arrow
Volume 28, Issue 1
Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence

Ayhan Esi & Binod Chandra Tripathy

Anal. Theory Appl., 28 (2012), pp. 19-26.

Published online: 2012-03

Export citation
  • Abstract

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

  • Keywords

Strongly Cesàro summable sequence, modulus function, statistical convergence.

  • AMS Subject Headings

40A05, 40A35, 46A45

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-28-19, author = {}, title = {Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence}, journal = {Analysis in Theory and Applications}, year = {2012}, volume = {28}, number = {1}, pages = {19--26}, abstract = {

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2012.v28.n1.3}, url = {http://global-sci.org/intro/article_detail/ata/4537.html} }
TY - JOUR T1 - Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence JO - Analysis in Theory and Applications VL - 1 SP - 19 EP - 26 PY - 2012 DA - 2012/03 SN - 28 DO - http://doi.org/10.4208/ata.2012.v28.n1.3 UR - https://global-sci.org/intro/article_detail/ata/4537.html KW - Strongly Cesàro summable sequence, modulus function, statistical convergence. AB -

In this article we introduce the difference sequence spaces $W_0[ f, \Delta m]$, $W_1[ f ,\Delta m]$,$W_\infty[ f ,\Delta m]$ and $S[f,\Delta m]$, defined by a modulus function $f$. We obtain a relation between $W_1[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and $S[ f ,\Delta m]\cap l_\infty[ f ,\Delta m]$ and prove some inclusion results.

Ayhan Esi & Binod Chandra Tripathy. (1970). Some New Type of Difference Sequence Spaces Defined by Modulus Function and Statistical Convergence. Analysis in Theory and Applications. 28 (1). 19-26. doi:10.4208/ata.2012.v28.n1.3
Copy to clipboard
The citation has been copied to your clipboard