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Abstract. We develop an elementary proof of the change of variables formula in multi-
ple integrals. Our proof is based on an induction argument. Assuming the formula for
(m−1)-integrals, we define the integral over hypersurface in R

m, establish the diver-
gent theorem and then use the divergent theorem to prove the formula for m-integrals.
In addition to its simplicity, an advantage of our approach is that it yields the Brouwer
Fixed Point Theorem as a corollary.

AMS subject classifications: 26B15, 26B20

Key words: Change of variables, surface integral, divergent theorem, Cauchy-Binet formula.

1 Introduction

The change of variables formula for multiple integrals is a fundamental theorem in mul-
tivariable calculus. It can be stated as follows.

Theorem 1.1. Let D and Ω be bounded open domains in R
m with piece-wise C1-boundaries,

ϕ∈C1(Ω̄,Rm) such that ϕ : Ω→D is a C1-diffeomorphism. If f ∈C(D̄), then

∫

D
f (y)dy=

∫

Ω
f (ϕ(x))

∣

∣Jϕ(x)
∣

∣dx, (1.1)

where Jϕ(x)=detϕ′(x) is the Jacobian determinant of ϕ at x∈Ω.

The usual proofs of this theorem that one finds in advanced calculus textbooks in-
volves careful estimates of volumes of images of small cubes under the map ϕ and nu-
merous annoying details. Therefore several alternative proofs have appeared in recent
years. For example, in [5] P. Lax proved the following version of the formula.
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Theorem 1.2. Let ϕ : R
m →R

m be a C1-map such that ϕ(x)= x for |x|≥R, and f ∈C0(Rm).
Then

∫

Rm
f (y)dy=

∫

Rm
f (ϕ(x))Jϕ(x)dx.

The requirment that ϕ is an identity map outside a big ball is somewhat restricted.
This restriction was also removed by Lax in [6]. Then, Tayor [7] and Ivanov [4] presented
different proofs of the above result of Lax [5] using differential forms. See also Báez-
Duarte [1] for a proof of a variant of Theorem 1.1 which does not require that ϕ : Ω→D
is a diffeomorphism. As pointed out by Taylor [7, Page 380], because the proof relies on
integration of differential forms over manifolds and Stokes’ theorem, it requires that one
knows the change of variables formula as formulated in our Theorem 1.1.

In this paper, we will present a simple elementary proof of Theorem 1.1. Our ap-
proach does not involve the language of differential forms. The idea is motivated by
Excerise 15 of §1-7 in the famous textbook on classical differential geometry [3] by do
Carmo. The excerise deals with the two dimensional case m = 2. We will perform an
induction argument to generize the result to the higher dimensional case m≥ 2. In our
argument, we will apply the Cauchy-Binet formula about the determinant of the product
of two matrics. As a byproduct of our approach, we will also obtain the Non-Retraction
Lemma (see Corollary 3.2), which implies the Brouwer Fixed Point Theorem.

2 Integral over hypersurface

We will prove Theorem 1.1 by an induction argument. The case m= 1 is easily proved
in single variable calculus. Suppose we have proven Theorem 1.1 for (m−1)-dimension,
where m≥2. We will define the integral over a hypersurface (of codimension one) in R

m

and establish the divergent theorem in R
m. Then, in the next two sections we will use the

divergent theorem to prove Theorem 1.1 for m-dimension.

Let U be a Jordan measurable bounded closed domain in R
m−1, x :U→R

m,

(u1,. . .,um−1) 7→ (x1,. . .,xm)

be a C1-map such that the restriction of x in the interior U◦ is injective, and

rank

(

∂xi

∂uj

)

=m−1, (2.1)

then we say that x :U→R
m is a C1-parametrized surface. By definition, two C1-parametr-

ized surfaces x : U →R
m and x̃ : Ũ →R

m are equivalent if there is a C1-diffeomorphism
φ :Ũ→U such that x̃=x◦φ. The equivalent class [x] is called a hypersurface, and x :U→R

m

is called a parametrization of the hypersurface. Since it is easy to see that x(U)= x̃(Ũ) if
x and x̃ are equivalent, [x] can be identified as the subset S= x(U).
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Let S be a hypersurface with parametrization x :U→R
m. By (2.1), for u∈U,

N(u)=

(

∂(x2,. . .,xm)

∂(u1,. . .,um−1)
,. . .,(−1)m+1 ∂(x1,. . .,xm−1)

∂(u1,. . .,um−1)

)

6=0, (2.2)

where

∂(x1,. . ., x̂i,. . .,xm)

∂(u1,. . .,um−1)
=det





















∂u1 x1 ··· ∂um−1 x1

...
...

∂u1 xi−1 ··· ∂um−1 xi−1

∂u1 xi+1 ··· ∂um−1 xi+1

...
...

∂u1 xm ··· ∂um−1 xm





















.

It is well known that N(u) is a normal vector of S at x(u).
Now, we can define the surface integral of a continuous function f : S→R by

∫

S
f dσ=

∫

U
f (x(u))|N(u)|du. (2.3)

By the change of variables formular for (m−1)-integrals, it is not difficult to see that if
x̃ : Ũ→R

m is another parametrization of S, then

∫

U
f (x(u))|N(u)|du=

∫

Ũ
f (x̃(v))

∣

∣Ñ(v)
∣

∣dv,

where Ñ is defined similar to (2.2). Therefore, our surface integral is well defined.
If Σ=

⋃

ℓ
i=1Si, where Si=xi(Ui) are hypersurfaces such that xi(U

◦
i )∩xj(U

◦
j )=∅ for i 6= j,

then we call Σ a piece-wise C1-hypersurface and define the integral of f ∈C(Σ) by

∫

Σ
f dσ=

ℓ

∑
i=1

∫

Si

f dσ.

Theorem 2.1 (Divergent Theorem). Let D be bounded open domain in R
m with piece-wise

C1-boundary ∂D, F : D̄→R
m be a C1-vector field, n is the unit outer normal vector field on ∂D,

then
∫

D
divFdx=

∫

∂D
F ·ndσ.

Proof. Having defined the surface integral, the proof of the theorem is a standard appli-
cation of the Fubini Theorem. We include the details here for completeness.

We say that F = (F1,. . .,Fm) is of i-type if Fj = 0 for j 6= i. We also say that D is of i-
type, if there are a bounded closed domain U in R

m−1 with piece-wise C1-boundary and
ϕ±∈C1(U) such that

D=
{

x| ϕ−(x′)< xi
< ϕ+(x′), x′∈U◦

}

,
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where x′=(x1,. . .,xi−1,xi+1,. . .,xm).
Let F=(0,.. .,0,Fm) be an m-type vector field. Suppose D is of m-type with U and ϕ±

as above. Then ∂D consists of three parts:

Σ±=
{

x=(x′,ϕ±(x′))
∣

∣ x′∈U
}

and
Σ0=

{

x=(x′,xm)
∣

∣ ϕ−(x′)≤ xm ≤ ϕ+(x′), x′∈∂U
}

.

On Σ±, by (2.2) we have

N=(−1)m+1(−∂1 ϕ±,. . .,−∂m−1ϕ±,1).

Hence |N|=
√

1+|∇ϕ±|
2 and

n=±
1

√

1+|∇ϕ±|
2
(−∂1 ϕ±,. . .,−∂m−1ϕ±,1).

While on Σ0, n=(−−,0) and F ·n=0. Consequently, by (2.3) we obtain
∫

∂D
F ·ndσ=

∫

Σ+

F ·ndσ+
∫

Σ−

F ·ndσ+
∫

Σ0

F ·ndσ

=
∫

U
Fm(x′,ϕ+(x′))dx′−

∫

U
Fm(x′,ϕ−(x′))dx′

=
∫

U
dx′

∫ ϕ+(x′)

ϕ−(x′)
∂mFm(x′,t)dt=

∫

D
∂mFm(x)dx=

∫

D
divFdx.

In a similar maner we can show that the theorem is valid for i-type vector field on i-type
domain.

As in most calculus textbooks, we only prove the theorem for the case that D is simul-
taneously i-type for all i=1,.. . ,m. For a general C1-vector field F=

(

F1,. . .,Fm
)

on D̄, we
set Fi=(0,.. . ,Fi,. . .,0). Since F=F1+···+Fm, and Fi is i-type vector field on i-type domain
D, we deduce

∫

∂D
F ·ndσ=

m

∑
i=1

∫

∂D
Fi ·ndσ=

m

∑
i=1

∫

D
divFidx=

∫

D
divFdx.

3 Domains with singly parametrized boundary

In this section, we prove the m-dimensional change of variables formula (1.1) for the case
that ∂Ω can be singly parametrized, that is, there exists a C1-parametrized surface x:U→R

m

such that ∂Ω= x(U). For example, if Ω is a ball, then ∂Ω can be singly parametrized by
the well known parametrization.

In this case, we only need to require that the transformation ϕ maps ∂Ω to ∂D diffeo-
morphicly. We have the following theorem.
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Theorem 3.1. Let D and Ω be bounded open domains in R
m with C1-boundaries, ∂Ω can be

singly parametrized. Suppose ϕ : Ω̄→ D̄ is a C1-map so that ϕ maps ∂Ω to ∂D diffeomorphicly,
and f ∈C(D̄), then

∫

D
f (y)dy=±

∫

Ω
f (ϕ(x))Jϕ(x)dx. (3.1)

Here, the choice of the signs ± on the right hand side depends on whether ϕ preserve the orienta-
tion of the boundaries.

Proof. Since f ∈C(D̄), it can be continuously extended to R
m. Doing convolution with

the mollifiers {ηε}ε>0, which are functions ηε ∈C∞(Rm) such that

∫

Rm
ηε(y)dy=1, suppηε ⊂Bε(0),

we obtain a family of functions fε ∈C∞(Rm) such that as ε→0+,

sup
y∈D

| fε(y)− f (y)|→0, sup
x∈Ω

∣

∣ fε(ϕ(x))Jϕ(x)− f (ϕ(x))Jϕ(x)
∣

∣→0.

It is then easy to see that

∫

D
fε(y)dy→

∫

D
f (y)dy,

∫

Ω
fε(ϕ(x))Jϕ(x)dx→

∫

Ω
f (ϕ(x))Jϕ(x)dx.

Therefore, we only need to prove (3.1) for f ∈C∞(Rm). Using a similar approximating
argument we may also assume that ϕ∈C2(Ω̄,Rm).

Let C=(−a,a)×···×(−a,a) be a cube containing D̄, then define Q : D̄→R,

Q(y)=
∫ y1

−a
f (t,y2,. . .,ym)dt.

Then Q∈C1(D̄) and
∂Q

∂y1
= f in D.

Let x :U→R
m be a parametrization of ∂Ω. Since ϕ maps ∂Ω to ∂D diffeomorphicly, it

follows that y= ϕ◦x is a parametrization of ∂D. Then

N=

(

∂(y2,. . .,ym)

∂(u1,. . .,um−1)
,. . .,(−1)m+1 ∂(y1,. . .,ym−1)

∂(u1,. . .,um−1)

)

is a normal vector at y(u) on ∂D and

n=±N/|N|=(n1,. . .,nm) (3.2)
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is the unit outer normal vector at y(u) on ∂D. By the chain role we have







∂u1 y2 ··· ∂um−1y2

...
...

∂u1 ym ··· ∂um−1ym






=







∂x1 y2 ··· ∂xm y2

...
...

∂x1 ym ··· ∂xm ym













∂u1 x1 ··· ∂um−1 x1

...
...

∂u1 xm ··· ∂um−1 xm






.

Applying the Cauchy-Binet formular, we obtain from (3.2) that

±n1 |N|=
∂(y2,. . .,ym)

∂(u1,. . .,um−1)

=
m

∑
i=1

∂(y2,. . .,ym)

∂(x1,. . ., x̂i,. . .,xm)

∂(x1,. . ., x̂i,. . .,xm)

∂(u1,. . .,um−1)
=A·Ñ, (3.3)

where A=(A1,. . . Am), Ñ=
(

Ñ1,. . .,Ñm
)

, with

Ai=(−1)i+1 ∂(y2,. . .,ym)

∂(x1,. . ., x̂i,. . .,xm)
, Ñi =(−1)i+1 ∂(x1,. . ., x̂i,. . .,xm)

∂(u1,. . .,um−1)
.

Note that ñ=±Ñ/
∣

∣Ñ
∣

∣ is the unit outer normal vector at x(u) on ∂Ω. Moreover, Ai is
exactly the algebraic cofactor of ∂xi y1 in the Jacobian

Jϕ(x)=det







∂x1 y1 ··· ∂xm y1

...
...

∂x1 ym ··· ∂xm ym






.

Thus, since ϕ is of class C2, by the Hadamard identity [2, Page 14] we deduce

div A=
m

∑
i=1

∂Ai

∂xi
=0. (3.4)

Let Q̃=Q◦ϕ, then Q̃∈C1(Ω̄). Using (3.4) we obtain

div(Q̃A)=∇Q̃·A+Q̃div A=∇Q̃·A

=
m

∑
i=1

∂Q̃

∂xi
Ai=

m

∑
i=1

(

m

∑
j=1

∂Q

∂yj

∣

∣

∣

∣

ϕ(x)

∂yj

∂xi

)

Ai

=
m

∑
j=1

∂Q

∂yj

∣

∣

∣

∣

ϕ(x)

(

m

∑
i=1

∂yj

∂xi
Ai

)

=
m

∑
j=1

∂Q

∂yj

∣

∣

∣

∣

ϕ(x)

δ
j
1 Jϕ(x)

=
∂Q

∂y1

∣

∣

∣

∣

ϕ(x)

Jϕ(x)= f (ϕ(x))Jϕ(x).
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Applying Theorem 2.1 and using (3.3), we have

∫

D
f (y)dy=

∫

D

∂Q

∂y1
dy=

∫

∂D
Qn1dσ

=
∫

U
Q(y(u))n1(u)|N(u)|du

=±
∫

U
Q̃(x(u))

(

A(x(u))·Ñ(u)
)

du

=±
∫

U

(

Q̃(x(u))A(x(u))·ñ(u)
)∣

∣Ñ(u)
∣

∣du

=±
∫

∂Ω
Q̃A·ñdσ=±

∫

Ω
div(Q̃A)dx=±

∫

Ω
f (ϕ(x))Jϕ(x)dx.

Corollary 3.1. Under the assumption of Theorem 3.1, if Jϕ(x) does not change sign as x
varies in Ω, then

∫

D
f (y)dy=

∫

Ω
f (ϕ(x))

∣

∣Jϕ(x)
∣

∣dx.

Corollary 3.2. (Non-Retraction Lemma.) Let B be the unit closed ball in R
m, then there

does not exist C1-map T : B→R
m such that T(B)⊂∂B and T|∂B =1∂B.

Proof. The proof below is essentially a variant form of the argument in [1, Corollarys].
Suppose there is a C1-map T with the stated properties. Obviously T map ∂B to itself
diffeomorphicly. We define a continuous function f : B→R,

f (y)=

{

1−4|y|2 , if |y|≤ 1
2 ,

0, if 1
2 < |y|≤1.

Then f (T(x))=0 for all x∈B. By Theorem 3.1,

0<
∫

B
f (y)dy=±

∫

B
f (T(x))JT(x)dx=0,

a contradiction.

As is well known, the Brouwer Fixed Point Theorem is an easy consequence of Corol-
lary 3.2.

4 General domains

In this section, we prove Theorem 1.1 for the general case that ∂Ω may not be singly
parametrized. Let f±=max{± f ,0}, then f = f+− f−. Because f± are also continuous on
D̄, it follows that we only need to prove the result for nonnegative f . For simplicity, we
set

f̃ (x)= f (ϕ(x))
∣

∣Jϕ(x)
∣

∣.
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We want to prove
∫

D
f (y)dy=

∫

Ω
f̃ (x)dx.

For any ε>0, there exist disjoint balls Bi⊂Ω (i=1,.. . ,ℓ) such that

∫

Ω
f̃ (x)dx≤

ℓ

∑
i=1

∫

Bi

f̃ (x)dx+ε. (4.1)

Let Ui=ϕ(Bi), then ϕ:Bi→Ui is a C1-diffeomorphism. Since ∂Bi can be singly parametrized
and Jϕ is of constant sign in Ω, hence in Bi, by Corollary 3.1 we have

∫

Bi

f̃ (x)dx=
∫

Ui

f (y)dy. (4.2)

Because Ui∩Uj =∅ and

U=
ℓ
⋃

i=1

Ui⊂D,

from (4.1), (4.2), and noting that f ≥0, we deduce that

∫

Ω
f̃ (x)dx≤

ℓ

∑
i=1

∫

Ui

f (y)dy+ε=
∫

U
f (y)dy+ε≤

∫

D
f (y)dy+ε.

Let ε→0, we get
∫

Ω
f̃ (x)dx≤

∫

D
f (y)dy. (4.3)

Since ϕ:Ω→D is a diffeomorphism, switching the roles of f and f̃ in the above argument,
we obtain

∫

D
f (y)dy≤

∫

Ω
f̃ (x)dx. (4.4)

Now the conclusion of Theorem 1.1 follows from (4.3) and (4.4).
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