EXISTENCE PROBLEMS OF ADDITIVE SELECTION MAPS FOR ANOTHER TYPE SUBADDITIVE SET-VALUED MAP

Yongjie Piao and Hailan Jin
(Yanbian University, China)

Received Apr. 9, 2011; Revised Sept. 7, 2012

Abstract. In this paper, we consider the following subadditive set-valued map $F : X \rightarrow P_0(Y)$:

$$F(\sum_{i=1}^{r} x_i + \sum_{j=1}^{s} x_{r+j}) \subseteq rF\left(\frac{\sum_{i=1}^{r} x_i}{r}\right) + sF\left(\frac{\sum_{j=1}^{s} x_{r+j}}{s}\right), \quad \forall x_i \in X, \quad i = 1, 2, \ldots, r+s,$$

where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set-valued map.

Key words: additive selection map, subadditive, additive selection, cone

AMS (2010) subject classification: 54C65, 54C60, 39B52, 47H04, 49J54

1 Introduction and Preliminaries

The stability problem of functional equations was originated from a question of Ulam\cite{1} concerning the stability of group homomorphisms. In 1941, D.H. Hyers\cite{2} gave a first affirmative partial answer to the question of Ulam for Banach spaces. The famous stability theorem is as follows:

Theorem 0. Let E_1 be a normed vector space and E_2 a Banach space. Suppose that the mapping $f : E_1 \rightarrow E_2$ satisfies the inequality

$$\|f(x+y) - f(x) - f(y)\| \leq \varepsilon$$

for all $x, y \in E_1$, with $\varepsilon > 0$ a constant. Then the limit

$$g(x) = \lim_{n \rightarrow \infty} 2^{-n} f(2^n x)$$

Supported by Science Foundation of Education Committee of Jilin Province of China(2011)No.434).
exists for each \(x \in E_1 \) and \(g \) is the unique additive mapping satisfying
\[
\| f(x) - g(x) \| \leq \varepsilon
\]
for all \(x \in E_1 \).

Later, Hyers’ Theorem has been generalized by many authors\([3–8]\). Let \(X \) be a real vector space. We denote by \(P_0(X) \) the family of all nonempty subsets of \(X \).

If \(Y \) is a topological vector space, the family of all closed convex subsets of \(Y \) denoted by \(\text{ccl}(Y) \).

Let \(A \) and \(B \) are two nonempty subsets of the real vector space \(X \), \(\lambda \) and \(\mu \) are two real numbers. Define
\[
A + B = \{ x | x = a + b, a \in A, b \in B \}; \\
\lambda A = \{ x | x = \lambda a, a \in A \}.
\]

The next properties are obvious:

Lemma. If \(A \) and \(B \) are two nonempty subsets of the real vector space \(X \), \(\lambda \) and \(\mu \) are two real numbers, then
\[
\lambda (A + B) = \lambda A + \lambda B; \quad (\lambda + \mu)A \subseteq \lambda A + \mu A.
\]

Furthermore, if \(A \) is a convex subset and \(\lambda \mu \geq 0 \), then we have the following formula\([9]\):
\[
(\lambda + \mu)A = \lambda A + \mu A.
\]

A subset \(A \subset X \) is said to be a cone if \(A + A \subseteq A \), and \(\lambda A \subseteq A \) for all \(\lambda > 0 \).

If the zero in \(X \) belongs to \(A \), we say that \(A \) is a zero cone.

Let \(X \) and \(Y \) be two real vector spaces, \(f : X \rightarrow Y \) a single-valued map, and \(F : X \rightarrow P_0(Y) \) a set-valued map. \(f \) is called an additive selection of \(F \), if \(f(x+y) = f(x) + f(y) \) for all \(x, y \in X \), and \(f(x) \in F(x) \) for all \(x \in X \).

Let \(B(0, \varepsilon) \) denote the open ball with center 0 and radius \(\varepsilon \) in \(E_2 \) in Theorem 0, then the inequality (0) may be written as
\[
f(x+y) \in B(0, \varepsilon) + f(x) + f(y),
\]
and hence
\[
f(x+y) + B(0, \varepsilon) \subseteq f(x) + B(0, \varepsilon) + f(y) + B(0, \varepsilon),
\]
where \(B(0, \varepsilon) + x \) denote the open ball with center \(x \) and radius \(\varepsilon \) in \(E_2 \).

Thus, if we define a set-valued mapping \(F \) by \(F(x) = f(x) + B(0, \varepsilon) \) for each \(x \in E_1 \), then we get
\[
F(x+y) \subseteq F(x) + F(y)
\]
and
\[
g(x) \in F(x)
\]
for all \(x, y \in E_1 \).

Hence, Theorem 0 shows that \(g(x) \) is the unique additive selection of the set-valued mapping \(F(x) \) with the property \(F(x + y) \subseteq F(x) + F(y) \), where \(F \) is determined by \(f \).

In [10], the author introduced the concept of subadditive set-valued map and proved that such a map has a unique additive selection.

The result improves and generalizes the corresponding conclusions in [11] and [12]. The definition of this map is stated as follows:

Let \(X \) and \(Y \) be two real vector spaces, \(K \subseteq X \) be a zero cone, \(r \in \mathbb{N} \) with \(r > 1 \), \(\alpha_1, \alpha_2, \ldots, \alpha_r > 0 \) and \(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_r \geq 0 \) with \(\mathcal{F}_1 + \mathcal{F}_2 + \cdots + \mathcal{F}_r > 0 \). A set-valued map \(F : K \rightarrow P_0(Y) \) is called \((\alpha_1, \alpha_2, \ldots, \alpha_r) - (\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_r)\)-type subadditive set-valued map, if for any \(x_1, x_2, \ldots, x_r \in K \), the following holds:

\[
F(\sum_{i=1}^r \alpha_i x_i) \subseteq \sum_{i=1}^r \mathcal{F}_i F(x_i).
\]

In this paper, we define a new subadditive set-valued mapping satisfying some inclusion relation on a zero cone in a real vector space, and then prove that the map has a unique additive selection map.

2 Main Results

Theorem 1. Let \(K \) be a zero cone of a real vector space \(X \), \(Y \) a Banach space, \(r \) and \(s \) two given positive integers. If a set-valued map \(F : K \rightarrow \operatorname{ccl}(Y) \) satisfies that for any \(x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_{r+s} \in K \), the following holds

\[
F(\sum_{i=1}^r x_i + \sum_{j=1}^s x_{r+j}) \subseteq rF\left(\frac{\sum_{i=1}^r x_i}{r}\right) + sF\left(\frac{\sum_{j=1}^s x_{r+j}}{s}\right),
\]

and for each \(x \in K \), \(\sup\{\operatorname{diam}(F(x)) : x \in K\} < +\infty \), then \(F \) has a unique additive selection map.

Proof. Take an element \(x \in K \) and let \(x_1 = x_2 = \cdots = x_{r+1} = \cdots = x_{r+s} = x \), then (1) becomes the following

\[
F((r+s)x) \subseteq rF(x) + sF(x) = (r+s)F(x).
\]

For any fixed \(n \in \mathbb{N} \), replacing \(x \) by \((r+s)^n x\), then the above formula becomes

\[
F((r+s)^{n+1}x) \subseteq (r+s)F((r+s)^n x),
\]

hence we obtain

\[
F((r+s)^{n+1} x) \subseteq \frac{F((r+s)^n x)}{(r+s)^n}.
\]

Let \(F_n(x) = \frac{F((r+s)^n x)}{(r+s)^n} \) for each \(x \in K \) and \(n \in \mathbb{N} \), then for each fixed \(x \in K \), \(\{F_n(x)\}_{n \in \mathbb{N}} \) is a decreasing sequence of closed convex subsets of a Banach space \(Y \), and the following holds

\[
\operatorname{diam}(F_n(x)) = \frac{1}{(r+s)^n} \operatorname{diam}F((r+s)^n x), \quad \forall x \in K, \quad n \in \mathbb{N}.
\]
Hence by given condition, \(\lim_{n \to \infty} \text{diam}(F_n(x)) = 0 \) for all \(x \in K \). Using Cantor theorem for the sequence \(\{F_n(x)\}_{n \in \mathbb{N}\cup\{0\}} \), we can conclude that for each \(x \in K \), the intersection \(\bigcap_{n=0}^{\infty} F_n(x) \) is a singleton set. Let \(f(x) \) denote the intersection for each \(x \in K \), then we can obtain a single valued map \(f : K \to Y \), and \(f \) is also a selection of \(F \) since \(f(x) \in F_0(x) = F(x) \) for all \(x \in K \).

For any \(x_1, x_2, \cdots, x_r, x_{r+1}, x_{r+2}, \cdots, x_{r+s} \in K \), by the definition of \(F_n \),

\[
F_n(x_1 + x_2 + \cdots + x_r + x_{r+1} + x_{r+2} + \cdots + x_{r+s}) = F((r+s)^n(x_1 + x_2 + \cdots + x_r + x_{r+1} + x_{r+2} + \cdots + x_{r+s})) = rF((r+s)^n x_1 + (r+s)^n x_2 + \cdots + (r+s)^n x_r + (r+s)^n x_{r+1} + \cdots + (r+s)^n x_{r+s}) \leq rF_n \left(\frac{x_1 + x_2 + \cdots + x_r}{r} \right) + sF_n \left(\frac{x_{r+1} + x_{r+2} + \cdots + x_{r+s}}{s} \right).
\]

Hence

\[
f(\sum_{i=1}^{r} x_i + \sum_{j=1}^{s} x_{r+j}) = \bigcap_{n=0}^{\infty} F_n(\sum_{i=1}^{r} x_i + \sum_{j=1}^{s} x_{r+j}) \subseteq \bigcap_{n=0}^{\infty} [rF_n(\frac{\sum_{i=1}^{r} x_i}{r}) + sF_n(\frac{\sum_{j=1}^{s} x_{r+j}}{s})].
\]

On the other hand, for each \(n \in \mathbb{N}\cup\{0\} \),

\[
f(\sum_{i=1}^{r} x_i) \in F_n(\sum_{i=1}^{r} x_i),
\]

\[
f(\sum_{j=1}^{s} x_{r+j}) \in F_n(\sum_{j=1}^{s} x_{r+j}),
\]

hence we obtain

\[
|| f(\sum_{i=1}^{r} x_i + \sum_{j=1}^{s} x_{r+j}) - [rf(\frac{\sum_{i=1}^{r} x_i}{r}) + sf(\frac{\sum_{j=1}^{s} x_{r+j}}{s})] || \leq r \text{diam} \left[F_n(\frac{\sum_{i=1}^{r} x_i}{r}) \right] + s \text{diam} \left[F_n(\frac{\sum_{j=1}^{s} x_{r+j}}{s}) \right] \to 0, \quad \text{as } n \to 0.
\]

And therefore, we obtain the following equation

\[
f(\sum_{i=1}^{r} x_i + \sum_{j=1}^{s} x_{r+j}) = rf(\frac{\sum_{i=1}^{r} x_i}{r}) + sf(\frac{\sum_{j=1}^{s} x_{r+j}}{s}).
\]
If \(r = s = 1 \), then it is easy to know from (2) that \(f \) is additive. From now on, suppose that \(r \geq 2 \) or \(s \geq 2 \).

Let \(x_1 = x_2 = \cdots = x_r = x_{r+1} = \cdots = x_{r+s} = 0 \), then (2) becomes \(f(0) = rf(0) + sf(0) \), hence \(f(0) = 0 \). For any \(x \in K \), take \(x_1 = x_2 = \cdots = x_r = x \) and \(x_{r+1} = \cdots = x_{r+s} = x \), then (2) becomes \(f(rx) = rf(x) \), and replacing \(x \) by \(\frac{x}{r} \), then we obtain \(rf\left(\frac{x}{r}\right) = f(x) \), and therefore

\[
r^{2}f\left(\frac{x}{r^2}\right) = r\left[rf\left(\frac{x}{r}\right)\right] = rf\left(\frac{x}{r}\right) = f(x).
\]

Repeating the process, we obtain its general form \(r^{k}f\left(\frac{x}{r^k}\right) = f(x) \) for any \(k \in \mathbb{N} \) and \(x \in K \). Similarly, let \(x_1 = x_2 = \cdots = x_r = 0 \) and \(x_{r+1} = \cdots = x_{r+s} = x \), then we obtain from (2) that \(f(x) = sf\left(\frac{x}{s}\right) \), hence we have its general form \(s^{k}f\left(\frac{x}{s^k}\right) = f(x) \) for any \(k \in \mathbb{N} \) and \(x \in K \).

If \(r \geq 2 \), then we will obtain from (2) that

\[
f\left(\frac{x_1 + x_2 + \cdots + x_r}{r}\right) = f\left(\frac{x_1 + x_2 + \cdots + x_{r-1} + 0 + x_r + 0 + \cdots + 0}{r}\right) \quad \text{(the number of 0 is s)}
\]

\[
= rf\left(\frac{x_1 + x_2 + \cdots + x_{r-1}}{r^2}\right) + sf\left(\frac{x_r}{sr}\right)
\]

\[
= rf\left(\frac{x_1 + x_2 + \cdots + x_{r-1}}{r^2}\right) + f\left(\frac{x_r}{sr}\right)
\]

\[
= f\left(\frac{x_1 + x_2 + \cdots + x_{r-2} + 0 + 0 + x_{r-1} + 0 + \cdots + 0}{r}\right) + f\left(\frac{x_r}{r}\right) \quad \text{(the number of 0 is s)}
\]

\[
= [rf\left(\frac{x_1 + x_2 + \cdots + x_{r-2}}{r^2}\right) + sf\left(\frac{x_{r-1}}{sr}\right)] + f\left(\frac{x_r}{r}\right)
\]

\[
= f\left(\frac{x_1 + x_2 + \cdots + x_{r-2}}{r}\right) + f\left(\frac{x_{r-1}}{r}\right) + f\left(\frac{x_r}{r}\right)
\]

\[
= \cdots
\]

\[
= f\left(\frac{x_1}{r}\right) + f\left(\frac{x_2}{r}\right) + \cdots + f\left(\frac{x_{r-1}}{r}\right) + f\left(\frac{x_r}{r}\right),
\]

hence

\[
rf\left(\frac{x_1 + x_2 + \cdots + x_r}{r}\right) = r\left[f\left(\frac{x_1}{r}\right) + f\left(\frac{x_2}{r}\right) + \cdots + f\left(\frac{x_{r-1}}{r}\right) + f\left(\frac{x_r}{r}\right)\right],
\]

and therefore,

\[
f(x_1 + x_2 + \cdots + x_r) = f(x_1) + f(x_2) + \cdots + f(x_{r-1}) + f(x_r).
\]

Thus, \(f \) is additive.
Similarly, if \(s \geq 2 \), then we have
\[
\begin{align*}
 f(\frac{x_{r+1} + \cdots + x_{r+s}}{s}) &= f\left(\frac{0 + 0 + \cdots + 0 + x_{r+1}}{s} + \frac{0 + x_{r+2} + \cdots + x_{r+s}}{s}\right) \quad \text{(the number of 0 is } r) \\
 &= rf\left(\frac{x_{r+1}}{rs}\right) + sf\left(\frac{x_{r+2} + x_{r+3} + \cdots + x_{r+s}}{s^2}\right) \\
 &= f\left(\frac{x_{r+1}}{s}\right) + f\left(\frac{x_{r+2} + x_{r+3} + \cdots + x_{r+s}}{s}\right) \\
 &= f\left(\frac{x_{r+1}}{s}\right) + rf\left(\frac{x_{r+2}}{rs}\right) + sf\left(\frac{x_{r+3} + \cdots + x_{r+s}}{s^2}\right) \\
 &= f\left(\frac{x_{r+1}}{s}\right) + f\left(\frac{x_{r+2}}{s}\right) + f\left(\frac{x_{r+3} + \cdots + x_{r+s}}{s}\right) \\
 &= \ldots \\
 &= f\left(\frac{x_{r+1}}{s}\right) + f\left(\frac{x_{r+2}}{s}\right) + \cdots + f\left(\frac{x_{r+s}}{s}\right).
\end{align*}
\]

Hence
\[
 sf\left(\frac{x_{r} + x_{r+1} + \cdots + x_{r+s}}{s}\right) = s\left[f\left(\frac{x_{r+1}}{s}\right) + f\left(\frac{x_{r+2}}{s}\right) + \cdots + f\left(\frac{x_{r+s}}{s}\right)\right],
\]
that is,
\[
 f\left(x_{r} + x_{r+1} + \cdots + x_{r+s}\right) = f\left(x_{r+1}\right) + f\left(x_{r+2}\right) + \cdots + f\left(x_{r+s}\right).
\]

This shows that \(f \) is additive.

Next, let us prove the uniqueness of the additive selection maps of \(F \).

Suppose that \(f_1 \) and \(f_2 \) are two additive selection maps of \(F \), then for each \(n \in \mathbb{N} \) and \(x \in K \), we have
\[
nf_i(x) = f_i(nx) \in F(nx), \quad i = 1, 2,
\]
hence \(n \| f_1(x) - f_2(x) \| = \| f_1(nx) - f_2(nx) \| \leq \text{diam} F(nx) \), i.e., \(\| f_1(x) - f_2(x) \| \leq \frac{\text{diam} F(nx)}{n} \).

Let \(n \to +\infty \), then by (ii), \(f_1(x) = f_2(x) \) for each \(x \in K \). This shows that the additive selection map of \(F \) is unique.

Using the same method as in Theorem 1, we can obtain more general form than Theorem 1, but we omit its proof.

Theorem 2. Let \(K \) be a zero cone of a real vector space \(X \), \(Y \) a Banach space and \(r_1, r_2, \ldots, r_k \) given positive integers. If a set-valued map \(F : K \to \text{ccl}(Y) \) satisfies that for any \(x_1, x_2, \ldots, x_{r_1}, x_{r_1+1}, \ldots, x_{r_1+r_2}, \ldots, x_{r_1+r_2+\cdots+r_k} \in K \), the following holds
\[
 F\left(\sum_{i=1}^{r_k} x_{r_1+i} + \sum_{i=1}^{r_2} x_{r_1+i+1} + \cdots + \sum_{i=1}^{r_1} x_{r_1+r_2+\cdots+r_{k-1}+i}\right) \\
 \subseteq r_1 F\left(\frac{\sum_{i=1}^{r_k} x_{r_1+i}}{r_1}\right) + r_2 F\left(\frac{\sum_{i=1}^{r_2} x_{r_1+i}}{r_2}\right) + \cdots + r_k F\left(\frac{\sum_{i=1}^{r_k} x_{r_1+r_2+\cdots+r_{k-1}+i}}{r_k}\right),
\]

\(F \) is additive.
and for each $x \in K$, $\sup \{ \text{diam}(F(x) : x \in K) < +\infty \}$, then F has an unique additive selection map.

References

Department of Mathematics
Science of College
Yanbian University
Yanji, 133002
P. R. China

Y. J. Piao
E-mail: pyj6216@hotmail.com

H. L. Jin
E-mail: hljin98@ybu.edu.cn