REGULAR ARTICLE

A DFT/TDDFT Study on the Luminescence Property and Adsorption Behaviors of a Luminescence MOFs as a Potential Probe for Detecting Formaldehyde

Shuhe Kang, Zhiqiao Liu, Jiaojie Tan, Ce Hao* and Jieshan Qiu

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China

Received 23 April 2014; Accepted (in revised version) 27 May 2014

Abstract: Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) have been carried out to investigate luminescence property and adsorption behaviors of the MOFs, Zn3(BTC)2(DMF)3(H2O)•(DMF)(H2O). Through the analysis of the binding energy and hydrogen bond complexes’ structure, we proved that the MOFs can absorb formaldehyde and other small molecules. We pointed out that the luminescence mechanism of the MOFs is ligand-based luminescence by the analysis of frontier molecular orbitals (FMOs) and the corresponding electronic configurations of the MOFs and its hydrogen bond complexes. But when the CH2O hydrogen bond complex is formed, the luminescence mechanism will change into dominating by the guest-induced luminescence. Accordingly, the MOFs have good potential for detecting formaldehyde in environment

AMS subject classifications: 74E70,78M50
Keywords: DFT, TDDFT, MOFs, luminescence, adsorption

1. Introduction

Metal-Organic Frameworks (MOFs), a new fascinating class of porous materials, are synthesized via self-assembly with metal centers or clusters and organic linkers to form

* Corresponding author. Email address: haoce@dlut.edu.cn (C. Hao)
http://www.global-sci.org/cicc

©2014 Global-Science Press
crystalline networks [1-3]. MOFs have an essentially infinite number of possible combinations of metal ions, organic linkers, and structural motifs, so MOFs exhibit extraordinary optoelectronic, ferroelectric, magnetic, adsorption, catalytic and luminescence properties [4-11]. In recent years, MOFs have attracted considerable interests for applications in a number of fields, especially in gas adsorption and Chemical Sensing [10-12].

Formaldehyde is widely used in construction such as wood processing, furniture, textiles, and carpeting [13], the effects of formaldehyde on human health have attracted great attention [14-17]. The conventional formaldehyde measurement systems are expensive and bulky, so a better one should be developed [18]. MOFs contain many hydrogen bond donors and acceptors, so formaldehyde will be adsorbed in MOFs by forming hydrogen bond complexes. Hydrogen bond plays an important role in many photophysical processes and photochemical reactions in the electronic excited state [19-33]. Luminescence properties of MOFs may be changed by absorbing formaldehyde, and therefore MOFs can be used as chemical sensor for detecting formaldehyde.

In 2006, a 3D chiral microporous MOFs, Zn₃(BTC)₂(DMF)·(H₂O)·(DMF)(H₂O), was synthesized by Fang et al.. The solid-state excitation-emission spectra showed that the strongest excitation peaks is at 341 nm, and its emission spectra mainly showed strong peaks at 410 nm [34]. The MOFs also exhibit substantial adsorption behaviors for H₂O, CH₃OH and C₂H₅OH [34]. Due to the excellent luminescence property and good adsorption behaviors, the MOFs will be a potential chemical sensor for small molecules. In this work, we investigated the luminescence property and adsorption behaviors of the MOFs by using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT). At first, We have intercepted the representative segment A (Zn₃L₄(DMF)₂, where L is benzoic acid) to study ground state geometric structure and excited energy of the MOFs. Furthermore, we considered hydrogen bond complexes which were formed by small molecules (H₂O, CH₃OH, C₂H₅OH and CH₃O) and A to study adsorption behaviors and luminescence properties of the MOFs. Through the analysis of the results, we predicted the possibility of using the MOFs as Luminescence-Based Chemical Sensor for detecting small molecules. In particular, we had more interesting in detecting formaldehyde in environment.

2. Computational details

MOFs are periodic crystalline material periodic structures. To avoid the complexity of periodic structures in the excited state, we truncated the Zn₃(BTC)₂(DMF)·(H₂O)·(DMF)(H₂O) crystal structure into a representative segment A (see Figure 1). DFT and TDDFT were employed for ground state and excited state computations, respectively. The ground state and excited state computations of A was performed by using
the Generalized Gradient Approximation (GGA) with Perdew-Burke-Ernzerhofer (PBE) exchange-correlation functional and the Becke’s three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) gradient corrected correlation functional in the Turbomole 6.4 program package, TZVP basis set was used for all of atoms [35-38]. We also used the long-range corrected version of B3LYP (CAM-B3LYP) by Handy and coworkers in the Gaussian 09 program package and the LANL2DZ basis set for Zn atoms and 6-31+G(d,p) basis set for remaining atoms [39-40]. As the results of section 3.1, we selected the PBE/TZVP level to perform the following DFT and TDDFT calculation.

We have used PM6 semi-empirical method in the Gaussian 09 program package to preliminarily optimize hydrogen bond complexes formed by A and small molecules (H2O, CH3OH, C2H5OH and CH3O) [41]. The structure of the lowest energy has been chosen, further optimization and excited energy were calculated at PBE/TZVP level in the Turbomole 6.4 program package. In addition, electronic configurations were calculated at PBE/TZP level in the ADF 2010 program package [42-44].

The binding energies of hydrogen bond complexes have been calculated at PBE/TZVP level in the Turbomole 6.4 program package. The basis set superposition error (BSSE) can be corrected for using the counterpoise (CP) method. The original counterpoise method of Boys and Bernardi is the procedure most frequently used for computing the BSSE [45].

The binding energies of hydrogen bonds were performed by the following expression:

\[E_{\text{binding}} = E_{AB} - E_A - E_B , \]

(1)

In this case, the corrected \(E^{CP}_{\text{binding}} \) is given by:

\[E^{CP}_{\text{binding}} = E_{AB} - E_{A(B)} - E_{B(A)} , \]

(2)

Where parentheses denote ghost basis sets without electrons or nuclear charges.

Figure 1: (a) crystal structure of Zn2(BTC)3(DMF)•(H2O)•(DMF)(H2O) without H atoms. (b) Representative fragment of the Zn:La/(DMF): structure optimized at PBE/ TZVP level.
3. Numerical Results and discussion

3.1 Ground-state geometric conformation, vibration frequency and UV-VIS maximum absorption peak of representative segment A

We have optimized the structure of representative segment A using PBE, B3LYP and CAM-B3LYP functional. The calculated results were compared to experimental structural properties (see Table 1). We also have calculated the vibration frequency and UV-VIS maximum absorption peak of A (see Table 2). In Table 1 and Table 2, it can be seen that the results of the PBE level are in good agreement with experimental data. But the calculated dihedral angles and UV-VIS maximum absorption peak of B3LYP and CAM-B3LYP level are unsatisfactory with experimental data.

The optimized structure of A at PBE/TZVP level is showed in Figure 1(b). The representative segment A consists of two Zn atoms in the center, four benzoic acids around the two Zn atoms, and two N,N’-dimethylformamide (DMF) respectively connected to one Zn atom. In Table 1, we can see that the bond angle O2-Zn1-O4 is close to 90° and this proves that four benzoic acids are evenly around the two zinc atoms. The dihedral angles O2-C2-C3-C4 near 0° shows that benzoic acid keeps good co-planarity in the process of optimization.

Table 1 Selected bond lengths (Å), bond angles (°), and dihedral angles (°) of this MOFs optimized at PBE, B3LYP and CAM-B3LYP functional

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>PBE</th>
<th>B3LYP</th>
<th>CAM-B3LYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1-Zn2</td>
<td>2.96</td>
<td>2.84</td>
<td>2.95</td>
<td>3.06</td>
</tr>
<tr>
<td>Zn1-O2</td>
<td>1.98</td>
<td>2.05</td>
<td>2.05</td>
<td>2.04</td>
</tr>
<tr>
<td>O2-C2</td>
<td>1.24</td>
<td>1.25</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>C1-N1</td>
<td>1.29</td>
<td>1.35</td>
<td>1.34</td>
<td>1.33</td>
</tr>
<tr>
<td>Zn1-O1-C1</td>
<td>118.49</td>
<td>117.47</td>
<td>118.73</td>
<td>117.99</td>
</tr>
<tr>
<td>O2-C2-O3</td>
<td>125.11</td>
<td>125.92</td>
<td>125.51</td>
<td>125.04</td>
</tr>
<tr>
<td>O2-Zn1-O4</td>
<td>87.05</td>
<td>86.28</td>
<td>85.66</td>
<td>87.48</td>
</tr>
<tr>
<td>Zn1-O2-O3-Zn2</td>
<td>3.93</td>
<td>4.52</td>
<td>13.53</td>
<td>0.61</td>
</tr>
<tr>
<td>O2-C2-C3-C4</td>
<td>0.01</td>
<td>1.28</td>
<td>1.34</td>
<td>2.33</td>
</tr>
</tbody>
</table>

3.2 Structures and bind energies of hydrogen bond complexes

There are many hydrogen bond donors and acceptors on the representative fragment of the A. Small molecules (H2O, CH3OH, C2H5OH and CH2O) were allowed to adsorb in all
possible adsorption sites on the representative fragment. Considering the cost of calculation, a semi-empirical method was used for making preliminary optimization structure and the lowest energy complex of each small molecule-A complexes was picked out. Then the preliminary optimized structures were further optimized (see Figure 2) and the binding energies (see Table 3) of the lowest energy complexes were calculated at PBE/TZVP level.

Table 2 Compared vibration frequency (cm⁻¹) and UV-VIS maximum absorption peak (nm) of A from experimental measurements and our calculations

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>PBE</th>
<th>B3LYP</th>
<th>CAM-B3LYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>vibration frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-H stretch</td>
<td>2931</td>
<td>2960</td>
<td>3025</td>
<td>3074</td>
</tr>
<tr>
<td>C=O stretch</td>
<td>1658/1628</td>
<td>1659/1625</td>
<td>1673/1615</td>
<td>1727/1667</td>
</tr>
<tr>
<td>Organic benzene ring breathing</td>
<td>1574/1442</td>
<td>1573/1434</td>
<td>1588/1417</td>
<td>1558/1482</td>
</tr>
<tr>
<td>C-N stretch</td>
<td>1257/1103</td>
<td>1239/1085</td>
<td>1269/1121</td>
<td>1313/1141</td>
</tr>
<tr>
<td>Zn-O stretch</td>
<td>571/540</td>
<td>567/535</td>
<td>573/550</td>
<td>577/560</td>
</tr>
<tr>
<td>UV-VIS maximum absorption peak</td>
<td>341</td>
<td>345</td>
<td>246</td>
<td>216</td>
</tr>
</tbody>
</table>

All the small molecules form hydrogen bonds with A. Hydrogen bond complexes H₂O-A, CH₃OH-A and C₂H₅OH-A have two hydrogen bonds, the strong one is O···H-O between the O atom of benzoic acid and the H atom of hydroxyl. But CH₂O-A only has a weak hydrogen bond between the O atom of benzoic acid and the H atom of CH₂O. Presented in Table3, one can find that hydrogen bonds of CH₃OH-A and C₂H₅OH-A are very similar.

Table 3 BSSE corrected binding energies (kJ•mol⁻¹) and calculated hydrogen bond lengths (Å) of the hydrogen bond complexes, O···H-O is the strong hydrogen bond and O’···H’ is the weak one.

<table>
<thead>
<tr>
<th></th>
<th>E(binding)</th>
<th>O···H-O</th>
<th>O’···H’</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O-A</td>
<td>-44.38</td>
<td>1.91</td>
<td>2.3</td>
</tr>
<tr>
<td>CH₃OH-A</td>
<td>-47.28</td>
<td>1.86</td>
<td>2.43</td>
</tr>
<tr>
<td>C₂H₅OH-A</td>
<td>-47.28</td>
<td>1.82</td>
<td>2.43</td>
</tr>
<tr>
<td>CH₂O-A</td>
<td>-31.84</td>
<td>--</td>
<td>2.57</td>
</tr>
</tbody>
</table>

To evaluate the adsorption behaviors of each small molecule, we calculated binding energies (E(binding)) of the different complexes with consideration of BSSE (see Table 3). The binding energies of H₂O-A, CH₃OH-A and C₂H₅OH-A are close, even it of CH₃OH-A is equal to C₂H₅OH-A. That demonstrates the hydrogen bonds of CH₃OH-A and C₂H₅OH-A...
are essentially the same. The binding energy values of \(\text{H}_2\text{O}-\text{A}, \text{CH}_3\text{OH}-\text{A}, \text{C}_2\text{H}_5\text{OH}-\text{A} \) and \(\text{CH}_3\text{O}-\text{A} \) are -44.38, -47.28, -47.28 and -31.84 \(\text{kJ mol}^{-1} \), respectively. This proves that \(\text{A} \) has good adsorption behaviors for these small molecules by hydrogen bond.

3.3 electronic transition and frontier molecular orbitals of hydrogen bond complexes

The electronic excitation energies and the oscillation strengths of the low-lying electronically excited states for the \(\text{A} \) and its hydrogen bond complexes were calculated using the TDDFT method and were presented in Table 4 for comparison. Zhao et al. has demonstrated for the first time that hydrogen bond strengthening can lower the excitation energy of a related excited state and therefore induce electronic spectral redshift, and that hydrogen bond weakening can increase the excitation energy of a related excited state and hence electronic spectral blueshift occurs [24]. According to the above rules, we predicted the excited-state hydrogen bond strengthening or weakening behavior by monitoring changes in the excitation energy. It is obvious that the electronic excitation energy of \(\text{CH}_3\text{OH}-\text{A} \) and \(\text{CH}_3\text{O}-\text{A} \) could induce a redshift compared with \(\text{A} \). This indicates that hydrogen bonds are strengthened for the excited states. However, blueshift of excitation energy occurs to other complexes. That is to say, the increase of the energy levels of the excited states induced by hydrogen bonding would be weaker than those of the ground state.

Table 4 Calculated electronic excitation energies (eV) and corresponding oscillator strengths (in parentheses) of the low-lying electronically excited states for \(\text{A}, \text{H}_2\text{O}-\text{A}, \text{CH}_3\text{OH}-\text{A}, \text{C}_2\text{H}_5\text{OH}-\text{A} \) and \(\text{CH}_3\text{O}-\text{A} \). The orbital transition contributions for the singlet electronic excited states are also listed (R: redshift, B: blueshift, H: HOMO, L: LUMO).

<table>
<thead>
<tr>
<th></th>
<th>(\text{A})</th>
<th>(\text{H}_2\text{O}-\text{A})</th>
<th>(\text{CH}_3\text{OH}-\text{A})</th>
<th>(\text{C}_2\text{H}_5\text{OH}-\text{A})</th>
<th>(\text{CH}_3\text{O}-\text{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3.609(0.965E-3)</td>
<td>3.629(0.432E-3)B</td>
<td>3.577(0.537E-3)R</td>
<td>3.659(0.873E-3)B</td>
<td>3.469(0.715E-3)R</td>
</tr>
<tr>
<td></td>
<td>H→L, 99.8%</td>
<td>H→L, 99.8%</td>
<td>H→L, 94.6%</td>
<td>H→L, 99.8%</td>
<td>H→L, 99.1%</td>
</tr>
<tr>
<td>S2</td>
<td>3.695(0.124E-2)</td>
<td>3.746(0.500E-2)B</td>
<td>3.618(0.243E-3)R</td>
<td>3.744(0.862E-3)B</td>
<td>3.561(0.166E-2)R</td>
</tr>
<tr>
<td>S3</td>
<td>3.742(0.513E-2)</td>
<td>3.762(0.487E-2)B</td>
<td>3.709(0.986E-3)R</td>
<td>3.769(0.441E-2)B</td>
<td>3.674(0.968E-3)R</td>
</tr>
<tr>
<td>S4</td>
<td>3.767(0.442E-2)</td>
<td>3.784(0.990E-3)B</td>
<td>3.739(0.299E-2)R</td>
<td>3.851(0.370E-4)B</td>
<td>3.728(0.772E-3)R</td>
</tr>
<tr>
<td>S5</td>
<td>3.824(0.119E-2)</td>
<td>3.885(0.118E-2)B</td>
<td>3.743(0.307E-2)R</td>
<td>3.853(0.301E-3)B</td>
<td>3.775(0.148E-2)R</td>
</tr>
<tr>
<td>S6</td>
<td>3.850(0.297E-3)</td>
<td>3.897(0.158E-3)B</td>
<td>3.776(0.244E-2)R</td>
<td>3.881(0.568E-2)B</td>
<td>3.786(0.444E-2)R</td>
</tr>
</tbody>
</table>

The oscillator strength of \(\text{A} \) in the \(S_3 \) state is the largest among the low-lying excited
states and it is different in H$_2$O-A, CH$_3$OH-A, C$_2$H$_5$OH-A and CH$_3$O-A, namely S_2, S_3, S_5, S_6, respectively. Kasha’s rule states that photon emission occurs in appreciable yields only from the lowest excited state of a given multiplicity. Because the radiationless transition from the S_n ($n>1$) state to the S1 state is ultrafast, we just discuss the properties of A and its hydrogen bond complexes in the S1 state here. It is obvious that the contribution to S_1 is from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), so we have studied charge transfer using frontier molecular orbitals (FMOs) and the electronic configurations (see in Figure 3).

Figure 2: Geometric structures of the hydrogen bond complexes, (a) H$_2$O-A, (b) CH$_3$OH-A, (c) C$_2$H$_5$OH-A, (d) CH$_3$O-A and the hydrogen bonds illustration (S: strong hydrogen bond, W: weak hydrogen bond)

Figure 3(a) shows the FMOs of A, the electron densities of HOMO are localized on a carboxyl moiety and the electron densities of LUMO are localized on a L moiety. The corresponding electronic configurations can further evidence that HOMO and LUMO are mainly composed of n orbitals of O atoms and π^* orbitals of C atoms, respectively. It is
evident that the S_i state has $n-\pi^*$ character. We can find out that the origin of luminescence is dominated by the direct organic ligands excitation. The FMOs of $\text{H}_2\text{O}-\text{A}$ and $\text{C}_2\text{H}_5\text{OH}-\text{A}$ are displayed in Figure 3(b) and 3(d), respectively. The HOMO and LUMO of are also mostly composed of n orbitals of O atoms onto the carboxyl and π^* orbitals of C atoms onto the benzene ring. We have already conjectured that the hydrogen bonding would be weakened in the corresponding electronic excited state. So the electron densities of L will be increased in the S_i state, this can facilitate the intermolecular electron transfer (ET) in the S_i states and result in the fluorescence quenching. Figure 3(c) shows the HOMO of $\text{CH}_2\text{OH}-\text{A}$ is mainly composed of n orbitals of O atoms onto carboxyl and CH_3OH, and the LUMO of $\text{CH}_2\text{OH}-\text{A}$
Figure 3: Calculated frontier molecular orbitals (FMOs) and the corresponding electronic configurations of (a) A, (b) H$_2$O-A, (c) CH$_3$OH-A, (d) C$_2$H$_5$OH-A and (e) CH$_3$O-A.

is mostly constituted by π^* orbitals of C atoms onto the benzene ring. The hydrogen bonding of H$_2$O-A would be strengthened in the corresponding electronic excited state. The electron densities of L will be decreased in the S$_1$ state, and the distance between the O atoms and L increases the path length of the ET. Both above will result in ET weakening. So the fluorescence will be enhanced. However, the FMOs of CH$_3$O-A displayed in Figure 3(e) have some difference from any one of them above. Although the HOMO is still mostly composed of n orbitals of O atoms onto the carboxyl, the LUMO is mainly constituted by π^* orbitals of C and O atoms onto the CH$_3$O. The electron densities of LUMO are localized on the CH$_3$O moiety. The origin of luminescence has been changed into being dominated by the guest-induced luminescence. So the luminescent functional MOFs will be a chemical sensor for detecting formaldehyde.

4. Conclusion

In this work, DFT and TDDFT method are employed to investigate the adsorption behaviors and the luminescence property of the representative fragment A of Zn$_3$(BTC)$_2$(DMF)$_3$(H$_2$O)•(DMF)(H$_2$O). The result of the tests of different functional and base sets illustrates that PBE function and TZVP basis sets are good for simulating A. The BSSE corrected binding energies of the hydrogen bond complexes (H$_2$O-A, CH$_3$OH-A, C$_2$H$_5$OH-A and CH$_3$O-A) prove that A shows good adsorption behaviors for these small molecules by hydrogen bonds. The FMOs and the corresponding electronic configurations of A obviously
show that the origin of luminescence is dominated by the direct organic ligands excitation. The electronic excitation energies of CH$_3$OH-A and H$_2$O-A are blueshift compared with A, so the hydrogen bonds of them are weaker than those of the ground state. Fluorescence quenching will occur for the facilitating intermolecular ET in the Si states. On the contrary, the electronic excitation energies of CH$_3$OH-A and CH$_2$O-A are redshift compared with A, so the hydrogen bonds of them are strengthened for the excited states. The intermolecular ET of CH$_3$OH-A is weakened in the Si states will result in fluorescence enhancement. However, the electron densities of LUMO of CH$_2$O-A are localized on the CH$_2$O moiety. The origin of the MOFs luminescence is changed into dominating by the guest-induced luminescence. As a result, the functional MOFs have good adsorption behaviors and excellent luminescence property. Furthermore, small molecules can be adsorbed and change the luminescence property, especially CH$_2$O changes its origin of luminescence. So it will be a probe for detecting small molecules. Particularly, the MOFs will be used to detect formaldehyde in environment.

Acknowledgments

Support of this work by the National Natural Science Foundation of China (Grants 21036006, 21137001) and the Dalian Scientific Program (No. 2011A15GX023) is gratefully acknowledged.

References

