns, which can
be determined from a set of algebraic equations (lattice Boltzmann equations). Once the
density distribution functions are known at a physical loca tion, the macroscopic �ow
variables such as density and velocity can be computed from m ass and momentum con-
servation. LBE was initially developed by Chen et al. [10] an d Qian et al. [11]. Since then,
many variants of LBE have been developed in the literature [1 2–24]. Basically, LBE solver
has two processes: streaming and collision. The streaming process involves particle dis-
tribution functions at two physical locations while the col lision process happens locally.
The collision process can be approximated by a linear model w ith a single relaxation time
(BGK model) [10,11] or multi-relaxation times (MRT model) [1 6]. As compared with N-S
solvers, the LBE solver has following distinguished featur es. Firstly, the linear streaming
and collision processes of �ctitious particles in the LBE sol ver can effectively consider the
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nonlinear convection and diffusion effects at the macrosco pic level. The manipulation of
complicated nonlinear terms and treatment of high order der ivatives in N-S solvers are
avoided. Secondly, LBE is a set of algebraic formulations, which can be easily solved.
No differential equation and solution of resultant algebra ic equations are involved in the
LBE solver. These appealing features attract more and more researchers to apply LBE for
solving various �ow problems [25–36]. On the other hand, we h ave to indicate that LBE
solvers also suffer from some drawbacks. Due to uniformity o f the lattice, the standard
LBE solver is limited to the simple geometry and uniform mesh . For complex geometry
and application on the non-uniform mesh, additional effort s such as supplemented inter-
polation [12] and built-in interpolation [19] have to be inc orporated. This will increase the
complexity of the solver, and requires additional computat ional effort and virtual stor-
age. The second drawback is the tie-up between the time interval and mesh spacing due
to the streaming process. This drawback makes the adaptive and multi-block computa-
tion of LBE solvers extremely complicated. In addition, LBE solvers need more memory
to store density distribution functions than the N-S solver s. Another drawback is that
LBE solvers can only be applied to simulate viscous �ows but N -S solvers can be applied
to solve both inviscid and viscous �ows. Furthermore, the ph ysical boundary conditions
such as given velocity and pressure cannot be implemented di rectly in the LBE solver.
They have to be converted to the boundary conditions for dens ity distribution functions.
Although bounce back rule is an ef�cient way to implement no-s lip boundary condition,
other boundary conditions may not be implemented in a simple way, especially for the
three-dimensional case as it has more than 15 lattice directions.

From the above discussion, both N-S solvers and LBE solvers have their distinctive
advantages and disadvantages for simulation of incompress ible �ows. One may ask
whether we can develop a solver to combine their advantages, and in the meantime,
to remove their drawbacks. This motivates the present work. To address this issue, we
need to look at the relationship between N-S equations and LB E as they are mathemat-
ical models to describe the same physical problem. Indeed, the Chapman-Enskog (C-E)
expansion analysis [13] is a bridge to link the two solvers, f rom which the macroscopic
variables and �uxes in N-S equations can be computed by densi ty distribution functions
in the LBE solution. Usually, the C-E analysis is applied in t he whole �ow domain and
at any time level. This lays the foundation that the macrosco pic �ow variables obtained
by LBE solvers at any physical location and any time level can satisfy the N-S equations.
On the other hand, it was found that the C-E analysis can be app lied at a local position
within a small streaming step. In fact, this idea has been wel l applied by Xu and his
co-workers [37–40] in the development of gas kinetic scheme, where the �ux at the cell
interface is computed by local application of Boltzmann equ ation. Inspired by the work
of Xu [37], in this work, the lattice Boltzmann �ux solver is p resented. In the solver, the
�nite volume method is applied to discretize the governing di fferential equations (N-S
equations), and the �ow variables at the cell center are obta ined by marching in time. The
�uxes at the cell interface are evaluated by local reconstru ction of LBE solution with the
help of C-E analysis. The present solver effectively combines the advantages of both N-S
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solvers and LBE solvers, and in the meantime removes their di sadvantages. To be spe-
ci�c, only macroscopic �ow variables are stored and used as de pendent variables, and
physical boundary conditions can be directly implemented. There is no need to approx-
imate the second order derivatives and use staggered grid. The convective and viscous
�uxes are computed simultaneously. Furthermore, the above mentioned drawbacks of
LBE solvers such as limitation of simple geometry and unifor m mesh, tie-up between the
time interval and mesh spacing, and limitation to the viscou s �ow are all removed. As
shown by test cases in the paper, the present solver can be effectively applied to solve
both viscous and inviscid �ows with the curved boundary or no n-uniform mesh. It has
more �exibility for applications.

2 Navier-Stokes equations, lattice Boltzmann equation and
Chapman-Enskog expansion analysis

2.1 Navier-Stokes (N-S) equations

When we apply the physical conservation laws of mass and mome ntum to a control vol-
ume, the following continuity and momentum equations, whic h are often named Navier-
Stokes equations can be derived

¶r
¶t

+ r� r u = 0, (2.1a)

¶ru
¶t

+ r� (r uu )= �r p+ mr�
�
r r u+( r r u)T �

, (2.1b)

where r is the �uid density, u is the �ow velocity and p is the pressure. If the density
variation is small and Mach number is low, the above governing equations can be used
to simulate incompressible �ows.

2.2 Lattice Boltzmann equation (LBE)

The standard lattice Boltzmann equation with BGK approxima tion can be written as

fa(r+ eadt ,t+ dt )= fa(r,t)+
f eq
a (r,t) � fa(r,t)

t
, a= 0,1,��� ,N, (2.2)

where r represents a physical location, t is the single relaxation parameter; fa is the den-
sity distribution function along the a direction; f eq

a is its corresponding equilibrium state;
dt is the streaming time step and ea is the particle velocity in the a direction; N is the num-
ber of discrete particle velocities. Once the density distr ibution functions at the physical
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location r are obtained, the macroscopic density r and momentum r u are computed by

r =
N

å
a= 0

fa, (2.3a)

r u =
N

å
a= 0

faea. (2.3b)

The pressure can be calculated from the equation of state,

p= r c2
s, (2.4)

where cs is the sound speed. In the application of LBE (2.2), the latti ce velocity ea has
to be given �rst. There are a number of lattice velocity models for the two-dimensional
(2D) and three-dimensional (3D) cases. For the 2D case, the most popular lattice velocity
model is D2Q9 model de�ned in a square lattice, which can be wri tten as

ea =

8
><

>:

0, a= 0,

(cos[(a� 1)p /2 ],sin[(a� 1)p /2 ])c, a= 1,2,3,4,
p

2(cos[(a� 5)p /2 + p /4 ],sin[(a� 5)p /2 + p /4 ])c, a= 5,6,7,8.

(2.5)

Here c= dx/ dt , dx is the lattice spacing. For the case ofdx = dt , which is often used in
the literature and also adopted in this work, c is taken as 1. There are two key issues in
solving LBE (2.2). One is the speci�cation of equilibrium dis tribution function f eq

a , and
the other is the determination of relaxation parameter t . The equilibrium distribution
function can be given from the truncated Taylor series expan sion of Maxwellian function
in terms of Mach number, which reads

f eq
a (r,t)= r wa

h
1+

ea �u
c2

s
+

(ea �u)2� (csju j)2

2c4
s

i
, (2.6)

where the coef�cients wa and the sound speed cs depend on the lattice velocity model.
For the D2Q9 model given by Eq. (2.5), they are given as: w0 = 4/9, w1 = w2 = w3 =
w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36, cs = c/

p
3. The relaxation parameter t is linked

to the kinematic viscosity of �uid through Chapman-Enskog e xpansion analysis by the
following relationship

u=
�

t �
1
2

�
c2

sdt . (2.7)

Note that in the lattice Boltzmann method (LBM), the equilibr ium distribution functions
also satisfy the conservation of mass and momentum at any phy sical location. Thus, we
have

r =
N

å
a= 0

f eq
a , (2.8a)

r u =
N

å
a= 0

f eq
a ea. (2.8b)



C. Shu, Y. Wang, C. J. Teo and J. Wu / Adv. Appl. Math. Mech., 6 (2014), pp. 436-460 441

2.3 Chapman-Enskog expansion analysis

As discussed in the introduction, both N-S equations (2.1a) -(2.1b) and LBE (2.2) are math-
ematical models to describe the same physical problem (�uid �ow). They should have
some relationship. Indeed, their relationship is given by C hapman-Enskog expansion
analysis [13]. Some basic formulations of this analysis are shown below.

By introducing multi-scale expansion, the density distrib ution function, the temporal
derivative and the spatial derivative can be expanded respe ctively as

fa = f (0)
a + #f (1)

a + #2 f (2)
a , (2.9a)

¶
¶t

= #
¶

¶t0
+ #2 ¶

¶t1
, (2.9b)

r r = #r r1, (2.9c)

where #is a small parameter proportional to the Knudsen number. By pe rforming Taylor
series expansion in time and space for Eq. (2.2), the following differential equation with
the second order of accuracy is obtained,

� ¶
¶t

+ ea �r
�

fa+
dt

2

� ¶
¶t

+ ea �r
� 2

fa+
1

td t

�
fa � f eq

a
�
+ O

�
d2

t

�
= 0. (2.10)

Substituting Eq. (2.9) into Eq. (2.10) gives the following 3 equations in terms of #order,

O(#0) : ( fa
(0) � fa

eq)/ (td t )= 0, (2.11a)

O(#) :
� ¶

¶t0
+ ea �r 1

�
f (0)
a +

1
td t

f (1)
a = 0, (2.11b)

O(#2) :
¶f (0)

a

¶t1
+

�
1�

1
2t

�� ¶
¶t0

+ ea �r 1

�
f (1)
a +

1
td t

f (2)
a = 0. (2.11c)

From Eq. (2.11a), we have

fa
(0) = fa

eq, (2.12)

and from Eq. (2.11b), we get

#f (1)
a = � td t#

� ¶
¶t0

+ ea �r 1

�
f eq
a . (2.13)

By taking summation of Eqs. (2.11b) and (2.11c) overa and combining the resultant for-
mulations on the t0 and t1 time scales, the following equation is derived

¶r
¶t

+ r�
� N

å
a= 0

ea f eq
a

�
= 0. (2.14)
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Furthermore, by taking the �rst-moment summation of Eqs. (2. 11b) and (2.11c) overa and
combining the resultant formulations on the t0 and t1 time scales, the following equation
is obtained:

¶ru
¶t

+ r� P = 0, (2.15)

where P is the momentum �ux tensor de�ned by

P bg =
N

å
a= 0

(ea)b(ea)g

h
f eq
a +

�
1�

1
2t

�
#f (1)

a

i
. (2.16)

Here, (ea)b is the component of the lattice velocity vector ea in the b-coordinate direction.
From the expressions of Eqs. (2.14)-(2.16), it can be seen clearly that to the zero order of
#, that is, fa is approximated by f eq

a as shown by Eq. (2.9a), Eqs. (2.14) and (2.15) recover

Euler equations. And to the �rst order of #, in which fa is approximated by f eq
a + #f (1)

a

as shown by Eq. (2.9a), Eqs. (2.14) and (2.15) recover N-S equations (2.1a)-(2.1b) with the
relationship between t and viscosity n given by Eq. (2.7). In this case, Eqs. (2.13) and
(2.16) can be approximated by

f neq
a = fa � f eq

a = #f (1)
a = � td t

� ¶
¶t

+ ea �r
�

f eq
a , (2.17a)

P bg =
N

å
a= 0

(ea)b(ea)g

h
f eq
a +

�
1�

1
2t

�
f neq
a

i
. (2.17b)

Here f neq
a is the non-equilibrium distribution function. Note that Eq . (2.17a) is also ap-

plied in the gas kinetic scheme [37].

3 Lattice Boltzmann Flux Solver (LBFS)

3.1 Finite volume discretization of macroscopic different ial equations

The multi-scale Chapman-Enskog expansion analysis provid es a solid foundation for
LBM. It guarantees that the macroscopic �ow variables obtain ed by LBM would sat-
isfy N-S equations. As discussed in the introduction, LBE is usually applied globally
in the whole computational domain and for all time levels. As such, it causes some lim-
itations for application. On the other hand, if we start from Eqs. (2.14) and (2.15) given
from Chapman-Enskog analysis, we can combine the solution algorithms of N-S solvers
with LBE solvers. To be speci�c, we can apply the �nite volume me thod to discretize
Eqs. (2.14) and (2.15) so that the conservative variablesr and r u de�ned at the cell center
can be obtained by marching in time. Unlike N-S solvers where the inviscid and vis-
cous �uxes are approximated differently and the derivative approximation is needed,
the inviscid and viscous �uxes at the cell interface in the pr esent lattice Boltzmann �ux
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solver (LBFS) are evaluated simultaneously by local reconstruction of LBE solution from
macroscopic �ow variables at cell centers. For simplicity, we will consider the 2D case to
illustrate the details of LBFS. For the 2D case, the �ow veloc ity u has componentsu and
v and in the x and y direction respectively. Similarly, the particle velocity ea also has two
components eax and eay in the x and y directions. With these notations, Eqs. (2.14) and
(2.15) can be written as:

¶r
¶t

+
¶Px

¶x
+

¶Py

¶y
= 0, (3.1a)

¶ru
¶t

+
¶P xx

¶x
+

¶P xy

¶y
= 0, (3.1b)

¶rv
¶t

+
¶P yx

¶x
+

¶P yy

¶y
= 0, (3.1c)

where

Px =
N

å
a= 0

eax f eq
a , (3.2a)

Py =
N

å
a= 0

eay f eq
a , (3.2b)

P xx =
N

å
a= 0

eaxeax

h
f eq
a +

�
1�

1
2t

�
f neq
a

i
, (3.2c)

P xy =
N

å
a= 0

eaxeay

h
f eq
a +

�
1�

1
2t

�
f neq
a

i
, (3.2d)

P yx =
N

å
a= 0

eayeax

h
f eq
a +

�
1�

1
2t

�
f neq
a

i
, (3.2e)

P yy =
N

å
a= 0

eayeay

h
f eq
a +

�
1�

1
2t

�
f neq
a

i
. (3.2f)

In the above equations, t is computed by Eq. (2.7), and the lattice velocity is given by the
chosen lattice velocity model. If we de�ne the vectors W, E and F as

W =

8
<

:

r
r u
r v

9
=

;
, E=

8
<

:

Px

P xx

P yx

9
=

;
, F=

8
<

:

Py

P xy

P yy

9
=

;
, (3.3)

then Eqs. (3.1a)-(3.1c) can be put into the following form,

¶W
¶t

+
¶E
¶x

+
¶F
¶y

= 0. (3.4)
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Integrating Eq. (3.4) over a control cell Wi gives

dW i

dt
= �

1
dVi

å
k

(nxE+ nyF)kdSk, (3.5)

where dVi is the volume of the control cell, and dSk is the area of the kth control surface
enclosed Wi , nx and ny are the x and y components of the unit normal vector on the
kth control surface. Obviously, once the �uxes at all cell int erfaces are known, Eq. (3.5)
can be solved by well established numerical schemes such as the 4-satge Runge-Kutta
method. Thus, the evaluation of �uxes E and F at the cell interface is the key in the
solution process.

3.2 Flux evaluation at cell interface by LBFS

Consider a cell interface between control cells Wi and Wi+ 1 as shown in Fig. 1. We need
to evaluate �uxes E and F at the interface from �ow variables at 2 cell centers. As can
be seen from Eqs. (3.2a)-(3.3), to evaluate �uxesE and F, we have to know the equilib-
rium distribution functions f eq

a and non-equilibrium distribution functions f neq
a at the cell

interface. In the following, we will discuss how to obtain f eq
a and f neq

a respectively.
It is indicated in Section 2 that, to the Navier-Stokes level , f neq

a can be approximated
by Eq. (2.17a). Now, we assume that the physical location for the two cell centers and
their interface is respectively r i , r i+ 1 and r. Using Taylor series expansion, we have

f eq
a (r,t) � f eq

a (r � eadt,t � dt )= dt

� ¶
¶t

+ ea �r
�

f eq
a + O(d2

t ). (3.6)

From Eqs. (3.6) and (2.17a), we can get the following form

f neq
a (r,t)= f neq

a (r � eadt ,t � dt )= � t
h

f eq
a (r,t) � f eq

a (r � eadt,t � dt )
i
+ O(d2

t ). (3.7)

Eq. (3.7) shows that once we have the equilibrium distributi on functions at the cell inter-
face and its surrounding points, we can have the full informa tion of distribution function

Figure 1: Local reconstruction of LBE solution at cell interface, W =( r ,r u,r v).
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at the interface. Note that the approximation for Eq. (3.7) i s the second order of accuracy
in dt . Using Eq. (2.6), the equilibrium distribution function f eq

a can be computed from
the �uid density r and �ow velocity u. With the given density and velocity at the cell
center, the respective density and velocity at location (r � eadt ) can be easily obtained by
interpolation. One of interpolation forms can be written as

r (r � eadt )=

(
r (r i )+( r � eadt � r i ) �r r (r i), when r � eadt is in the cell Wi ,

r (r i+ 1)+( r � eadt � r i+ 1) �r r (r i+ 1), when r � eadt is in the cell Wi+ 1,
(3.8a)

u(r � eadt )=

(
u(r i )+( r � eadt � r i ) �r u(r i), when r � eadt is in the cell Wi ,

u(r i+ 1)+( r � eadt � r i+ 1) �r u(r i+ 1), when r � eadt is in the cell Wi+ 1.
(3.8b)

With computed r (r � eadt) and u(r � eadt) by Eqs. (3.8a) and (3.8b),f eq
a (r � eadt ,t � dt) can

be given by Eq. (2.6). Now, we are only left to determine f eq
a (r,t) as shown in Eq. (3.7).

Again, with Eq. (2.6), the determination of f eq
a (r,t) is equivalent to computing r (r,t) and

u(r,t). Using Eq. (2.3), the conservative variablesr and r u can be computed by

r (r,t)=
N

å
a= 0

fa(r,t), (3.9a)

r (r,t)u(r,t)=
N

å
a= 0

fa(r,t)ea, (3.9b)

where fa(r,t) is given by the lattice Boltzmann equation (2.2). As shown in Fig. 1, we can
locally apply Eq. (2.2) at the cell interface, and have

fa(r,t)= fa(r � eadt ,t � dt ) �
fa(r � eadt,t � dt ) � f eq

a (r � eadt ,t � dt )
t

, a= 0,1,��� ,N. (3.10)

Here fa(r � eadt ,t � dt ) is the initial distribution function in the reconstruction process of
local LBE solver. In general, fa(r � eadt,t � dt ) consists of two parts: equilibrium part and
non-equilibrium part. That is, fa(r � eadt ,t � dt ) can be written as

fa(r � eadt ,t � dt )= f eq
a (r � eadt,t � dt )+ f neq

a (r � eadt,t � dt ). (3.11)

Substituting Eq. (3.11) into Eq. (3.10) gives

fa(r,t)= f eq
a (r � eadt ,t � dt )+

�
1�

1
t

�
f neq
a (r � eadt ,t � dt ). (3.12)

Furthermore, by substituting Eq. (3.7) into Eq. (3.12), we obtain

fa(r,t)= ( 1� t ) f eq
a (r,t)+ t f eq

a (r � eadt ,t � dt ). (3.13)
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Eq. (3.13) is actually equivalent to fa(r,t)= f eq
a (r,t)+ f neq

a (r,t). Finally, application of com-
patibility conditions (2.3) and (2.8) gives

r (r,t)=
N

å
a= 0

f eq
a (r � eadt ,t � dt ), (3.14a)

r (r,t)u(r,t)=
N

å
a= 0

f eq
a (r � eadt ,t � dt )ea, (3.14b)

Eqs. (3.14a) and (3.14b) show a very interesting result. That is, the conservative �ow vari-
ables at the cell interface are fully determined from the equ ilibrium distribution functions
of particles at the surrounding points, which stream to the c ell interface within a short
streaming time step dt . As equilibrium distribution functions only depend on the m acro-
scopic �ow variables, there is no need to store the density di stribution functions for all
the time levels. In fact, at any time step, we locally constru ct a LBE solution at any cell in-
terface in order to evaluate �uxes there. The reconstructio n process is applied locally and
repeated from one time level to another time level. Overall, the basic solution procedure
of LBFS can be summarized below:

1. At �rst, we have to choose a lattice velocity model such as D2 Q9 model. Then
we need to specify a streaming time step dt. The choice of dt should satisfy the
constraint that the location of (r � eadt) must be within either the cell Wi or the cell
Wi+ 1. Note that as local LBE solution is reconstructed at each cell interface, different
interfaces could use different dt. This provides a great �exibility for application if
we use non-uniform mesh or solve problems with curved bounda ry. Once dt is
chosen, the single relaxation parameter t in LBFS is calculated by Eq. (2.7).

2. For the considered interface position r, identify its surrounding positions (r � eadt),
and then use Eqs. (3.8a) and (3.8b) to compute the macroscopic �ow variables at
those positions.

3. Use Eq. (2.6) to calculate the equilibrium density distri bution function f eq
a (r� eadt ,t�

dt ).
4. Compute the macroscopic �ow variables at the cell interfa ce by using Eqs. (3.14a)

and (3.14b), and further calculate f eq
a (r,t) by Eq. (2.6).

5. Calculate f neq
a (r,t) by using Eq. (3.7).

6. Compute the �uxes at the cell interface by Eqs. (3.2a)-(3.3).
7. Once �uxes at all cell interfaces are obtained, solve ordi nary differential equations

(3.5) by using 4-stage Runge-Kutta scheme.

It is noted that the present LBFS can not only be used to simulate incompressible
viscous �ows, but also be applied to simulate incompressibl e inviscid �ows. For the in-
viscid �ow, we just simply set t = 0.5. Another point to note is that the time marching step
used in solving Eq. (3.5) and the streaming time step dt used in LBFS are independent. dt

can be selected differently at different location and diffe rent time level. As shown in the
following section, its effect on the solution accuracy is ve ry little.
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4 Numerical results and discussion

In this section, the developed LBFS is validated by applying it to simulate some test
problems. At �rst, the decaying vortex problem is solved on th e uniform mesh to study
the order of solution accuracy. Then the driven cavity �ow is simulated. For the case
of Re= 100, numerical simulation on the uniform mesh is carried out to show that the
choice of streaming time step dt in the reconstruction of local LBE solution has no effect
on the solution accuracy. After that, numerical simulation for other Reynolds numbers
on the non-uniform mesh is presented to show �exibility and c apability of LBFS on the
non-uniform grid. The comparison of computational time req uired by LBFS and a con-
ventional LBM is also shown. The third test problem is the �ow past a circular cylinder.
On one hand, we will use this example to test the ability of LBF S for problems with
curved boundary. On the other hand, through this example, we will demonstrate that
LBFS has capability to accurately simulate both viscous and inviscid �ows. Note that for
all test cases, D2Q9 lattice velocity model is adopted. For the steady �ow, the following
convergence criterion is applied,

å
ij

�
�
�
� p

u2+ v2
� n+ 1

�
� p

u2+ v2
� n

�
�
�

å
ij

� p
u2+ v2

� n+ 1 � 10� 6. (4.1)

4.1 Simulation of decaying vortex �ow

The numerical accuracy of LBFS is examined by simulating the decaying vortex �ow,
which has an analytic solution given by

u(x,y,t)= � U cos(p x/ L)sin(p y/ L)e� 2p 2Ut / (ReL) , (4.2a)

v(x,y,t)= � U sin(p x/ L)cos(p y/ L)e� 2p 2Ut / (ReL) , (4.2b)

r (x,y,t)= r 0 �
r 0U2

4c2
s

[cos(p x/ L)+ sin(p y/ L)]e� 4p 2Ut / (ReL) . (4.2c)

In the present test, the computational domain of [� L,L]� [� L,L] is chosen where six
different uniform grids ( N � N, N = 21,41,61,81,101 and 161) are used. The Reynolds
number is selected asRe= UL/ n= 10 and the relaxation parameter t is set ast = 0.65,r 0

is taken as 1. The solution at t = L/ U = 1 is computed and the relative error of velocity
component u is measured by L2 norm which is de�ned as

L2(u)retative=

vu
u
t 1

N � N

N � N

å
k= 1

� unumerical� uexact

uexact

� 2

, (4.3)
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Figure 2: L2 norm of relative error ofu versush for the decaying vortex 
ow.

where unumerical and uexact represent the numerical result and the exact solution, respec-
tively. Fig. 2 shows the L2 norm of the relative error of u versus the mesh spacing in the
log scale. As can be seen, the slope of the line is 1.971 which is close to 2. This indicates
that the accuracy of the present LBFS solution is roughly the second order in space.

4.2 Simulation of lid-driven �ow in a square cavity

The lid-driven �ow in a square cavity is a standard test case f or validating new numerical
methods in simulation of incompressible viscous lows. At �rs t, we use this example to
simulate the �ow at Re= 100 on the uniform grid of 49 � 49 with 5 different streaming
stepsdt. The Reynolds number for the problem is de�ned as Re= UL/ n, where U is the
velocity of the top lid and L is the length of the square cavity.

In the present application of D2Q9 lattice velocity model, c is taken as 1. Thus the
streaming distance dx and the streaming step dt in the LBFS have the same value, that
is, dt = dx. Suppose that the mesh spacing for the uniform grid is noted a s d= 1/48. 5
streaming distances in the LBFS, that is,dx = 0.1d,0.2d,0.3d,0.4d,0.5d, are selected to study
the effect of dt. Numerical simulation shows that all 5 different streaming distances give
the same results. This can be seen clearly in Fig. 3, which depicts the velocity compo-
nent u-pro�le along the vertical centerline and the velocity component v-pro�le alone
the horizontal centerline with 5 different streaming dista nces. The results are also in good
agreement with available data in the literature [19, 41]. Th is is a very interesting result.
It clearly shows that numerical results of LBFS are independ ent on the choice of stream-
ing distance. It implies that the streaming distance for any interface between 2 control
cells is selective and could be different for different inte rfaces. This feature ensures that
the present solver could be applied easily on non-uniform an d body-�tted grids which
removes the limitation of the standard LBM and makes the solv er be more �exible. In
the following, we will study the performance of LBFS for the a pplication on non-uniform
grids.
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(a) (b)

Figure 3: u (a) and v (b) velocity along vertical and horizontal centerlines atRe= 100using 5 di�erent streaming
distances.

The non-uniform grid for the simulation of driven cavity �ow can be generated by
using the following formulation,

xi =
1
2

h
1� cos

� i � 1
N � 1

p
�i

, i = 1,2,��� ,N, (4.4a)

yj =
1
2

h
1� cos

� j � 1
M � 1

p
�i

, j = 1,2,��� ,M , (4.4b)

where N and M are respectively the total number of mesh points in the x and y direction.
With Eq. (4.4), the non-uniform grids of 61 � 61 for Re= 400, 81� 81 for Re= 1000, 121� 121
for Re= 5000 and 10000 are used respectively. For these non-uniformgrids, the mesh
spacing near the wall is taken very small to capture the thin b oundary layer, and in the
middle region, mesh spacing is relatively large. This distr ibution on one hand can well
capture the physics, and on the other hand, can reduce the computational effort, espe-
cially for high Reynolds number cases. We have to indicate th at when the LBM is applied
globally to solve this problem with non-uniform grids, the s treaming distance in the LBE
solver is restricted by the minimum mesh spacing in the whole domain, which greatly de-
grades the computational ef�ciency. In contrast, in the LBFS , LBM is applied locally, and
the local streaming distance is pegged to the local mesh spacing. In other words, in the
�ne mesh region, we can use a small streaming distance, while i n the coarse mesh region,
we can take a larger streaming distance. As a result, less time steps and computational
effort could be needed. Table 1 compares the converged iteration numbers and run time
(s) on Lenovo Laptop (2.53GHz and 4G RAM) required respective ly by LBFS and Taylor
series expansion- and least square-based lattice Boltzmann method (TLLBM) [19]. The
case is for Re= 1000, and 3 non-uniform grids of 81 � 81, 101� 101, 121� 121 are used. It
can be seen clearly from Table 1 that to satisfy the convergence criterion (4.1), LBFS needs
less iteration numbers than TLLBM. In addition, the run time p er iteration number by
LBFS is also less than that by TLLBM. This test case well demonstrates the computational
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Table 1: Comparison of computational time by LBFS and TLLBM for lid-driven cavity 
ow at Re= 1000.

Grid Size
Iteration numbers Run time (s) on Lenovo Laptop (2.53GHz)
LBFS TLLBM LBFS TLLBM LBFS/TLLBM

81� 81 42924 66722 130.75 471.34 27.74%
101� 101 51884 76821 252.44 764.36 33.03%
121� 121 60920 87356 441.69 1145.66 38.55%

Table 2: Locations of primary vortex centers at di�erent Reynolds numbers.

Re
Vortex center

Ghia et al. [41] LBFS
400 (0.5547,0.6055) (0.5571,0.6047)
1000 (0.5313,0.5625) (0.5320,0.5662)
5000 (0.5117,0.5352) (0.5162,0.5364)
10000 (0.5117,0.5333) (0.5136,0.5323)

ef�ciency of LBFS.
Table 2 compares the locations of the primary vortex centers at different Reynolds

numbers obtained by LBFS with those given by Ghia et al. [41]. As shown in the table,
the vortex center moves toward the cavity center as Re increases and the maximum rela-
tive error between present solutions and those of Ghia et al. [41] is less than 0.9%. Fig. 4
displays u-velocity pro�le along the horizontal centerline and v-velocity pro�le along
the vertical centerline at Re= 400, 1000, 5000 and 10000. As can be seen from this �g-
ure, the present results agree very well with those of Ghia et al. [41]. Fig. 5 shows the
streamlines for the four Reynolds numbers. The most strikin g aspect of this �gure is that
the Reynolds number apparently has unique effect on �ow patt erns. Secondary and ter-
tiary vortices appear and evolve into larger ones as Re becomes large. These results and
observations are in good agreement with those of Ghia et al. [ 41].

4.3 Simulation of viscous �ow past a circular cylinder

Although the complex lid-driven cavity �ows have been succe ssfully simulated to vali-
date the present solver, the geometry of the cavity which onl y involves straight bound-
aries is nevertheless simple. To further illustrate the cap ability of LBFS for problems
with curved boundary, the �ow past a circular cylinder is sim ulated. This problem is
very attractive and has been investigated extensively. There are an increasing number of
numerical and experimental results available in the litera ture.

The �ow behaviors for this problem are characterized by the R eynolds number which
is de�ned as Re= U¥ D/ n, where U¥ is the free stream velocity; D is the diameter of the
cylinder and n is the kinematic viscosity of the �uid. The drag and lift coef �cients are
useful parameters and commonly used to check the accuracy of numerical results. In
order to compute these two coef�cients, the drag and lift forc es should be computed �rst
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Re= 400,61� 61 Re= 400,61� 61

Re= 1000,81� 81 Re= 1000,81� 81

Re= 5000,121� 121 Re= 5000,121� 121

Re= 10000,121� 121 Re= 10000,121� 121
Figure 4: u and v velocity pro�les along horizontal and vertical centerlines for a lid-driven cavity 
ow at various
Reynolds numbers.
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Re= 400,61� 61 Re= 1000,81� 81

Re= 5000,121� 121 Re= 10000,121� 121

Figure 5: Streamlines for a lid-driven cavity 
ow at variousReynolds numbers.

by integrating the momentum equations over the surface of th e circular cylinder,

Fd = �
I h�

p� m
¶u
¶x

�
nx � m

¶u
¶y

ny

i
ds, (4.5a)

Fl = �
I h

m
¶v
¶x

nx �
�

p� m
¶v
¶y

�
ny

i
ds, (4.5b)

where Fd and Fl are the drag force and lift force respectively; n = ( nx,ny), is the outer
normal vector on the cylinder surface; mis the dynamic viscosity. Then the drag and lift
coef�cients can be calculated by

Cd=
Fd

1
2r ¥ U2

¥
, (4.6a)

Cl =
Fl

1
2r ¥ U2

¥
. (4.6b)
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Figure 6: TypicalO-type grid.

The pressure coef�cient is de�ned as

cp =
pw � p¥
1
2r ¥ U2

¥
, (4.7)

where r ¥ and p¥ are the free stream density and pressure respectively, pw is the pressure
on the cylinder surface.

Another important parameter for the unsteady �ow is the Stro uhal number which
examines the vortex shedding frequency from the cylinder. A s a non-dimensional pa-
rameter, it can be de�ned as

St=
fqD
U¥

. (4.8)

Here, fq is the vortex shedding frequency.
In the present study, the typical O-type structured grid is adopted which is shown

in Fig. 6. For simulation of steady and unsteady �ows, the com putational grids are set,
respectively, as 301� 201 and 301� 501. The far-�eld boundaries are put respectively
at 25.5 diameters and 55.5 diameters away from the center of the cylinder. In order to
well capture the boundary layer and vortex structures near t he solid boundary and in
the meantime to reduce the computational cost, the grid is �ne around the cylinder and
coarse near the far �eld. The free stream density r ¥ is set as 1.0 and the free stream
velocity U¥ is taken as 0.1. Initially, the �ow properties are set the sam e as the free
stream values.

Numerical simulation shows that when Re= 20 and 40, the �ow reaches a steady state.
The streamlines of these two cases are displayed in Fig. 7. Asshown in this �gure, the
streamlines are symmetric about the x axis, and a pair of stationary recirculation eddies
are attached behind the cylinder. The scales and strength of these eddies are enlarged as
the Reynolds number increases. To show geometrical quantities of the eddies, the recir-
culation length ls, which is set as the distance between the rearmost point of the cylinder
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Figure 7: Streamlines for the steady 
ow past a circular cylinder at Re= 20,40.

and the end of the wake, and separation angle, qs, are measured. The drag coef�cient Cd

is also an essential parameter for the steady �ow. Table 3 giv es the detailed comparison
of these three parameters between present solutions and those of previous studies (Den-
nis and Chang [42], Nieuwstadt and Keller, [43], He and Doolen , [44], Shukla et al. [45]).
Obviously, for both Reynolds numbers of 20 and 40, the present results agree well with
the solutions in the literature. To further demonstrate the performance of present solver,
the pressure coef�cient distribution around the cylinder su rface at Re= 40 is depicted
in Fig. 8. The numerical solutions obtained by interpolatio n-based LBM on curvilinear
coordinates of He and Doolen [44] and the experimental data o f Park et al. [46] are also
included in this �gure. The orientation angle q is measured in degree from the leading
stagnation point to the trailing stagnation point. Due to th e fact that the �ow �ied is sym-
metric about the x-axis, only the pressure coef�cient distribution on the uppe r surface of
the cylinder is shown. As can be seen in the �gure, good agreeme nt between the present
results and those of previous studies is achieved.

For the case ofRe= 100 and 200, the �ow is unsteady and eventually reaches a periodic
state. The temporal evolution of the lift and drag coef�cient s of Re= 100, 200 is shown in
Fig. 9. As can be seen from this �gure, both the lift and drag coe f�cients show periodic

Table 3: Comparison of drag coe�cient, recirculation length and separation angle for steady 
ow past a circular
cylinder at Re= 20,40.

Re References Cd ls/ D qs

20

Dennis and Chang [42] 2.05 0.94 43.7
Nieuwsdadt and Keller [43] 2.053 0.893 -
He and Doolen [44] 2.152 0.921 42.96
Shukla et al. [45] 2.07 0.92 43.3
Present 2.062 0.935 42.94

40

Dennis and Chang [42] 1.52 2.35 53.8
Nieuwsdadt and Keller [43] 1.54 2.18 -
He and Doolen [44] 1.499 2.245 52.84
Shukla et al. [45] 1.55 2.34 52.7
Present 1.53 2.240 52.69
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Figure 8: Comparison of pressure coe�cient distribution oncylinder surface atRe= 40.

(a) (b)

Figure 9: Evolution of lift and drag coe�cients for the 
ow past a cylinder at Re= 100 and 200.

(a) (b)
Figure 10: Instantaneous streamlines for unsteady 
ow pasta circular cylinder atRe= 100 and 200.

feature and the period of the lift coef�cient is twice of that o f drag coef�cient for the two
Reynolds numbers. The periodic distribution clearly shows that the �ow �eld reaches the
periodic state. Table 4 shows the quantitative comparison o f the lift and drag coef�cients
as well as the Strouhal number. It can be seen from this table that, the present results
are compared well with those of Braza et al. [47], Benson et al. [48] and Ding et al. [49].
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Table 4: Comparison of dynamic parameters for unsteady 
ow past a circular cylinder atRe= 100,200.

Re References Cl Cd St

100

Braza et al. [47] � 0.30 1.28� 0.02 0.16
Benson et al. [48] � 0.38 1.46� 0.01 0.17
Ding et al. [49] � 0.28 1.325� 0.008 0.164
Present � 0.33 1.334� 0.009 0.164

200

Braza et al. [47] � 0.78 1.38� 0.07 0.19
Benson et al. [48] � 0.65 1.45� 0.04 0.193
Ding et al. [49] � 0.60 1.327� 0.045 0.196
Present � 0.69 1.338� 0.045 0.197

Another distinctive feature of the results in Table 4 is that , the effect of Reynolds number
from 100 to 200 on the mean values of both lift and drag coef�cie nts is not obvious, but
the effect on amplitude of these coef�cients is substantial. This feature could also be seen
from Fig. 9. Fig. 10 depicts the instantaneous �ow �ied. As sh own in this �gure, the
well-known Karman vortex street can be clearly seen from the s treamlines.

4.4 Simulation of inviscid �ow past a circular cylinder

It is well known that the standard LBM is only applicable for t he viscous �ow due to
stability condition, that is, t cannot be taken as 0.5. As shown in Eqs. (3.2a)-(3.2f), in the
present LBFS, whent is set as 0.5, the contribution from the non-equilibrium dis tribution
function is vanished, and only the equilibrium distributio n function has contribution to
the �ux calculation. In fact, the present LBFS can be well app lied to both viscous and
inviscid �ows. The performance of LBFS for simulation of vis cous �ows has been tested
for the decaying vortex �ow, driven cavity �ow and the �ow pas t a circular cylinder. In
the following, we will further test LBFS for simulation of in viscid �ows by setting t = 0.5.

The test problem we consider is the inviscid �ow past a circul ar cylinder. Since there
is no boundary layer around the cylinder surface for this cas e, the computational grid
used is much coarser than that for the viscous �ow. In the pres ent simulation, the grid
size of 121� 51 is used. The far-�eld boundary is taken 20.5 diameters away from the
geometrical center of the cylinder. The no-penetration con dition is applied at the cylinder
surface.

Fig. 11 shows the pressure coef�cient distribution around th e cylinder surface. Also
included in the �gure is the theoretical result. The horizont al axis is the orientation an-
gle q which is measured from the trailing stagnation point along t he counterclockwise
direction. As shown in Fig. 11, good agreement is achieved between the present result
and theoretical solution. The streamlines past the circula r cylinder are depicted in Fig. 12,
which clearly shows that the streamlines pass through the cy linder smoothly and no vor-
tex emerges. This feature for inviscid �ows is quite differe nt from that for viscous �ows.
Fig. 13 shows the pressure �ied for this inviscid �ow. As can b e seen from the �gure, the
pressure �eld is basically symmetric about x axis and y axis. All these observations agree
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Figure 11: Comparison of pressure coe�cient distribution on cylinder surface for the inviscid 
ow past a circular
cylinder.

Figure 12: Streamlines of the inviscid 
ow past a circular cylinder.

Figure 13: Pressure contours for the inviscid 
ow past a circular cylinder.

well with theoretical results. This well demonstrates the c apability of LBFS for simulation
of inviscid �ows.
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5 Conclusions

In this paper, a lattice Boltzmann �ux solver (LBFS) is prese nted for simulation of incom-
pressible viscous and inviscid �ows. The work is based on Cha pman-Enskog expansion
analysis, which links Navier-Stokes equations and lattice Boltzmann equation. By apply-
ing the �nite volume method to discretize the Navier-Stokes e quations recovered from
lattice Boltzmann equation through the Chapman-Enskog ana lysis, the conservative �ow
variables at cell centers can be updated by marching in time. The key step in LBFS is to
evaluate the inviscid and viscous �uxes simultaneously at c ell interface by local recon-
struction of LBE solution within a short streaming step from macroscopic �ow variables
at cell centers.

The present LBFS is well validated by its application to simu late the viscous decay-
ing vortex �ow, the driven cavity �ow and the �ow past a circul ar cylinder, as well as
the inviscid �ow past a circular cylinder. Numerical result s show that LBFS has the
second order of accuracy in space, and the selected streaming distance in local recon-
struction of LBE solution has no effect on the solution accur acy. For the driven cavity
�ow at Re= 1000, when the same non-uniform mesh is used, LBFS requires less iteration
numbers and about one-third of computational time on Lenovo Laptop (2.53GHz and 4G
RAM) than the Taylor series expansion- and least square-based lattice Boltzmann method
(TLLBM). The solver can be well applied to problems with non-u niform mesh and curved
boundary. It can also be used to simulate both the viscous and inviscid �ows. It is be-
lieved that LBFS has a great potential for solving various in compressible �ow problems
in practice.
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