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Abstract. In this paper, we introduce matrix-valued multiresolution analysis and matrix-
valued wavelet packets. A procedure for the construction of the orthogonal matrix-valued
wavelet packets is presented. The properties of the matrix-valued wavelet packets are in-
vestigated. In particular, a new orthonormal basis of L?(R,C***) is obtained from the
matrix-valued wavelet packets.
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1 Introduction

Wavelet packets, due to their nice characteristics, have been applied to signal processing [1],
image compression [2], integral equations [3] and so on. Coifman and Meyer [4] firstly introduced
the concept of orthogonal wavelet packets. The introduction for biorthogonal wavelet packets
was attributable to Cohen and Daubechies [5]. Furthermore, Yang and Cheng [6] constructed
a-scale orthogonal multiwavelet packets which are more flexible in applications. Recently, the
multiwavelets have become the focus of active research both in theory and application, such as
signal processing [7], mainly because of their ability to offer properties like orthogonality and
symmetry simultaneously. The matrix-valued wavelets are a class of generalized multiwavelets.
Xia and Suter [8] introduced the concept of the matrix-valued wavelets and investigated its
construction. Moreover, they showed that multiwavelets can be generated from the component
functions of matrix-valued wavelets. However, the multiwavelets and matrix-valued wavelets
are different in the following sense. For example, prefiltering is usually required for discrete
multiwavelet transforms [9] but not necessary for discrete matrix-valued wavelet transforms. A
typical example of such matrix-valued signals is video images. Hence, studying the matrix-valued
wavelets is useful in representations of signals. It is necessary to extend the concept of orthogonal
wavelet packets to the case of orthogonal matrix-valued wavelets. Based on an observation in
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46 Orthogonal Matrix-Valued Wavelet Packets

[8] and some ideas from [5,6], we will give the definition for 3-scale orthogonal matrix-valued
wavelet packets and investigate the properties of the orthogonal matrix-valued wavelet packets
by using matrix theory and integral transform.

Throughout the paper, we use the following notations. Let R and C be sets of all real and
complex numbers, respectively. Z stands for all integers. Set s € Z, s > 2, and Zy = {z: z >
0, z € Z}. By I, and O, we denote the s x s identity matrix and zero matrix, respectively.

hii(t) hi2(t) -+ his(t)
pEen = gn = | M0 R0 e RO SR
hSl(t) h’52 (t) e hs s(t)

The signal space L?(R,C**?) is called a matrix-valued function space. Examples of matrix-
valued signals are video images where hy () is the pixel on the kth row and the Ith column at
time t.

For each h € L%(R,C5*®), ||h|| represents the norm of operator A as

1/2

= 3 / e (0Pt | (1)

k,1=1
which is the norm used in this paper for the matrix-valued function spaces L?(R, C**#).

For h € L*(R,C**%), its integration [ h(t)dt is defined as [; h(t)dt := ( [g hri(t) dt ) —;,
where A(t) is the matrix-valued functions (g, i(t) )3 ;—; to be defined below. The Fourier trans-
form of A(t) is defined by h(w) = Jg h(t) exp{—iwt} dt, weR.

For two matrix-valued functions i, T € L?(R, C**#), their symbol inner product is defined by
[R, Y] := [, h(t)Y(t)* dt. Here and afterwards, * means the transpose and the complex conjugate.

Definition 1.1. A sequence {/y(t)}rez C X C L?(R,C**®) is called an orthonormal set in X,
if it satisfies
[hk?hl]:&c,l]:sa k, leZ (2)

where dj,; is the Kronecker symbol, i.e., d;,; =1 as k = [ and J;,; = 0 otherwise.

Definition 1.2. A matrix-valued function A(t) € L*(R,C**®) is said to be orthonormal, if
{I(t — k) }rez is an orthonormal set.

Definition 1.3. A sequence of matrix-valued functions {A(t)}rez C X C L%(R,C5*?) is called
an orthonormal basis of X if it satisfies (2) and for any Y(¢) € X, there exists a unique matrix
sequence { Py }rez such that Y(t) = >, ., Pehe(t), t€R.

This paper is organized as follows. In Section 2, we briefly recall the concepts relevant to
the matrix-valued multiresolution analysis. In Section 3, we give our main result, and some
properties of the matrix-valued wavelet packets.

2 Matrix-valued multiresolution analysis and wavelets

We begin with the generic setting of a matrix-valued multiresolution analysis of L2(R,C5*®).
Let S (t) € L?(R,C**#) satisfy the following refinement equation:

S(t)=3-> A,S(3t—k), (3)

kEZ
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where {Ag}rez is a finitely supported sequence of s X s constant matrix.
Define a closed subspace V; C L?(R,C**¢) by

V; =closieg cixs)(S(37 - —k) : k€ Z), j €L (4)

Definition 2.1. We say that S(¢) in (3) generates a matrix-valued multiresolution analysis
{V;}jez of L*(R,C**®), if the sequence {V,};ecz defined by (4) satisfies:

(1). ---CcV_1CcVogCViC--;

(2). Njez Vi =1{O0}; Usez Vj is dense in L*(R, C***);

(3). A(:) € Vo=h(37-) € V;, Vj € Z;

(4). 3S(t) € Vg such that Si(t) := S(t — k), k € Z, form an orthonarmal basis for Vj.

A matrix-valued functions S(¢) in (3) is said to be a matrix-valued scaling function if it
generates a matrix-valued multiresolution analysis. Equation (3) is called a refinement equation.
Set A(w) = > ez Ak - exp{—ikw}, w € R. Then, the frequency form of (3) is

S(w) = Aw/3)S(w/3), weR. (5)

In the following, without loss of generality we assume §(w) is continuous at the origin and
S(0) = L.

Let Uj;, j € Z be the orthocomplement space of V; in V; ;. Assume there exist two matrix-
valued functions Wi (t), Wa(t) € L*(R,C**%), such that their translates and dilates form a Riesz
basis of Uy, i.e.,

U; = clospzgcexey)(Wo(3) - —k):0=1,2, keZ), jeL (6)

Since W1 (t), Wa(t) € Uy C V1, there exist two finitely supported sequences of s X s matrix
{B,(:)}kez, © = 1,2 such that W,(t) =3),, B,(;)S (3t — k). Taking Fourier transform for (6)

gives

W,(w) =BD(w/3)S(w/3), 1=1,2, weER, (7)
where
BY(w) =" By-exp{-ikw}, 1=1,2. (8)
keZ

We call S(¢t) € L?(R,C***) an orthonormal matrix-valued scaling function if it is a scaling
function and satisfies
[S(-), S(-—n)] =do,n1s, neZ. 9)

We say that W1 (t), Wa(t) € L2(R, C5*®) are two orthonormal matrix-valued wavelet functions
associated with an orthonormal matrix-valued scaling functions if it satisfies

[S(), Wo,(-—n)] =0, 1=1,2, nez; (10)
[(W,(-), W,(- =n)] =&, ,00,n1s, 2, 7€ {1,2}, n € Z. (11)

Lemma 2.1. Let A(t) € L*(R,C***%). Then h(t) is orthonormal if and only if

Zﬁ(w + 2km)h(w + 2km)* = I,. (12)
keZ
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Proof If A(t) is an orthonormal matrix-valued functions, then we get from (2) that

0o, ,s = [h(),h(-— k)] =5 /h * . exp{ikw}dw
T

Z A(w + 2m)h(w + 20m)* - expfikw}tdw,
lez

which implies that (12) holds. The converse is obvious. W
By Lemma 2.1 and (5), (7), (9)-(11), we can obtain the following lemma.

Lemma 2.2. ([8]) Let S(t) € L*(R,C%*%) be an orthonormal matriz-valued scaling function.

Assume Wi (t), Wa(t) € L*(R,C***) are orthogonal matriz-valued wavelet functions associated
with S(t). Then we have

Alw) A(w)* + Alwr) A(wr)* + A(wa) A(w2)* =1, weR, (13)
A(w) B (w)* 4+ A(w1) BY (w1)* + A(wa) BY(wp)* =0, 1=1,2, weR, (14)
B (w )B"’( )"+ BW(w1) BY (w1)" + B (w2) BY (wo)* = 6,15, 1, 7€ {1,2}, (15)

where w1 = w + 27/3 and we = w + 47/3.

We now present matrix-valued Meyer wavelets as a special family of the matrix-valued
wavelets. For more about scalar-valued Meyer wavelets, see [10]. Let

2
Isa |W| < _ﬂ-’
S(w) = 3 2 4
S(w) =19 cos [gf (%) lw| — 1] INw), ?ﬂ- <|w| < §7 (16)
0, otherwise,

where I'(w) is paraunitary and I'(27/3) = I'(—2n/3) = I, and f(¢) is a scalar-valued smooth
function such that

1, t>1,

f(t){ 0 £ <0 and f(t)+ f(1—¢)=1, forte (0,1).

Then, after some computation, for w € R, we get that >, _, S S(w + 2k7)S(w + 2k7)* =

By Lemma 2.1, S(¢) is an orthonormal matrix-valued scaling function. This implies that S(t)
defined by (16) is a matrix-valued scaling function. Similar to the scalar-valued Meyer wavelets
([10, p. 138]), the corresponding lowpass filter A(w) is A(w) = >,z S(2(w + 2k)).

By using paraunitary vector filter theory [11], we can obtain two filter functions B (w) and
B@)(w) satisfying (14) and (15). Let Wl(u}) = B™(w/3)S(w/3), + = 1,2. Then, Wi(t) and
Wa(t) are two matrix-valued Meyer wavelets [8].

3 Orthogonal matrix-valued wavelet packets

Xia and Suter [8] introduced the notion of matrix-valued wavelets and investigated their con-
struction. In this section, we will give the definition of the matrix-valued wavelet packets and
discuss some of their properties. First, we set

To(t) =S(t), W,(0)=w,(t); V=4, QY=B"Y =12 kez
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Definition 3.1. The collection of the matrix-valued functions { 3,42 (t), n = 0,1,--- X =
0,1,2} is called a matrix-valued wavelet packet with respect to the orthogonal matrix-valued
scaling function S(t), where

() =35 QY @, (3t—k), A=0,1,2. (17)
kEZ

By implementing the Fourier transform for both sides of (17), we have

Uy, (W) = QN (W/3) W, (w/3), A=0,1,2, (18)
where
QM (w) = Z Q,(C)‘) -exp{—ikw}, A=0,1,2, weR. (19)
kEZ

Thus, Q) (w) = A(w), 2V (w) = BY(w), +=1,2. Formulas (13)-(15) can be written as

2 *
2 2
Y oW (w + %) Q® (w + %) =6yl A pef{0,1,2), weR (20

o=0
It is evident that (20) is equivalent to
L 1
ST ol @) = SOnubi il A p=0,1,2 kleZ (21)
oEL
In the following, we will investigate the properties of the matrix-valued wavelet packets.

Theorem 3.1. If {¥,(t)} is a matriz-valued wavelet packets with respect to the orthogonal
matriz-valued scaling function S(t), then for every n € Z,., we have

[‘Pn(*])aq’n(*k)] = j,kIsa j;kEZ- (22)

Proof (Induction) (i) The result (22) follows from (9) as n = 0. (ii) Assume that (22)
holds when 0 < n < 3%, where £ is a positive integer. Then, as 34 < n < 3%t we have
3571 < [n/3] < 3% where [p] = max{v € Z, v < p}. Thus, order n = 3[n/3] +\, A =0,1,2. By
the induction assumption and Lemma 2.1, we obtain

[‘I’[%]( -7, ‘I’[%]( — k’)] = 0,1kl <= Z‘/I}[%](w + 2[71')‘/1\’[%](&) + 2[71')* =1;. (23)

lEZ
It follows from (18), (20) and (23) that
N W (w + 27) Uy (w + 2 )
lEZ
729()\) w + 2w & w + 2w & w + 2w *Q()‘) w20\ "
1€z
2 *
729(/\) w+ 2om i w+207r+2mr‘/1}n w+207r+2 Q™ w+ 2o
3 (5] 3 (5] 3 3
o=0 KEZL
2 *
_ ZQ(/\) <w+ 207r) Q™ (w + 2J7r> _1
3 3
o=0

Therefore, by Lemma 2.1, the result (22) follows. MW
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Theorem 3.2. If {¥,(t)} is a matriz-valued wavelet packets with respect to the orthogonal
matriz-valued scaling function S(t), then for every n € Z,., we have

[¥3,402() s angu(- — k)] =0x 400,k Ls, A pe{0,1,2}, keZ (24)

Proof By (18) and (21) and Theorem 3.1, we obtain

(Wona() s Bl = k)] = 5 [ 00 (3) @ (5) B (3) 00 (5) e

3 3 3
1o w * W *
= — = (W) (2. ;
o ( ){Z\I/ ( +217r) \Iln<3+217r) }n (3) exp{ikw}dw
27 2 *
2 2
- ZQ(/\) (w + 7ra> Q) (%) exp{ikw}dw
1 2m
= % (5,\#15 . exp{ikw} dw = 5)\’#(507]@15.
0

This completes the proof of this theorem. |

Theorem 3.3. For any m, n € Z4 and k € Z, we have

[‘I”m() ) ‘Iln( - k)] = 5m,n 5O,kIs~ (25)

Proof For m = n, (25) follows by Theorem 3.1. Without loss of generality, we suppose m > n
in case of m # n. Rewrite m, n as m = 3[m/3] + A1, n = 3/[n/3] + p1, where A1, u1 € {0, 1, 2}.

Case 1. If [m/3] = [n/3], then A; # py1. By (18), (20) and (23),
(W () W ()] = o [ 00 (5) gz (5) ¥
3

21 R 3

o

= 2/ QM) (w { Z Uiny(w+ 2Um) ¥ (2](w + 2Im)" } QW (W)* - exp{3ikw} dw
lezZ

2 2
= / Z Q) <w + ﬂ) Qi) (w + %) -exp{3ikw} dw

3 ,_
= o ), Oxi, i ls - exp{3ikw} dw = O,

3
w3

] (%)* Q) (%)* -exp{ikw} dw

which implies that (25) holds in this case.

Case 2. 1f [2] # [2], then set [m/3] = 3{[m/3]/3] + Na, [1/3] = 3([0/31/3] + pa, o, iz €
{0,1,2}. If [ [m/3]/3] = [[n/3]/3], then (25) can be established similar to Case 1. If [[m/3]/3] #
[[n/3]/3], then we again set [[m/3]/3] = 3[[[m/3]/3]/3] + As, [[n/3]/3] = 3[[[n/3]/3]/3] +
i3, Az, 13 € {0,1,2}. Thus, after taking finite times steps (denoted by x), we obtain

ax,=b, =1, or a,=b, =2, (26)

where
K K

—— ——
aw=[[-[m/2]---]/2], b.=[["[n/2]---]/2].
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axr=1,b,=0, or a,=2,b,=1, or a,=2,b,=0, M\, ps€{0,1,2}. (27)

For the case (26), the result (25) follows similarly to Case 1. For the case (27), we have from
(10) and (11) that

> W, (w2 ¥, (wt2r) =0, weR

Consequently,
(W (), Ol — k)] = % / B, (w) U (w)" - exp{ikw} dw
“ o [00(2) Bl (2) Bl (2)” 00 (2) explibatdo =
o [T (2) 9 (2) 8 (2) (190 (2) ) ot

3tle K

- % 01_[=IQ(>\0) (;_0) <%Z:‘TJGN <3i" + 2l7r) U, (;—H + Qlﬂ)*>

0

o=1
3*tln K

_ % 0 01;[19@,) (;_0) .0- <Uljlgwa> (;’_U) ) -exp{ikw} dw = O.

Therefore, for any m, n € Z; and k € Z, (25) holds. MW

Lemma 3.1. If {¥,(t), n =0,1,2,---} is a matriz-valued wavelet packets with respect to the
orthonormal matriz-valued scaling functions S(t), then for every n € Z+, we have

L (3t —k ZZ Ql(ca)3l V' Wsyo(t—1), keEZ. (28)
o=0 leZ

Proof Observe

ZZ QI(CJSI ) Wanio(t —1) = Z P 31 *ZQ n(3t =31 —7)
€z

oc=0 l€Z o=0 JEL
2
= Z Z Z(Qgi)sl)* 055131‘1’ 3t—m Z {Z Z k 31 5::)31} v, (3t —m)
o=0 IEZ mEZ meZ o=0 l€Z
=3 Okl On(3t —m) = ¥, (3t — k).
meZ

This completes the proof of Lemma 3.1. ||

We shall discuss the orthogonal decomposition relation for L?(R, C**#). Let

Y} = closp2(r, coxs) (¥n(3 - —k): k€Z), n€Zy, jeL (29)
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Theorem 3.4. Let n € Z, and @ denote orthogonal direct sum. We have
fn =YY RYT st (30)

Proof According to (17) and (29), Y?” @Y?"H G}Y?”'|r2 C Y7, ;. On the other hand, Y?”,

Y?"H and Y?"H are orthogonal to each other by Theorem 3.2. By Lemma 3.1, we have

2
. 1 o) \a : .
W, (3t — k) = 3 SN O (3t 1), j, k€2,
o=01eZ

Hence, the basis of the space Y7 ; can be linearly represented by the basis of the space Y?”,
Y3+ and Y3"*2. Then, we have Y7, C Y3 @ Y"1 @ Y?"*. This implies that (30) holds
foreveryneZ,,jez. 1

Corollary 3.1. For every j > 1 and 1 < k < j, we have

U =LY @Y By

Moreover,

R,C*) =P U;=---PU.PU.PUEPY;. (32)
k=3

JEZL

Finally, the family of matrix-valued functions
(U39 — k), ,(-—k): j=---,-2,-1,0;, n=3,4,---, k€ Z}

is an orthogonal basis of L%(R, C***).
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