Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

Jie Xiao¹,∗ and Wen Xu²

1 Department of Mathematics and Statistics, Memorial University, NL A1C 5S7, Canada
2 Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland

Received 31 October 2013; Accepted (in revised version) 1 March 2014
Available online 31 March 2014

Abstract. This note addresses monotonic growths and logarithmic convexities of the weighted \((1-t^2)^\alpha dt, -\infty < \alpha < \infty, 0 < t < 1\) integral means \(A_{\alpha,\beta}(f,\cdot)\) and \(L_{\alpha,\beta}(f,\cdot)\) of the mixed area \((\pi r^2)^{\beta}A(f,r)\) and the mixed length \((2\pi r)^{\beta}L(f,r)\) \(0 \leq \beta \leq 1\) under a holomorphic map \(f\) from the unit disk \(D\) into the finite complex plane \(C\).

Key Words: Monotonic growth, logarithmic convexity, mean mixed area, mean mixed length, isoperimetric inequality, holomorphic map, univalent function.

AMS Subject Classifications: 32A10, 32A36, 51M25

1 Introduction

From now on, \(D\) represents the unit disk in the finite complex plane \(C\), \(H(D)\) denotes the space of holomorphic mappings \(f:D \rightarrow C\), and \(U(D)\) stands for all univalent functions in \(H(D)\). For any real number \(\alpha\), positive number \(r \in (0,1)\) and the standard area measure \(dA\), let

\[dA_{\alpha}(z) = (1-|z|^2)^\alpha dA(z), \quad rD = \{z \in D: |z| < r\}, \quad rT = \{z \in D: |z| = r\}.

In their recent paper [11], Xiao and Zhu have discussed the following area 0 < \(p < \infty\)-integral mean of \(f \in H(D)\):

\[M_{p,\alpha}(f,r) = \left[\frac{1}{A_{\alpha}(rD)} \right]^{\frac{1}{p}} \left[\int_D |f|^p dA_{\alpha} \right]^{\frac{1}{p}},\]

∗Corresponding author. Email addresses: jxiao@mun.ca (J. Xiao), wen.xu@uef.fi (W. Xu)
proving that \(r \mapsto M_{p,a}(f,r) \) is strictly increasing unless \(f \) is a constant, and \(\log r \mapsto \log M_{p,a}(f,r) \) is not always convex. This last result suggests such a conjecture that \(\log r \mapsto \log M_{p,a}(f,r) \) is convex or concave when \(p \leq 0 \) or \(p > 0 \). But, motivated by [11, Example 10, (ii)] we can choose \(p = 2, a = 1, f(z) = z + c \) and \(c > 0 \) to verify that the conjecture is not true. At the same time, this negative result was also obtained in Wang-Zhu’s manuscript [10]. So far it is unknown whether the conjecture is generally true for \(p \neq 2 \) – see [9] for a recent development.

The foregoing observation has actually inspired the following investigation. Our concentration is the fundamental case \(p = 1 \). To understand this new approach, let us take a look at \(M_{1,a}(\cdot,\cdot) \) from a differential geometric viewpoint. Note that

\[
M_{1,a}(f',r) = \frac{\int_{\partial D}|f'||dA_a|}{A_a(rD)} = \frac{\int_0^\alpha [(2\pi t)^{-1} \int_\Gamma |f'(z)||dz|] (1-t^2)^a dt^2}{\int_0^\alpha (1-t^2)^a dt^2}.
\]

So, if \(f \in U(D) \), then

\[
(2\pi t)^{-1} \int_\Gamma |f'(z)||dz|
\]

is a kind of mean of the length of \(\partial f(tD) \), and hence the square of this mean dominates a sort of mean of the area of \(f(tD) \) in the isoperimetric sense:

\[
\Phi_A(f,t) = (\pi t^2)^{-1} \int_{tD} |f'(z)|^2 dA(z) \leq \left((2\pi t)^{-1} \int_{t\partial D} |f'(z)||dz| \right)^2 = [\Phi_L(f,t)]^2.
\]

In accordance with the well-known Pólya-Szegő monotone principle [8, Problem 309] (or [2, Proposition 6.1]) and the area Schwarz’s lemma in Burckel, Marshall, Minda, Poggi-Corradini and Ransford [2, Theorem 1.9], \(\Phi_L(f,\cdot) \) and \(\Phi_A(f,\cdot) \) are strictly increasing on \((0,1)\) unless \(f(z) = a_1z \) with \(a_1 \neq 0 \). Furthermore, \(\log \Phi_L(f,r) \) and \(\log \Phi_A(f,r) \), equivalently, \(\log L(f,r) \) and \(\log A(f,r) \), are convex functions of \(\log r \) for \(r \in (0,1) \), due to the classical Hardy’s convexity and [2, Section 5]. Perhaps, it is worthwhile to mention that if \(c > 0 \) is small enough then the universal cover of \(D \) onto the annulus \(\{ e^{-c\pi/2} < |z| < e^{c\pi/2} \} \):

\[
f(z) = \exp \left[ic \log \left(\frac{1+z}{1-z} \right) \right]
\]

enjoys the property that \(\log r \mapsto \log A(f,r) \) is not convex; see [2, Example 5.1].

In the above and below, we have used the following convention:

\[
\Phi_A(f,r) = \frac{A(f,r)}{\pi r^2} \quad \text{and} \quad \Phi_L(f,r) = \frac{L(f,r)}{2\pi r},
\]

where under \(r \in (0,1) \) and \(f \in H(D) \), \(A(f,r) \) and \(L(f,r) \) stand respectively for the area of \(f(rD) \) (the projection of the Riemannian image of \(rD \) by \(f \)) and the length of \(\partial f(rD) \) (the boundary of the projection of the Riemannian image of \(rD \) by \(f \)) with respect to the standard Euclidean metric on \(C \). For our purpose, we choose a shortcut notation

\[
d\mu_a(t) = (1-t^2)^a dt^2 \quad \text{and} \quad \nu_a(t) = \mu_a([0,t]), \quad \forall t \in (0,1),
\]

for our purpose, we choose a shortcut notation.
and for $0 \leq \beta \leq 1$ define
\[
\Phi_{A,\beta}(f, t) = \frac{A(f, t)}{(\pi t^2)^\beta} \quad \text{and} \quad \Phi_{L,\beta}(f, t) = \frac{L(f, t)}{(2\pi t)^\beta},
\]
and then introduce two natural analytic-geometric quantities
\[
A_{a,\beta}(f, r) = \frac{\int_0^r \Phi_{A,\beta}(f, t)d\mu_a(t)}{\int_0^r d\mu_a(t)} \quad \text{and} \quad L_{a,\beta}(f, r) = \frac{\int_0^r \Phi_{L,\beta}(f, t)d\mu_a(t)}{\int_0^r d\mu_a(t)},
\]
which are respectively called the weighted integral means of the mixed area and the mixed length for $f(r\mathbb{D})$ and $\partial f(r\mathbb{D})$.

In this note, we consider two fundamental properties: monotonic growths and logarithmic convexities of both $A_{a,\beta}(f, r)$ and $L_{a,\beta}(f, r)$, thereby giving two applications: (i) if $r \mapsto \Phi_{L}(f, r)$ is monotone increasing on $(0, 1)$, then so is the isoperimetry-induced function:
\[
r \mapsto \int_0^r \frac{[\Phi_{L,1}(f, t)]^2d\mu_a(t)}{\int_0^r d\mu_a(t)} \geq A_{a,1}(f, r);
\]
(ii) the log-convexity for $L_{a,1}(f, r)$ essentially settles the above-mentioned conjecture. The non-trivial details (results and their proofs) are arranged in the forthcoming two sections.

2 Monotonic growth

In this section, we deal with the monotonic growths of $A_{a,\beta}(f, r)$ and $L_{a,\beta}(f, r)$, along with their associated Schwarz type lemmas. In what follows, \mathbb{N} is used as the set of all natural numbers.

2.1 Two lemmas

The following two preliminary results are needed.

Lemma 2.1 (see [5]). Let $f \in H(\mathbb{D})$ be of the form $f(z) = a_0 + \sum_{k=1}^n a_k z^k$ with $n \in \mathbb{N}$. Then:

(i) $\pi^n [\frac{|f^{(n)}(0)|}{n!}]^2 \leq A(f, r), \quad \forall r \in (0, 1)$.

(ii) $2\pi^n [\frac{|f^{(n)}(0)|}{n!}] \leq L(f, r), \quad \forall r \in (0, 1)$.

Moreover, equality in (i) or (ii) holds if and only if $f(z) = a_0 + a_n z^n$.

Proof. This may be viewed as the higher order Schwarz type lemma for area and length. See also the proofs of Theorems 1 and 2 in [5], and their immediate remarks on equalities. Here it is worth noticing three matters: (a) $f^{(n)}(0)/n!$ is just a_n; (b) [4, Corollary 3] presents a different argument for the area case; (c) $L(f, r)$ is greater than or equal to the length $l(r, f)$ of the outer boundary of $f(r\mathbb{D})$ (defined in [5]) which is not less than the length $l^0(r, f)$ of the exact outer boundary of $f(r\mathbb{D})$ (introduced in [12]). \(\square\)
Lemma 2.2. Let \(0 \leq \beta \leq 1 \).

(i) If \(f \in H(D) \), then \(r \mapsto \Phi_{A,\beta}(f,r) \) is strictly increasing on \((0,1)\) unless

\[
 f = \begin{cases}
 \text{constant}, & \text{when } \beta < 1, \\
 \text{linear map}, & \text{when } \beta = 1.
 \end{cases}
\]

(ii) If \(f \in U(D) \) or \(f(z) = a_0 + a_n z^n \) with \(n \in \mathbb{N} \), then \(r \mapsto \Phi_{L,\beta}(f,r) \) is strictly increasing on \((0,1)\) unless

\[
 f = \begin{cases}
 \text{constant}, & \text{when } \beta < 1, \\
 \text{linear map}, & \text{when } \beta = 1.
 \end{cases}
\]

Proof. It is enough to handle \(\beta < 1 \) since the case \(\beta = 1 \) has been treated in [2, Theorem 1.9 and Proposition 6.1]. The monotonic growths in (i) and (ii) follow from

\[
 \Phi_{A,\beta}(f,r) = (\pi r^2)^{1-\beta} \Phi_{A,1}(f,r) \quad \text{and} \quad L(f,r) = (2\pi r)^{1-\beta} \Phi_{L,1}(f,r).
\]

To see the strictness, we consider two cases.

(i) Suppose that \(\Phi_{A,\beta}(f,\cdot) \) is not strictly increasing. Then there are \(r_1, r_2 \in (0,1) \) such that \(r_1 < r_2 \), and \(\Phi_{A,\beta}(f,\cdot) \) is a constant on \([r_1, r_2]\). Hence

\[
 \frac{d}{dr} \Phi_{A,\beta}(f,r) = 0, \quad \forall r \in [r_1, r_2].
\]

Equivalently,

\[
 2\beta A(f,r) = r \frac{d}{dr} A(f,r), \quad \forall r \in [r_1, r_2].
\]

But, according to [2, (4.2)],

\[
 2A(f,r) \leq r \frac{d}{dr} A(f,r), \quad \forall r \in (0,1).
\]

Since \(\beta < 1 \), we get \(A(f,r) = 0 \) for all \(r \in [r_1, r_2] \), whence finding that \(f \) is constant.

(ii) Now assume that \(\Phi_{L,\beta}(f,\cdot) \) is not strictly increasing. There are \(r_3, r_4 \in (0,1) \) such that \(r_3 < r_4 \) and

\[
 0 = \frac{d}{dr} \Phi_{L,\beta}(f,r) = (2\pi r)^{-\beta} \left[\frac{d}{dr} L(f,r) - \frac{\beta}{r} L(f,r) \right] = 0, \quad \forall r \in [r_3, r_4].
\]

If \(f \in U(D) \), then

\[
 L(f,r) = \int_{|z|=r} |f'(z)||dz|
\]

and hence one has the following “first variation formula”

\[
 \frac{d}{dr} L(f,r) = \int_0^{2\pi} |f'(re^{i\theta})|d\theta + r \frac{d}{dr} \int_0^{2\pi} |f'(re^{i\theta})|d\theta, \quad \forall r \in [r_3, r_4].
\]
The previous three equations yield
\[0 = (1 - \beta) \int_0^{2\pi} |f'(re^{i\theta})|d\theta + r \frac{d}{dr} \int_0^{2\pi} |f'(re^{i\theta})|d\theta, \quad \forall r \in [r_3, r_4], \]
and so
\[\int_0^{2\pi} |f'(re^{i\theta})|d\theta = 0, \quad \forall r \in [r_3, r_4]. \]
This ensures that \(f \) is a constant, contradicting \(f \in U(\mathbb{D}) \). Therefore, \(f(z) \) is of the form \(a_0 + a_n z^n \). But, since \(L(z^n, r) = 2\pi r^n \) is strictly increasing, \(f \) must be constant.

2.2 Monotonic growth of \(A_{\alpha, \beta}(f, \cdot) \)

This aspect is essentially motivated by the following Schwarz type lemma.

Proposition 2.1. Let \(-\infty < \alpha < \infty, 0 \leq \beta \leq 1 \), and \(f \in H(\mathbb{D}) \) be of the form \(f(z) = a_0 + \sum_{k=n}^{\infty} a_k z^k \) with \(n \in \mathbb{N} \). Then
\[
\pi^{1-\beta} \left[\frac{|f^{(n)}(0)|}{n!} \right]^2 \leq A_{\alpha, \beta}(f, r) \left[\frac{\nu_{\alpha}(r)}{\int_0^{2(\alpha-\beta)} d\mu_{\alpha}(t)} \right], \quad \forall r \in (0, 1),
\]
with equality if and only if \(f(z) = a_0 + a_n z^n \).

Proof. The inequality follows from Lemma 2.1(i) right away. When \(f(z) = a_0 + a_n z^n \), the last inequality becomes an equality due to the equality case of Lemma 2.1(i). Conversely, suppose that the last inequality is an equality. If \(f \) does not have the form \(a_0 + a_n z^n \), then the equality in Lemma 2.1(i) is not true, then there are \(r_1, r_2 \in (0, 1) \) such that \(r_1 < r_2 \) and
\[
A(f, t) > \pi^{2n} \left[\frac{|f^{(n)}(0)|}{n!} \right]^2, \quad \forall t \in [r_1, r_2].
\]

This strict inequality forces that for \(r \in [r_1, r_2] \),
\[
\pi^{1-\beta} \left[\frac{|f^{(n)}(0)|}{n!} \right]^2 \int_0^r t^{2(\alpha-\beta)} d\mu_{\alpha}(t)
\]
\[= \int_0^r (\pi t^2)^{-\beta} A(f, t) d\mu_{\alpha}(t) = \left(\int_{r_1}^{r_2} + \int_{r_2}^r \right) (\pi t^2)^{-\beta} A(f, t) d\mu_{\alpha}(t)
\]
\[> \pi^{1-\beta} \left[\frac{|f^{(n)}(0)|}{n!} \right]^2 \int_0^r t^{2(\alpha-\beta)} d\mu_{\alpha}(t),
\]
a contradiction. Thus \(f(z) = a_0 + a_n z^n \). \qed

Based on Proposition 2.1, we find the monotonic growth for \(A_{\alpha, \beta}(\cdot, \cdot) \) as follows.
Theorem 2.1. Let $-\infty < \alpha < \infty$, $0 \leq \beta \leq 1$, and $f \in H(\mathbb{D})$. Then $r \mapsto A_{\alpha,\beta}(f,r)$ is strictly increasing on $(0,1)$ unless

$$f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}$$

Consequently,

(i)

$$\lim_{r \to 0} A_{\alpha,\beta}(f,r) = \begin{cases} 0, & \text{when } \beta < 1, \\ |f'(0)|^2, & \text{when } \beta = 1. \end{cases}$$

(ii) If

$$\Phi_{A,\beta}(f,0) := \lim_{r \to 0} \Phi_{A,\beta}(f,r) \quad \text{and} \quad \Phi_{A,\beta}(f,1) := \lim_{r \to 1} \Phi_{A,\beta}(f,r) < \infty,$$

then

$$0 < r < s < 1 \Rightarrow 0 \leq \frac{A_{\alpha,\beta}(f,s) - A_{\alpha,\beta}(f,r)}{\log\nu_a(s) - \log\nu_a(r)} \leq \Phi_{A,\beta}(f,s) - \Phi_{A,\beta}(f,0)$$

with equality if and only if

$$f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}$$

In particular, $t \mapsto A_{\alpha,\beta}(f,t)$ is Lipschitz with respect to $\log\nu_a(t)$ for $t \in (0,1)$.

Proof. Note that $\nu_a(r) = \int_0^r d\mu_a(t)$. So $d\nu_a(r)$, the differential of $\nu_a(r)$ with respect to $r \in (0,1)$, equals $d\mu_a(r)$. By integration by parts we have

$$\Phi_{A,\beta}(f,r)d\nu_a(r) - \int_0^r \Phi_{A,\beta}(f,t)d\mu_a(t) = \int_0^r \left[\frac{d}{dt} \Phi_{A,\beta}(f,t) \right] d\nu_a(t)dt.$$

Differentiating the function $A_{\alpha,\beta}(f,r)$ with respect to r and using Lemma 2.2(i), we get

$$\frac{d}{dr} A_{\alpha,\beta}(f,r) = \frac{\Phi_{A,\beta}(f,r)2r(1-r^2)^{\alpha}d\nu_a(r) - \int_0^r \Phi_{A,\beta}(f,t)d\mu_a(t)}{\nu_a(r)^2} \left[\int_0^r \Phi_{A,\beta}(f,t)d\mu_a(t) \right] 2r(1-r^2)^{\alpha}$$

$$= \frac{2r(1-r^2)^{\alpha} \left[\Phi_{A,\beta}(f,t)d\nu_a(r) - \int_0^r \Phi_{A,\beta}(f,t)d\mu_a(t) \right]}{\nu_a(r)^2}$$

$$= \frac{2r(1-r^2)^{\alpha} \left[\int_0^r \left[\frac{d}{dt} \Phi_{A,\beta}(f,t) \right] d\nu_a(t)dt \right]}{\nu_a(r)^2} \geq 0.$$
Lemma 2.2(i) derives the equality case. This gives the desired inequality right away. Furthermore, the above argument plus
\[
\int_0^s \left(\frac{d}{dt} \Phi_{A,\beta}(f, t) \right) v_a(t) dt = 0, \quad \forall r \in [r_1, r_2],
\]
and so
\[
\int_0^r \left(\frac{d}{dt} \Phi_{A,\beta}(f, t) \right) v_a(t) dt = 0, \quad \forall r \in [r_1, r_2].
\]
Then we must have
\[
\frac{d}{dt} \Phi_{A,\beta}(f, t) = 0, \quad \forall t \in (0, r), \quad \text{with } r \in [r_1, r_2],
\]
whence getting that if \(\beta < 1 \) then \(f \) must be constant or if \(\beta = 1 \) then \(f \) must be linear, thanks to the argument for the strictness in Lemma 2.2(i).

It remains to check the rest of Theorem 2.1.

(i) The monotonic growth of \(A_{\alpha,\beta}(f, r) \) ensures the existence of the limit. An application of L’Hôpital’s rule gives
\[
\lim_{r \to 0} A_{\alpha,\beta}(f, r) = \lim_{r \to 0} \Phi_{A,\beta}(f, r) = \begin{cases} 0, & \text{when } \beta < 1, \\ |f'(0)|^2, & \text{when } \beta = 1. \end{cases}
\]

(ii) Again, the above monotonicity formula of \(A_{\alpha,\beta}(f, r) \) plus the given condition yields that for \(s \in (0, 1) \),
\[
\sup_{r \in (0, s)} A_{\alpha,\beta}(f, r) = A_{\alpha,\beta}(f, s) < \infty.
\]
Integrating by parts twice and using the monotonicity of \(\Phi_{A,\beta}(f, r) \), we obtain that under \(0 < r < s < 1 \),
\[
0 \leq A_{\alpha,\beta}(f, s) - A_{\alpha,\beta}(f, r) = \int_r^s \frac{d}{dt} A_{\alpha,\beta}(f, t) dt
\]
\[
= \int_r^s \left(\int_0^t \left[\frac{d}{d\tau} \Phi_{A,\beta}(f, \tau) \right] v_a(\tau) d\tau \right) \frac{d v_a(t)}{v_a(t)^2}
\]
\[
= \int_r^s \left(v_a(t) \Phi_{A,\beta}(f, t) - \int_0^t \Phi_{A,\beta}(f, \tau) d v_a(\tau) \right) \frac{d v_a(t)}{v_a(t)^2}
\]
\[
\leq \left[\Phi_{A,\beta}(f, s) - \Phi_{A,\beta}(f, 0) \right] \int_r^s \frac{d v_a(t)}{v_a(t)}. \]
This gives the desired inequality right away. Furthermore, the above argument plus Lemma 2.2(i) derives the equality case. \(\square \)
As an immediate consequence of Theorem 2.1, we get a sort of "norm" estimate associated with $\Phi_{A,\beta}(f,\cdot)$.

Corollary 2.1. Let $-\infty < \alpha < \infty$, $0 \leq \beta \leq 1$ and $f \in H(D)$.

(i) If $-\infty < \alpha \leq -1$, then

$$\int_0^1 \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t) = \sup_{r \in (0,1)} \int_0^r \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t) < \infty,$$

if and only if f is constant. Moreover, $\sup_{r \in (0,1)} A_{\alpha,\beta}(f,r) = \Phi_{A,\beta}(f,1)$.

(ii) If $-1 < \alpha < \infty$, then

$$A_{\alpha,\beta}(f,r) \leq A_{\alpha,\beta}(f,1) : = \sup_{s \in (0,1)} A_{\alpha,\beta}(f,s), \ \forall r \in (0,1),$$

where the inequality becomes an equality for all $r \in (0,1)$ if and only if

$$f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}$$

(iii) The following function $\alpha \mapsto A_{\alpha,\beta}(f,1)$ is strictly decreasing on $(-1,\infty)$ unless

$$f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}$$

Proof. (i) By Theorem 2.1, we have

$$A_{\alpha,\beta}(f,r) \leq \frac{\int_0^r \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t)}{\nu_{\alpha}(s)}, \ \forall r \in (0,1).$$

Note that

$$\lim_{s \to 1} \nu_{\alpha}(s) = \infty \ \text{and} \ \lim_{s \to 1} \int_0^s \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t) = \int_0^1 \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t).$$

So, the last integral is finite if and only if

$$\Phi_{A,\beta}(f,r) = 0, \ \forall r \in (0,1),$$

equivalently, $A(f,r) = 0$ holds for all $r \in (0,1)$, i.e., f is constant.

For the remaining part of (i), we may assume that f is not a constant map. Due to $\lim_{r \to 1} \nu_{\alpha}(r) = \infty$, we obtain

$$\lim_{r \to 1} \int_0^r \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t) = \int_0^1 \Phi_{A,\beta}(f,t)d\mu_{\alpha}(t) = \infty.$$
So, an application of L’Hôpital’s rule yields
\[
\sup_{0 < r < 1} A_{\alpha, \beta}(f, r) = \lim_{r \to 1} \frac{\int_{0}^{r} \Phi_{A, \beta}(f, t) d\mu_{\alpha}(t)}{v_{\alpha}(r)} = \lim_{r \to 1} \frac{\Phi_{A, \beta}(f, r) r(1-r^2)^{\alpha}}{r(1-r^2)^{\alpha}} = \Phi_{A, \beta}(f, 1).
\]

(ii) Under \(-1 < \alpha < \infty\), we have
\[
\lim_{r \to 1} v_{\alpha}(r) = v_{\alpha}(1) \quad \text{and} \quad \lim_{r \to 1} \int_{0}^{r} \Phi_{A, \beta}(f, t) d\mu_{\alpha}(t) = \int_{0}^{1} \Phi_{A, \beta}(f, t) d\mu_{\alpha}(t).
\]
Thus, by Theorem 2.1 it follows that for \(r \in (0,1)\),
\[
A_{\alpha, \beta}(f, r) \leq \lim_{s \to 1} A_{\alpha, \beta}(f, s) = [v_{\alpha}(1)]^{-1} \int_{0}^{1} \Phi_{A, \beta}(f, t) d\mu_{\alpha}(t) = \sup_{s \in (0,1)} A_{\alpha, \beta}(f, s).
\]
The equality case just follows from a straightforward computation and Theorem 2.1.

(iii) Suppose \(-1 < \alpha_{1} < \alpha_{2} < \infty\) and \(A_{\alpha_{1}, \beta}(f, 1) < \infty\), then integrating by parts twice, we obtain
\[
A_{\alpha_{2}, \beta}(f, 1) = [v_{\alpha_{2}}(1)]^{-1} \int_{0}^{1} \Phi_{A, \beta}(f, r) d\mu_{\alpha_{2}}(r)
\]
\[
= [v_{\alpha_{2}}(1)]^{-1} \int_{0}^{1} (1-r^2)^{\alpha_{2} - \alpha_{1}} \frac{d}{dr} \left[\int_{0}^{r} \Phi_{A, \beta}(f, t) d\mu_{\alpha_{1}}(t) \right] dr
\]
\[
= [v_{\alpha_{2}}(1)]^{-1} \left[- \int_{0}^{1} \left(\int_{0}^{r} \Phi_{A, \beta}(f, t) d\mu_{\alpha_{1}}(t) \right) d(1-r^2)^{\alpha_{2} - \alpha_{1}} \right]
\]
\[
\leq [v_{\alpha_{2}}(1)]^{-1} A_{\alpha_{1}, \beta}(f, 1) \int_{0}^{1} v_{\alpha_{1}}(r) d[-(1-r^2)^{\alpha_{2} - \alpha_{1}}]
\]
\[
= A_{\alpha_{1}, \beta}(f, 1) [v_{\alpha_{2}}(1)]^{-1} \left[\int_{0}^{1} (1-r^2)^{\alpha_{2} - \alpha_{1}} d\mu_{\alpha_{1}}(r) \right]
\]
\[
= A_{\alpha_{1}, \beta}(f, 1),
\]
thereby establishing \(A_{\alpha_{2}, \beta}(f, 1) \leq A_{\alpha_{1}, \beta}(f, 1)\). If this last inequality becomes an equality, then the above argument forces
\[
\int_{0}^{r} \Phi_{A, \beta}(f, t) d\mu_{\alpha_{1}}(t) = A_{\alpha_{1}, \beta}(f, 1) v_{\alpha_{1}}(r), \quad \forall r \in (0,1),
\]
whence yielding (via the just-verified (ii))
\[
f = \begin{cases}
\text{constant}, & \text{when } \beta < 1, \\
\text{linear map}, & \text{when } \beta = 1.
\end{cases}
\]
Thus, we complete the proof. \(\square\)
2.3 Monotonic growth of \(L_{\alpha,\beta}(f, \cdot) \)

Correspondingly, we first have the following Schwarz type lemma.

Proposition 2.2. Let \(-\infty < \alpha < \infty, 0 \leq \beta \leq 1, \) and \(f \in H(D) \) be of the form \(f(z) = a_0 + \sum_{k=n}^{\infty} a_k z^k \) with \(n \in \mathbb{N} \). Then

\[
(2\pi)^{1-\beta} \left[\frac{|f^{(n)}(0)|}{n!} \right] \leq L_{\alpha,\beta}(f, r) \left[\frac{\nu_{\alpha}(r)}{\int_0^r t^{\alpha-\beta} d\mu_{\alpha}(t)} \right], \quad \forall r \in (0,1),
\]

with equality when and only when \(f = a_0 + a_n z^n \).

Proof. This follows from Lemma 2.1(ii) and its equality case. \(\square \)

The coming-up-next monotonicity contains a hypothesis stronger than that for Theorem 2.1.

Theorem 2.2. Let \(-\infty < \alpha < \infty, 0 \leq \beta \leq 1, \) and \(f \in U(D) \) or \(f(z) = a_0 + a_n z^n \) with \(n \in \mathbb{N} \). Then \(r \mapsto L_{\alpha,\beta}(f, r) \) is strictly increasing on \((0,1)\) unless

\[
f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}
\]

Consequently,

(i) \[
\lim_{r \to 0} L_{\alpha,\beta}(f, r) = \begin{cases} 0, & \text{when } \beta < 1, \\ |f'(0)|, & \text{when } \beta = 1. \end{cases}
\]

(ii) If \(\Phi_{L,\beta}(f,0) := \lim_{r \to 0} \Phi_{L,\beta}(f, r) \) and \(\Phi_{L,\beta}(f,1) := \lim_{r \to 1} \Phi_{L,\beta}(f, r) < \infty, \) then

\[
0 < r < s < 1 \Rightarrow \frac{L_{\alpha,\beta}(f, s) - L_{\alpha,\beta}(f, r)}{\log \nu_{\alpha}(s) - \log \nu_{\alpha}(r)} \leq \Phi_{L,\beta}(f, s) - \Phi_{L,\beta}(f, 0)
\]

with equality if and only if

\[
f = \begin{cases} \text{constant,} & \text{when } \beta < 1, \\ \text{linear map,} & \text{when } \beta = 1. \end{cases}
\]

In particular, \(t \mapsto L_{\alpha,\beta}(f, t) \) is Lipschitz with respect to \(\log \nu_{\alpha}(t) \) for \(t \in (0,1). \)

Proof. Similar to that for Theorem 2.1, but this time by Lemma 2.2(ii). \(\square \)

Naturally, we can establish the so-called “norm” estimate associated to \(\Phi_{L,\beta}(f, \cdot). \)
Corollary 2.2. Let \(0 \leq \beta \leq 1\) and \(f \in U(D)\) or \(f(z) = a_0 + a_n z^n\) with \(n \in \mathbb{N}\),
(i) If \(-\infty < \alpha \leq -1\), then
\[
\int_0^1 \Phi_{L,\beta}(f, t) d\mu_{\alpha}(t) = \sup_{r \in (0,1)} \int_0^r \Phi_{L,\beta}(f, t) d\mu_{\alpha}(t) < \infty
\]
if and only if \(f\) is constant. Moreover, \(\sup_{r \in (0,1)} L_{a,\beta}(f, r) = \Phi_{L,\beta}(f, 1)\).
(ii) If \(-1 < \alpha < \infty\), then
\[
L_{a,\beta}(f, r) \leq L_{a,\beta}(f, 1) := \sup_{s \in (0,1)} L_{a,\beta}(f, s), \quad \forall r \in (0,1),
\]
where the inequality becomes an equality for all \(r \in (0,1)\) if and only if
\[
f = \begin{cases} \text{constant}, & \text{when } \beta < 1, \\ \text{linear map}, & \text{when } \beta = 1. \end{cases}
\]
(iii) \(\alpha \mapsto L_{a,\beta}(f, 1)\) is strictly decreasing on \((-1, \infty)\) unless
\[
f = \begin{cases} \text{constant}, & \text{when } \beta < 1, \\ \text{linear map}, & \text{when } \beta = 1. \end{cases}
\]

Proof. The argument is similar to that for Corollary 2.1, but via Lemma 2.2(ii).

3 Logarithmic convexity

In this section, we treat the convexities of the following two functions: \(\log r \mapsto \log A_{a,\beta}(f, r)\)
and \(\log r \mapsto \log L_{a,\beta}(f, r)\) for \(r \in (0,1)\).

3.1 Two more lemmas

The following are two technical preliminaries.

Lemma 3.1 (see [10]). Suppose that \(f(x)\) and \(\{h_k(x)\}_{k=0}^{\infty}\) are positive and twice differentiable
for \(x \in (0,1)\) such that the function \(H(x) = \sum_{k=0}^{\infty} h_k(x)\) is also twice differentiable for \(x \in (0,1)\).
Then:
(i) \(\log x \mapsto \log f(x)\) is convex if and only if \(\log x \mapsto \log f(x^2)\) is convex.
(ii) The function \(\log x \mapsto \log f(x)\) is convex if and only if the D-notation of \(f\)
\[
D(f(x)) := \frac{f'(x)}{f(x)} + x \left(\frac{f''(x)}{f(x)} \right)' \geq 0, \quad \forall x \in (0,1).
\]
(iii) If for each \(k\) the function \(\log x \mapsto \log h_k(x)\) is convex, then \(\log x \mapsto \log H(x)\) is also convex.
Lemma 3.2. Let \(f \in H(\mathbb{D}) \). Then \(f \) belongs to \(U(\mathbb{D}) \) provided that one of the following two conditions is valid:

(i) see [7] or [1, Lemma 2.1]

\[
f(0) = f'(0) - 1 = 0 \quad \text{and} \quad \left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1, \quad \forall z \in \mathbb{D}.
\]

(ii) see [6, Theorem 1] or [3, Theorem 8.12]

\[
\left| \left[\frac{f''(z)}{f'(z)} \right]' - \frac{1}{2} \frac{f'''(z)}{f'(z)^2} \right| \leq 2(1 - |z|^2)^{-2}, \quad \forall z \in \mathbb{D}.
\]

3.2 Log-convexity for \(A_{a,\beta}(f,r) \)

Such a property is given below.

Theorem 3.1. Let \(0 \leq \beta \leq 1 \) and \(0 < r < 1 \).

(i) If \(\alpha \in (-\infty, -3) \), then there exist two maps \(f, g \in H(\mathbb{D}) \) such that \(\log r \mapsto \log A_{a,\beta}(f,r) \) is not convex and \(\log r \mapsto \log A_{a,\beta}(g,r) \) is not concave.

(ii) If \(\alpha \in [-3,0] \), then \(\log r \mapsto \log A_{a,1}(a_n z^n, r) \) is convex for \(a_n \neq 0 \) with \(n \in \mathbb{N} \). Consequently,

\[
\log r \mapsto \log A_{a,1}(f, r)
\]

is convex for all \(f \in U(\mathbb{D}) \).

(iii) If \(\alpha \in (0,\infty) \), then \(\log r \mapsto \log A_{a,\beta}(a_1 z^n, r) \) is not convex for \(a_n \neq 0 \) and \(n \in \mathbb{N} \).

Proof. The key issue is to check whether or not \(\log r \mapsto \log A_{a,\beta}(z^n, r) \) is convex for \(r \in (0,1) \).

To see this, let us borrow some symbols from [10]. For \(\lambda \geq 0 \) and \(0 < x < 1 \), we define

\[
f_{\lambda}(x) = \int_0^x t^\lambda (1-t)^{\alpha} dt
\]

and

\[
\Delta(\lambda, x) = \frac{f'_{\lambda}(x)}{f_{\lambda}(x)} + x \left(\frac{f''_{\lambda}(x)}{f'_{\lambda}(x)} \right)' - \left[\frac{f'_0(x)}{f_0(x)} + x \left(\frac{f''_0(x)}{f'_0(x)} \right)' \right].
\]

Given \(n \in \mathbb{N} \). A simple calculation shows \(\Phi_{A,\beta}(z^n, t) = \pi^{1-\beta} t^2 (1-t)^{\alpha-\beta} \), and then a change of variable derives

\[
A_{a,\beta}(z^n, r) = \int_0^r \Phi_{A,\beta}(z^n, t) d\mu_a(t) = \pi^{1-\beta} \int_0^r t^{n-\beta} (1-t)^\alpha dt \frac{t^{\alpha-\beta}}{f_0(t)} = \pi^{1-\beta} \left[\frac{f_{n-\beta}(r^2)}{f_0(r^2)} \right].
\]

In accordance with Lemma 3.1(i)-(ii), it is easy to work out that \(\log r \mapsto \log A_{a,\beta}(z^n, r) \) is convex for \(r \in (0,1) \) if and only if \(\Delta(n-\beta, x) \geq 0 \) for any \(x \in (0,1) \).
(i) Under $\alpha \in (-\infty, -3)$, we follow the argument for [10, Proposition 6] to get
\[
\lim_{x \to 1} \Delta(\lambda, x) = \frac{\lambda(\alpha+1)(\lambda+2+\alpha)}{(\alpha+2)^2(\alpha+3)}.
\]
Choosing
\[
f(z) = z^n = \begin{cases}
z, & \text{when } \beta < 1, \\
z^2, & \text{when } \beta = 1,
\end{cases}
\]
and $\lambda = n - \beta$, we find $\lim_{x \to 1} \Delta(\lambda, x) < 0$, whence deriving that $\log r \mapsto \log A_{\alpha}(f, r)$ is not convex.

In the meantime, picking $n \in \mathbb{N}$ such that $n > \beta - (2 + \alpha)$ and putting $g(z) = z^n$, we obtain
\[
\lim_{x \to 1} \Delta(n - \beta, x) = \frac{(n - \beta)(\alpha+1)(n-\beta+2+\alpha)}{(\alpha+2)^2(\alpha+3)} > 0,
\]
whence deriving that $\log r \mapsto \log A_{\alpha, \beta}(g, r)$ is not concave.

(ii) Under $\alpha \in [-3, 0]$, we handle the two situations.

Situation 1: $f \in U(D)$. Upon writing $f(z) = \sum_{n=0}^{\infty} a_n z^n$, we compute
\[
\Phi_{\alpha,1}(f(z), t) = (\pi t^2)^{-1} A(f, t) = \sum_{n=0}^{\infty} n |a_n|^2 t^{2(n-1)},
\]
and consequently,
\[
A_{\alpha,1}(f, r) = \frac{\sum_{n=0}^{\infty} n |a_n|^2 \int_{0}^{1} (\pi t^2)^{-1} A(z^n, t) d\mu_{\alpha}(t)}{\nu_{\alpha}(r)} = \sum_{n=0}^{\infty} n |a_n|^2 A_{\alpha,1}(z^n, r).
\]
So, by Lemma 3.1(iii), we see that the convexity of
\[
\log r \mapsto \log A_{\alpha,1}(f, r) \quad \text{under } f \in U(D),
\]
follows from the convexity of
\[
\log r \mapsto \log A_{\alpha,1}(z^n, r) \quad \text{under } n \in \mathbb{N}.
\]
So, it remains to verify this last convexity via the coming-up-next consideration.

Situation 2: $f(z) = a_n z^n$ with $a_n \neq 0$. Three cases are required to control.

Case 1: $\alpha = 0$. An easy computation shows
\[
A_{0,1}(z^n, r) = n^{-1} r^{2(n-1)}
\]
and so $\log r \mapsto \log A_{0,1}(z^n, r)$ is convex.

Case 2: $-2 \leq \alpha < 0$. Under this condition, we see from the arguments for [10, Propositions 4-5] that
\[
\Delta(n-1, x) \geq 0, \quad \forall n \geq 0, \quad 0 < x < 1,
\]
and so that \(\log r \mapsto \log A_{\alpha,1}(z^n,r) \) is convex.

Case 3: \(-3 \leq \alpha < -2\). With the assumption, we also get from the arguments for [10, Propositions 4-5] that

\[
\Delta(n-1,x) \geq \Delta(-2-a,x) > 0, \quad \forall x \in (0,1), \quad n-1 \in [-2-a,\infty),
\]
and so that \(\log r \mapsto \log A_{\alpha,1}(z^n,r) \) is convex when \(n \geq 2 \). Here it is worth noting that the convexity of \(\log r \mapsto \log A_{\alpha,1}(z^n,r) = 0 \) is trivial.

(iii) Under \(0 < \alpha < \infty \), from the argument for [10, Proposition 6] we know that \(\Delta(n-\beta,x) < 0 \) as \(x \) is sufficiently close to 1. Thus \(\log r \mapsto \log A_{\alpha,\beta}(a_nz^n,r) \) is not convex under \(a_n \neq 0 \).

The following illustrates that the function \(\log r \mapsto \log A_{\alpha,\beta}(f,r) \) is not always concave for \(\alpha > 0, \beta \leq 1, \) and \(f \in U(D) \).

Example 3.1. Let \(\alpha = 1, \beta \in \{0,1\} \) and \(f(z) = z + z^2/2 \). Then the function \(\log r \mapsto \log A_{\alpha,\beta}(f,r) \) is neither convex nor concave for \(r \in (0,1) \).

Proof. A direct computation shows

\[
\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| = \left| \frac{z^2(1+z)}{(z+2)^2} - 1 \right| = \frac{|z|^2}{|z+2|^2} < 1,
\]

since

\[
|z| < 1 < 2 - |z| \leq |z+2|, \quad \forall z \in D.
\]

So, \(f \in U(D) \) owing to Lemma 3.2(i). By \(f'(z) = z + 1 \) we have

\[
A(f,t) = \int_D |z+1|^2 dA(z) = \pi \left(t^2 + \frac{t^4}{2} \right),
\]

plus

\[
\int_0^r \Phi_{A,\beta}(f,t) d\mu_1(t) = \begin{cases}
\frac{\pi}{2} \left(r^4 - \frac{r^6}{3} - \frac{r^8}{4} \right), & \text{when } \beta = 0, \\
\frac{r^2}{2} - \frac{r^4}{4} - \frac{r^6}{6}, & \text{when } \beta = 1.
\end{cases}
\]

Meanwhile,

\[
v_1(r) = \int_0^r (1-t^2) dt^2 = r^2 - \frac{r^4}{2}.
\]

So, we get

\[
A_{1,\beta}(f,r) = \begin{cases}
\frac{\pi(12r^2 - 4r^4 - 3r^6)}{12(2-r^2)}, & \text{when } \beta = 0, \\
\frac{12-3r^2 - 2r^4}{6(2-r^2)}, & \text{when } \beta = 1.
\end{cases}
\]
and in turn consider the logarithmic convexities of the following function

\[h_\beta(x) = \begin{cases}
\frac{12x - 4x^2 - 3x^3}{2 - x}, & \text{when } \beta = 0, \\
\frac{12 - 3x - 2x^2}{2 - x}, & \text{when } \beta = 1,
\end{cases} \]

for \(x \in (0, 1) \).

Using the so-called D-notation in Lemma 3.1, we have

\[D(h_\beta(x)) = \begin{cases}
D(12x - 4x^2 - 3x^3) - D(2 - x), & \text{when } \beta = 0, \\
D(12 - 3x - 2x^2) - D(2 - x), & \text{when } \beta = 1,
\end{cases} \]

for \(x \in (0, 1) \). By an elementary calculation, we get

\[\begin{align*}
D(12x - 4x^2 - 3x^3) &= -48 - 144x + 12x^2, \\
D(2 - x) &= -\frac{2}{(2 - x)^2}, \\
D(12 - 3x - 2x^2) &= -\frac{36 - 96x + 6x^2}{(12 - 3x - 2x^2)^2}.
\end{align*} \]

Consequently,

\[D(h_\beta(x)) = \begin{cases}
\frac{2g_\beta(x)}{(12 - 4x - 3x^2)^2(2 - x)^2}, & \text{when } \beta = 0, \\
\frac{2g_\beta(x)}{(12 - 3x - 2x^2)^2(2 - x)^2}, & \text{when } \beta = 1,
\end{cases} \]

where

\[g_\beta(x) = \begin{cases}
48 - 288x + 232x^2 - 72x^3 + 15x^4, & \text{when } \beta = 0, \\
72 - 192x + 147x^2 - 48x^3 + 7x^4, & \text{when } \beta = 1.
\end{cases} \]

Now, under \(x \in (0, 1) \) we find

\[g_0'(x) = -288 + 464x - 216x^2 + 60x^3 \quad \text{and} \quad g_0''(x) = 464 - 432x + 180x^2. \]

Clearly, \(g_0''(x) \) is an open-upward parabola with the axis of symmetry \(x = 6/5 > 1 \). By \(g_0''(1) = 212 > 0 \) and the monotonicity of \(g_0'' \) on \((0, 1)\), we have \(g_0''(x) > 0 \) for all \(x \in (0, 1) \). Thus \(g_0' \) is increasing on \((0, 1)\). The following condition

\[g_0'(0) = -288 < 0 \quad \text{and} \quad g_0'(1) = 20 > 0 \]

yields an \(x_1 \in (0, 1) \) such that \(g_0'(x) < 0 \) for \(x \in (0, x_1) \) and \(g_0'(x) > 0 \) for \(x \in (x_1, 1) \). Since \(g_0(0) = 48 \) and \(g_0(1) = -65 \), there exists an \(x_0 \in (0, 1) \) such that \(g_0(x) > 0 \) for \(x \in (0, x_0) \) and \(g_0(x) < 0 \) for \(x \in (x_0, 1) \). Thus the function \(\log x \mapsto \log h_0(x) \) is neither convex nor concave.
Similarly, under $x \in (0,1)$ we have
\[
g'_1(x) = -192 + 294x - 144x^2 + 28x^3 \quad \text{and} \quad g''_1(x) = 294 - 288x + 84x^2.
\]
Obviously, $g''_1(x)$ is an open-upward parabola with the axis of symmetry $x = 12/7 > 1$. By $g''_1(1) = 90 > 0$ and the monotonicity of g''_1 on $(0,1)$, we have $g''_1(x) > 0$ for all $x \in (0,1)$. Thus g'_1 is increasing on $(0,1)$. The following condition
\[
g'_1(0) = -192 < 0 \quad \text{and} \quad g'_1(1) = -14 < 0
\]
yields $g'_1(x) < 0$ for $x \in (0,1)$. Since $g'_1(0) = 72$ and $g'_1(1) = -14$, there exists an $x_0 \in (0,1)$ such that $g'_1(x) > 0$ for $x \in (0,x_0)$ and $g'_1(x) < 0$ for $x \in (x_0,1)$. Thus the function $\log x \mapsto \log h_1(x)$ is neither convex nor concave.

3.3 Log-convexity for $L_{\alpha,\beta}(f, \cdot)$

Analogously, we can establish the expected convexity for the mixed lengths.

Theorem 3.2. Let $0 \leq \beta \leq 1$ and $0 < r < 1$.

(i) If $\alpha \in (-\infty, -3)$, then there exist two maps $f, g \in H(D)$ such that $\log r \mapsto \log L_{\alpha,\beta}(f, r)$ is not convex and $\log r \mapsto \log L_{\alpha,\beta}(g, r)$ is not concave.

(ii) If $\alpha \in [-3, 0]$, then $\log r \mapsto \log L_{\alpha,1}(a_n z^n, r)$ is convex for $a_n \neq 0$ with $n \in \mathbb{N}$. Consequently, $\log r \mapsto \log L_{\alpha,1}(f, r)$ is convex for $f \in U(D)$.

(iii) If $\alpha \in (0, \infty)$, then $\log r \mapsto \log L_{\alpha,\beta}(a_n z^n, r)$ is not convex for $a_n \neq 0$ and $n \in \mathbb{N}$.

Proof. The argument is similar to that for Theorem 3.1 except using the following statement for $\alpha \in [-3, 0]$—If $f \in U(D)$, then there exists $g(z) = \sum_{n=0}^{\infty} b_n z^n$ such that g is the square root of the zero-free derivative f' on D and $f'(0) = g^2(0)$, and hence
\[
\Phi_{\alpha,1}(f, t) = (2\pi t)^{-1} \int_{|z|=1} |f'(z)||dz| = (2\pi t)^{-1} \int_{|z|=1} |g(z)|^2|dz| = \sum_{n=0}^{\infty} |b_n|^2 t^{2n}
\]
Thus, we complete the proof.

Our concluding example shows that under $0 < \alpha < \infty$ and $0 \leq \beta \leq 1$ one cannot get that $\log L_{\alpha,\beta}(f, r)$ is convex or concave in $\log r$ for all functions $f \in U(D)$.

Example 3.2. Let $\alpha = 1$, $\beta \in \{0, 1\}$ and $f(z) = (z + 2)^3$. Then the function $\log r \mapsto \log L_{\alpha,\beta}(f, r)$ is neither convex nor concave for $r \in (0,1)$.

Proof. Clearly, we have
\[
f'(z) = 3(z + 2)^2 \quad \text{and} \quad f''(z) = 6(z + 2)
\]
as well as the Schwarzian derivative
\[
\left[\frac{f''(z)}{f'(z)} \right]' - \frac{1}{2} \left[\frac{f''(z)}{f'(z)} \right]^2 = \frac{-4}{(z+2)^2}.
\]

It is easy to see that
\[
\sqrt{2}(1 - |z|^2) \leq 2 - |z|, \quad \forall z \in \mathbb{D}.
\]
So,
\[
\left| \frac{f''(z)}{f'(z)} \right|' - \frac{1}{2} \left[\frac{f''(z)}{f'(z)} \right]^2 \leq \frac{4}{|z+2|^2} \leq \frac{2}{(1 - |z|^2)^2}.
\]
By Lemma 3.2(ii), \(f \) belongs to \(U(\mathbb{D}) \). Consequently,
\[
L(f, t) = \int_0^{2\pi} |f'(te^{i\theta})| t d\theta = 6\pi t(t^2 + 4)
\]
and
\[
\int_0^r \Phi_{L, \beta}(f, t) d\mu_1(t) = \begin{cases}
12\pi \left(\frac{4}{3} r^3 - \frac{3}{5} r^5 - \frac{1}{7} r^7 \right), & \text{when } \beta = 0, \\
12r^2 - \frac{9}{2} r^4 - r^6, & \text{when } \beta = 1.
\end{cases}
\]
Note that \(v_1(r) = r^2 - r^4/2 \). So,
\[
L_{1, \beta}(f, r) = \begin{cases}
\frac{24\pi(140r - 63r^3 - 15r^5)}{105(2 - r^2)}, & \text{when } \beta = 0, \\
\frac{24 - 9r^2 - 2r^4}{2 - r^2}, & \text{when } \beta = 1.
\end{cases}
\]
To gain our conclusion, we only need to consider the logarithmic convexity of the function
\[
h_\beta(x) = \begin{cases}
\frac{140x - 63x^3 - 15x^5}{2 - x^2}, & \text{when } \beta = 0, \\
\frac{24 - 9x - 2x^2}{2 - x}, & \text{when } \beta = 1.
\end{cases}
\]
Case 1: \(\beta = 0 \). Applying the definition of \(D \)-notation, we obtain
\[
D(140x - 63x^3 - 15x^5) = \frac{-35280x - 33600x^3 + 3780x^5}{(140 - 63x^2 - 15x^4)^2}
\]
and
\[
D(2 - x^2) = \frac{-8x}{(2 - x)^2},
\]
whence reaching
\[
D(h_0(x)) = D(140x - 63x^3 - 15x^5) - D(2 - x^2) = \frac{4xh_0(x)}{(140 - 63x^2 - 15x^4)^2(2 - x^2)^2}.
\]
where
\[g_0(x) = 3920 - 33600x^2 + 28098x^4 - 8400x^6 + 1395x^8. \]

Obviously,
\[g_0(0) = 3920 > 0 \quad \text{and} \quad g_0(1) = -8587 < 0. \]

Now letting \(s = x^2 \), we get
\[g_0(x) = G_0(s) = 3920 - 33600s + 28098s^2 - 8400s^3 + 1395s^4, \]
and
\[G'_0(s) = -33600 + 56196s - 25200s^2 + 5580s^3 \quad \text{and} \quad G''_0(s) = 56196 - 50400s + 16740s^2. \]

Since the axis of symmetry of \(G'_0(s) \) is \(s = 140/93 > 1 \), \(G''_0(s) \) is decreasing on \((0,1)\). Due to \(G''_0(1) = 22536 > 0 \), we have \(G''_0(s) > 0 \) for all \(s \in (0,1) \), i.e., \(G'_0(s) \) is increasing on \((0,1)\). By
\[G'_0(0) = -33600 < 0 \quad \text{and} \quad G'_0(1) = 2976 > 0, \]
we conclude that there exists an \(s_0 \in (0,1) \) such that \(G'_0(s) < 0 \) for \(s \in (0,s_0) \) and \(G'_0(s) > 0 \) for \(s \in (s_0,1) \). Then there exists an \(x_0 \in (0,1) \) such that \(g_0(x) \) is decreasing for \(x \in (0,x_0) \) and \(g_0(x) \) is increasing for \(x \in (x_0,1) \). Thus there exists an \(x_1 \in (0,1) \) such that \(g_0(x) > 0 \) for \(x \in (0,x_1) \) and \(g_0(x) < 0 \) for \(x \in (x_1,1) \). As a result, we find that \(\log r \mapsto \log L_{a,0}(f,r) \) is neither concave nor convex.

Case 2: \(\beta = 1 \). Again using the \(D \)-notation, we obtain
\[D(24 - 9x - 2x^2) = \frac{-216 - 192x + 18x^2}{(24 - 9x - 2x^2)^2} \]
and
\[D(2 - x) = \frac{-2}{(2 - x)^2}, \]
whence deriving
\[D(h_1(x)) = D(24 - 9x - 2x^2) - D(2 - x) = \frac{2g_1(x)}{(24 - 9x - 2x^2)^2(2 - x)^2}, \]
where
\[g_1(x) = 144 - 384x + 297x^2 - 96x^3 + 13x^4. \]

Now we have
\[g'_1(x) = -384 + 594x - 288x^2 + 52x^3 \quad \text{and} \quad g''_1(x) = 594 - 576x + 165x^2. \]

Since the axis of symmetry of \(g''_1(x) \) is \(x = 24/13 > 1 \), \(g''_1(x) \) is decreasing on \((0,1)\). Due to \(g''_1(1) = 174 > 0 \), we have \(g''_1(x) > 0 \) for all \(x \in (0,1) \), i.e., \(g'_1(x) \) is increasing on \((0,1)\). By
\[g'_1(0) = -384 < 0 \quad \text{and} \quad g'_1(1) = -26 < 0, \]
we conclude that \(g'_1(x) < 0 \) for \(x \in (0,1) \). Obviously,
\[
g_1(0) = 144 > 0 \quad \text{and} \quad g_1(1) = -26 < 0.
\]
Hence there exists an \(x_0 \in (0,1) \) such that \(g_1(x) > 0 \) for \(x \in (0,x_0) \) and \(g_1(x) < 0 \) for \(x \in (x_0,1) \). Consequently, we find that \(\log r \mapsto \log L_{\alpha,\beta} = 1(f,r) \) is neither concave nor convex. \(\square \)

Acknowledgements

J. Xiao and W. Xu were in part supported by NSERC of Canada and the Finnish Cultural Foundation, respectively.

References