arrow
Volume 9, Issue 3
Natural Convection Cooling of an Array of Flush Mounted Discrete Heaters Inside a 3D Cavity

V. P. M. Senthil Nayaki, S. Saravanan, X. D. Niu & P. Kandaswamy

Adv. Appl. Math. Mech., 9 (2017), pp. 698-721.

Published online: 2018-05

Export citation
  • Abstract

An investigation of natural convective flow and heat transfer inside a three dimensional rectangular cavity containing an array of discrete heat sources is carried out. The array consists of a row and columnwise regular arrangement of identical square shaped isoflux discrete heaters and is flush mounted on a vertical wall of the cavity. A symmetrical isothermal sink condition is maintained by cooling the cavity uniformly from either the opposite wall or the side walls or the top and bottom walls. The other walls of the cavity are maintained adiabatic. A finite volume method based on the SIMPLE algorithm and the power law scheme is used to solve the conservation equations. The parametric study covers the influence of pertinent parameters such as the Rayleigh number, the Prandtl number, side aspect ratio of the cavity and cavity heater ratio. A detailed fluid flow and heat transfer characteristics for the three cases are reported in terms of isothermal and velocity vector plots and Nusselt numbers. In general, it is found that the overall heat transfer rate within the cavity for $Ra =10^7$ is maximum when the side aspect ratio of the cavity lies between 1.5 and 2. A more complex and peculiar flow pattern is observed in the presence of top and bottom cold walls which in turn introduces hot spots on the adiabatic walls. Their location and size are highly sensitive to the side aspect ratio of the cavity and hence offers more effective ways for passive heat removal.

  • AMS Subject Headings

76R05, 76D55, 76M12, 80A20

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAMM-9-698, author = {Senthil Nayaki , V. P. M.Saravanan , S.Niu , X. D. and Kandaswamy , P.}, title = {Natural Convection Cooling of an Array of Flush Mounted Discrete Heaters Inside a 3D Cavity}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2018}, volume = {9}, number = {3}, pages = {698--721}, abstract = {

An investigation of natural convective flow and heat transfer inside a three dimensional rectangular cavity containing an array of discrete heat sources is carried out. The array consists of a row and columnwise regular arrangement of identical square shaped isoflux discrete heaters and is flush mounted on a vertical wall of the cavity. A symmetrical isothermal sink condition is maintained by cooling the cavity uniformly from either the opposite wall or the side walls or the top and bottom walls. The other walls of the cavity are maintained adiabatic. A finite volume method based on the SIMPLE algorithm and the power law scheme is used to solve the conservation equations. The parametric study covers the influence of pertinent parameters such as the Rayleigh number, the Prandtl number, side aspect ratio of the cavity and cavity heater ratio. A detailed fluid flow and heat transfer characteristics for the three cases are reported in terms of isothermal and velocity vector plots and Nusselt numbers. In general, it is found that the overall heat transfer rate within the cavity for $Ra =10^7$ is maximum when the side aspect ratio of the cavity lies between 1.5 and 2. A more complex and peculiar flow pattern is observed in the presence of top and bottom cold walls which in turn introduces hot spots on the adiabatic walls. Their location and size are highly sensitive to the side aspect ratio of the cavity and hence offers more effective ways for passive heat removal.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2015.m1245}, url = {http://global-sci.org/intro/article_detail/aamm/12171.html} }
TY - JOUR T1 - Natural Convection Cooling of an Array of Flush Mounted Discrete Heaters Inside a 3D Cavity AU - Senthil Nayaki , V. P. M. AU - Saravanan , S. AU - Niu , X. D. AU - Kandaswamy , P. JO - Advances in Applied Mathematics and Mechanics VL - 3 SP - 698 EP - 721 PY - 2018 DA - 2018/05 SN - 9 DO - http://doi.org/10.4208/aamm.2015.m1245 UR - https://global-sci.org/intro/article_detail/aamm/12171.html KW - Natural convection, rectangular cavity, array heaters, heat removal, electronic equipment cooling. AB -

An investigation of natural convective flow and heat transfer inside a three dimensional rectangular cavity containing an array of discrete heat sources is carried out. The array consists of a row and columnwise regular arrangement of identical square shaped isoflux discrete heaters and is flush mounted on a vertical wall of the cavity. A symmetrical isothermal sink condition is maintained by cooling the cavity uniformly from either the opposite wall or the side walls or the top and bottom walls. The other walls of the cavity are maintained adiabatic. A finite volume method based on the SIMPLE algorithm and the power law scheme is used to solve the conservation equations. The parametric study covers the influence of pertinent parameters such as the Rayleigh number, the Prandtl number, side aspect ratio of the cavity and cavity heater ratio. A detailed fluid flow and heat transfer characteristics for the three cases are reported in terms of isothermal and velocity vector plots and Nusselt numbers. In general, it is found that the overall heat transfer rate within the cavity for $Ra =10^7$ is maximum when the side aspect ratio of the cavity lies between 1.5 and 2. A more complex and peculiar flow pattern is observed in the presence of top and bottom cold walls which in turn introduces hot spots on the adiabatic walls. Their location and size are highly sensitive to the side aspect ratio of the cavity and hence offers more effective ways for passive heat removal.

V. P. M. Senthil Nayaki, S. Saravanan, X. D. Niu & P. Kandaswamy. (2020). Natural Convection Cooling of an Array of Flush Mounted Discrete Heaters Inside a 3D Cavity. Advances in Applied Mathematics and Mechanics. 9 (3). 698-721. doi:10.4208/aamm.2015.m1245
Copy to clipboard
The citation has been copied to your clipboard