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Abstract. In this paper, we study the semi-discrete mortar upwind finite volume element
method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.
It is proved that the semi-discrete mortar upwind finite volume element approximations
derived are convergent in the H

1- and L
2-norms.
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1 Introduction

The mortar element method was first introduced by Bernardi, Maday and Patera in [2]. From
then on, this method as a special nonconforming domain decomposition technique has aroused
many researchers’ attention because different types of discretizations can be employed in different
parts of the computational domain. We refer to [2-5, 9, 10, 12, 18, 22] and the cited references
there for details.

In the mortar element method, the computational domain is first decomposed into a polygonal
partition. The meshes on different subdomains need not match across subdomain interfaces. The
basic idea of this method is to replace the strong continuity condition on the interfaces between
different subdomains by the so-called mortar condition. This condition guarantees the optimal
discretization schemes, that is, the global discretization error is bounded by the sum of the
optimal errors on different subdomains.

The finite volume element methods, also called the generalized difference methods in China,
are popular in computational fluid mechanics due to their conservation properties of the original
problems. In the past several decades, professors Li Ronghua et al. have systematically studied
the finite volume element methods and obtained many important results. Interested readers are
referred to the monographs [14, 15] for the general presentation of the finite volume element
methods, and to [1, 6, 7, 11, 13, 16, 17, 19, 20, 23] and the references therein for details.
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Recently, Ewing, Lazarov, Lin and Lin [9] have considered mortar finite volume element
approximations of the second-order self-adjoint elliptic problems. The discretization is based on
the Petrov-Galerkin method with a solution space of continuous piecewise linear functions over
each subdomain and a test space of piecewise constant functions. Bi and Li [3] have studied the
mortar finite volume element method based on the mortar Crouzeix-Raviart finite element space
and developed optimal order error estimates in the H1- and L2-norms.

In this paper, we construct and analyze the semi-discrete mortar upwind finite volume element
method with the Crouzeix-Raviart element for parabolic convection diffusion problems. We use
the mortar finite volume element method to discretize the diffusion term, and mortar upwind
difference schemes to discretize the convection term, and establish error estimates in the H1-
and L2-norms.

The remainder of this paper is organized as follows. In Section 2 we describe the parabolic
convection diffusion problems, give the triangulation Th of the computational domain Ω and
the dual partition T ∗

h of Th. Section 3 presents the semi-discrete mortar upwind finite volume
element method for the parabolic convection diffusion problems. In Section 4, we get the error
estimates in H1- and L2-norms.

In this paper, the notation of Sobolev spaces and associated norms and semi-norms are the
same as those in Ciarlet [8], and C denotes the positive constant independent of the mesh
parameter and the number of the subdomians, and may be different at different occurrences.

2 Notation and preliminaries

Consider the following parabolic convection diffusion problem on a bounded polygonal domain
Ω ⊂ R2 : 





ut −∇ · (A(x)∇u) + ∇ · (b(x)u) = f, x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω.
(1)

We assume that A = (aij(x))
2
i,j=1 is a symmetric and uniformly positive definite matrix in Ω,

aij ∈ W 1,∞(Ω), 1 ≤ i, j ≤ 2, b(x) ∈ (W 1,∞(Ω))2. In this paper, in order to get the existence and
uniqueness of the approximation solution in Section 3, we further assume that ∇ · b ≥ 0.

In this paper, we consider a geometrically conforming version of the mortar upwind finite
volume element method, i.e., Ω is divided into non-overlapping polygonal subdomains Ωi, Ω =
∪N

i=1Ωi, with Ωi ∩ Ωj being an empty set or a vertex or an edge for i 6= j.

Each subdomain Ωi is triangulated to produce a regular mesh T i
h with the mesh parameter hi,

where hi is the largest diameter of the elements in T i
h . The triangulations of subdomains generally

do not align at the subdomain interfaces. Let Γij denote the open straight line segment which is
common to Ωi and Ωj and let Γ denote the union of all interfaces between the subdomains, i.e.,

Γ = ∪∂Ωi\∂Ω. We assume that the endpoints of each interface in Γ are vertices of T i
h and T j

h .
Let Th denote the global mesh ∪iT

i
h with h = max

1≤i≤N
hi.

Since the triangulations on two adjacent subdomains are independent, the interface Γij =
Ωi∩Ωj is provided with two different and independent 1-D meshes, which are denoted by T i

h(Γij)

and T j
h (Γij), respectively. We define one of the sides of Γij as a mortar one, the other as a non-

mortar one, denoted by γi and δj, respectively. Let ΩM(Γij) denote the mortar domain of Γij

and ΩNM(Γij) the non-mortar domain of Γij . Define uM
γi

and uNM
δj

to be the traces of u|ΩM(Γij )

and u|ΩNM(Γij )
on Γij , respectively. Define CR nodal points as the midpoints of the edges of
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elements in Th. The sets of CR nodal points belonging to Ωi, ∂Ωi, ∂Ω, γi and δj are denoted by

ΩCR
i,h , ∂ΩCR

i,h , ∂ΩCR
h , γCR

i and δCR
j , respectively.

In order to define the mortar Crouzeix-Raviart finite element space, we first define the finite
element functions locally and introduce the space

Ṽh(Ωi) = {v : v|K is linear for all K ∈ T i
h , v is continuous at

ΩCR
i,h \∂ΩCR

i,h and v = 0 at ∂ΩCR
i,h ∩ ∂ΩCR

h },

with ||v||1,h,Ωi
= (
∑

K∈T i
h
||v||2H1(K))

1/2 and |v|1,h,Ωi
= (
∑

K∈T i
h
|v|2H1(K))

1/2.

We can now introduce the global space Ṽh =
∏N

i=1 Ṽh(Ωi) with

the norm ||v||1,h =(
∑N

i=1 ||v||
2
1,h,Ωi

)1/2 and the semi-norm |v|1,h = (
∑N

i=1 |v|
2
1,h,Ωi

)1/2.

Let M(δj) be the subspace of the space L2(Γij):

M(δj) = {v : v ∈ L2(Γij), v is piecewise constant on T j
h (δj)}.

For each non-mortar side δj = Γij ∈ Γ,we define the L2 orthogonal projectionQδj : L2(Γij) →
M(δj) by

(Qδju, ψ)0,δj
= (u, ψ)0,δj

, ∀ψ ∈M(δj),

where (·, ·)0,δj
denotes the usual L2-inner product on the space L2(δj) and || · ||0,δj

is the induced
norm from the L2-inner product on the space L2(δj).

Similarly we can define M(γi) and Qγi . From the definitions of Qγi and Qδj , and the trace
theorem, we obtain the following result.

Lemma 2.1. Assume that s ∈ ∂Ωi is a side of Ωi (s may be a mortar or a nonmortar side).

For any ψ ∈ Ṽh(Ωi) and u ∈ H1(Ωi), we have

||ψ −Qsψ||0,s ≤ Ch
1
2

i |ψ|1,h,Ωi
, ||u−Qsu||0,s ≤ Ch

1
2

i |u|1,Ωi
.

We define the discrete space Vh:

Vh = {v ∈ Ṽh, Qδj (v|γi
) = Qδj (v|δj

), ∀γi = δj ∈ Γ}.

The condition on Γ is called the mortar condition. This mortar condition was constructed by
Marcinkowski in [18]. We note that the mortar condition is not only dependent on the degrees
of freedom on the interface but also on the degrees of freedom near the interface; see [18] for
details.

Next, we give a basis of Vh. Let {φ̃i|i = 1, · · · , Z̃} be the nodal basis of Ṽh. The basis of Vh

consists of the functions of the form

φi = φ̃i +
∑

δj∈Γ

Eδj
(φ̃i), (2)

where the operator Eδj
: Ṽh → Ṽh is defined by

Eδj
v(me) =

{
Qδj (vM

γi
− vNM

δj
)(me), me ∈ δCR

j ,

0, otherwise.

For any ṽ ∈ Ṽh, let

v = ṽ +
∑

δj∈Γ

Eδj
ṽ. (3)
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Figure 1: A box be corresponding to side e.

We can check that v ∈ Vh; see [22] for details.
It is easy to check that at all nodes which are in the interior of each non-mortar side δj ∈ Γ

the φi are equal to zero. Apart from φi corresponding to those nodes on the non-mortar side, it
is not difficult to check that these φi defined by (2) form a basis of Vh. Denote by Z the number

of nonzero φi. We now re-index {φ̃i|i = 1, · · · , Z̃} in such a way that every nonzero φi is in
{φi|i = 1, · · · , Z}; see [22] for details.

In order to construct the mortar upwind finite volume element method, for a given trian-
gulation Th, we build a dual mesh T ∗

h based upon Th whose elements are called the control
volumes.

Given a triangle K ∈ T i
h , we denote the set of its edges by E(K) and set Eh,i = ∪K∈T i

h
E(K).

Let Ein
h,i be the set of the interior sides of the triangulation T i

h . Let me denote the midpoint of
a side e, e ∈ E(K),K ∈ Th.

In each subdomain Ωi, we construct the dual partition of T i
h in the same way as in [3, 7].

Choose an interior point zK of K ∈ T i
h and connect it with line segments to the vertices of the

element K. Thus we partition K into three subtriangles, Ke, e ∈ E(K). With each side e ∈ Ein
h,i,

we construct a control volume be consisting of the two subtriangles which have e as a common
edge, (see Fig. 1). For each side e ⊂ γi or e ⊂ δj , the control volume consisting of the subtriangle

which has e as a side, is denoted by bγi
e or b

δj
e respectively, (see Fig. 2). Moreover, we also

associate a corresponding boundary control volume be with each side e ⊂ ∂Ω. Thus we finally
obtain a group of control volumes covering the domain Ω, which is called the dual partition T ∗

h

of the triangulation Th. For simplicity, we denote the control volume by be corresponding to the
side e.

We shall use the construction of the control volumes in which the point zK is the barycenter
of the element K. This type of control volumes can be introduced for any triangulation Th and
leads to relatively simple calculations.

The test space which is associated with the dual mesh T ∗
h is defined by

Uh = {v ∈ L2(Ω) : v|be
is constant for all be ∈ T ∗

h and v|∂Ω = 0}.

Let I∗h : Vh → Uh be the piecewise constant interpolation operator:

I∗hv =

N∑

i=1

∑

e∈Eh,i

v(me)ϕbe
(x), ∀v ∈ Vh,

where ϕbe
is the characteristic function of the control volume be.
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Figure 2: Non-matching meshes on the interface Γij .

3 Mortar upwind finite volume element method

In this section, we construct the mortar upwind finite volume element method and give some
lemmas which will be used in the convergence analysis.

We now write (1) into a weak form. Multiplying (1) by I∗hvh ∈ Uh, integrating it on Ω and
applying Green’s formula, we obtain

(ut, I
∗
hvh) + a(2)(u, I∗hvh) + a(1)(u, I∗hvh) = (f, I∗hvh), ∀vh ∈ Vh, (4)

where here and elsewhere (·, ·) denotes L2(Ω)-inner product. The bilinear forms are defined by

a(2)(u, I∗hvh) = −

N∑

i=1

∑

e∈Eh,i

vh(me)

∫

∂be

(A∇u) · nds, (5)

a(1)(u, I∗hvh) =

N∑

i=1

∑

e∈Eh,i

vh(me)

∫

∂be

(b · n)uds, (6)

where n is the unit outer normal of ∂be.
In this paper, we will use the semi-discrete mortar finite volume element method to deal with

the diffusion term and the mortar upwind schemes to the convection term.
For this purpose, we first introduce some notation which will be used in the mortar upwind

schemes. Set Λk = {l : ml is a neighboring CR node of mk}. For the adjoint sides ek and el,

let γkl = ∂bek
∩ ∂bel

. Define

βkl =

∫

γkl

b · nds,

where n denotes the unit outer normal direction of γkl (viewing γkl as a part of the boundary of
bek

). Then we can divide ∂bek
into a flow-in part and a flow-out part according to the sign of

βkl: {
(∂bek

)− = ∪{βkl≤0,l∈Λk}γkl, (Flow in);
(∂bek

)+ = ∪{βkl>0,l∈Λk}γkl, (Flow out).

The following facts are obvious:

βkl + βlk = 0, |βkl| ≤ C||b||∞|γkl|,

where ||b||∞ denotes the L∞-norm of b and |γkl| denotes the length of γkl.
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The semi-discrete mortar upwind finite volume element method is to find uh ∈ Vh such that

(uh,t, I
∗
hvh) + a

(2)
h (uh, I

∗
hvh) + a

(1)
h (uh, I

∗
hvh) = (f, I∗hvh), ∀vh ∈ Vh, t > 0,

uh(x, 0) = u0h(x), x ∈ Ω,
(7)

where

a
(2)
h (uh, I

∗
hvh) = −

N∑

i=1

∑

e∈Ein
h,i

vh(me)

∫

∂be

(A∇uh) · nds−

∑

γi=δj∈Γ



∑

e⊂γi

vh(me)

∫

∂be\γi

(A∇uh) · nds+
∑

e⊂δj

vh(me)

∫

∂be\δj

(A∇uh) · nds


 .

a
(1)
h (uh, I

∗
hvh) =

N∑

i=1

∑

ek∈Eh,i

vh(mek
)
∑

l∈Λk

{β+
kluh(mek

) − β−
kluh(mel

)}. (8)

where β+
kl = max(βkl, 0), β−

kl = max(−βkl, 0).
The function u0h is a certain approximation of u0(x) on Vh. In this paper, we choose u0h as

the interpolation function of u0(x) in Vh.
We note that, for the side e ⊂ γi or e ⊂ δj , the line integrals in the bilinear forms a(2)(·, ·)

in (5) and a(1)(·, ·) in (6) are defined on the whole boundary of be, while the line integral in

the bilinear form a
(2)
h (·, ·) and the upwind values in a

(1)
h (·, ·) are defined only on the part of the

boundary of be, i.e., ∂be\γi or ∂be\δj.
For the sake of the later analysis, we introduce for any vh, ωh ∈ Vh, the bilinear form

associated with the finite element method,

ã(2)(vh, ωh) =
∑

K∈Th

∫

K

A∇vh · ∇ωhdx. (9)

The following result is proved by Bi and Li in [3]:

|a(2)(vh, I
∗
hωh) − ã(2)(vh, ωh)| ≤ C

N∑

i=1

hi|v|1,h|ωh|1,h, ∀vh, ωh ∈ Vh. (10)

The Poincare inequality for the space Vh,

||v||0,Ω ≤ C|v|1,h, ∀v ∈ Vh, (11)

is proved in Lemma 3.7 in [3]. From the Poincare inequality, we know that the bilinear form
ã(2)(vh, vh), ∀vh ∈ Vh is positive definite. Then from (10) we see that there exist h0 > 0, α > 0
such that for 0 < h ≤ h0,

α||vh||
2
1,h ≤ a

(2)
h (vh, I

∗
hvh). ∀vh ∈ Vh. (12)

The following Lemma 3.1 was proved by Rui and Bi in [21].

Lemma 3.1. For any given vh ∈ Vh, we have that

a(1)(vh, I
∗
hvh) =

1

2

∑

γkl

(vh(mek
) − vh(mel

))2
∫

γkl

|b · n|ds

+
N∑

i=1

∑

e∈Eh,i

∫

be

(
1

2
∇ · b)vh(me)

2ds.



88 Mortar Upwind FVEM with Crouzeix-Raviart Element for Parabolic Convection Diffusion Problems

For the subsequent analysis, we define the following discrete norm on the space Vh,

|||vh|||
2
0 = (vh, I

∗
hvh), ∀vh ∈ Vh.

Lemma 3.2. There exist two constants C0, C1 independent of h such that

C0||vh||0,Ω ≤ |||vh|||0 ≤ C1||vh||0,Ω, ∀vh ∈ Vh. (13)

Proof Let K ∈ Th be an element with nodal points ei, ej and ek. Since the point zK ∈ K is
the barycenter of the element K, we obtain by simple calculations that

(vh, I
∗
hvh)0,K =

meas(K)

27
(vh(ei), vh(ej), vh(ek))




7 1 1
1 7 1
1 1 7








vh(ei)
vh(ej)
vh(ek)





=
meas(K)

27
(vh(ei), vh(ej), vh(ek))H




vh(ei)
vh(ej)
vh(ek)


 .

(14)

Since the triangulation T i
h is regular, a scaling argument show that there exists a constant C

independent of h and K ∈ T i
h such that

C−1||vh||
2
0,K ≤

∑

e∈E(K)

h2
Kv

2
h(me) ≤ C||vh||

2
0,K , ∀K ∈ Th. (15)

Note that the matrix H is symmetric and positive definite. Thus, combining (14) with (15)
yields the desired result (13). This completes the proof.

By simple calculations, we have, for any uh, vh ∈ Vh,

(uh, I
∗
hvh)0,K =

meas(K)

27
(uh(ei), uh(ej), uh(ek))




7 1 1
1 7 1
1 1 7








vh(ei)
vh(ej)
vh(ek)





=
meas(K)

27
(vh(ei), vh(ej), vh(ek))




7 1 1
1 7 1
1 1 7






uh(ei)
uh(ej)
uh(ek)




= (vh, I
∗
huh)0,K .

Then, summing over all elements of the triangulation Th, we get

(uh, I
∗
hvh) = (vh, I

∗
huh), ∀uh, vh ∈ Vh. (16)

From (15), we know that the norm ||I∗h · ||0 = (I∗h·, I
∗
h·)

1/2 on the space Vh is equivalent to the
usual L2 norm || · ||0 on the space Vh; that is, there exist two constants C0, C1 independent of h
such that

C0||vh||0 ≤ ||I∗hvh||0 ≤ C1||vh||0, ∀vh ∈ Vh. (17)

In the same way as for the finite element method, the semi-discrete mortar finite volume
element method (7) may be written as a system of ordinary differential equations. In fact, let
{φi, i = 1, · · · , Z} be the basis of Vh and let {ϕi, i = 1, · · · , Z} be the associated basis of Uh.

Writing uh(t) =
Z∑

i=1

µi(t)φi(x), u0h =
∑Z

i=1 βiφi, (7) then takes the form





M
du

dt
+ (K(2) +K(1))u = F,

u(0) = β,
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where the matrices and vectors is defined by

M = [mij ] = [(φi, ϕj)], K(2) = [k
(2)
ij ] = [a

(2)
h (φi, ϕi)],

K(1) = [k
(1)
ij ] = [a

(1)
h (φi, ϕi)], u = [µ1(t), · · · , µZ(t)]T ,

F = [(f, ϕ1), · · · , (f, ϕZ)]T , β = [β1, · · · , βZ ]T .

From Lemma 3.1 and (12), under the condition ∇·b ≥ 0, we know that the matrix K(2)+K(1)

is positive definite; from Lemma 3.2 and (16) we know that the matrix M is symmetric and
positive definite. The ordinary differential equation theory tells us the problem (7) has a unique
solution uh ∈ Vh for any f ∈ L2(Ω).

Taking vh = uh in (7), we have, by (16),

1

2

∂

∂t
|||uh|||

2
0 + a

(2)
h (uh, I

∗
huh) + a

(1)
h (uh, I

∗
huh) = (f, I∗huh). (18)

By virtue of (12) and Lemma 3.1, we obtain

∂

∂t
|||uh|||

2
0 + ||uh||

2
1,h ≤ ||I∗huh||0||f ||0 ≤ C||uh||0||f ||0 ≤ C(||uh||

2
0 + ||f ||20), (19)

where the equivalence of ||I∗huh||0 and ||uh||0 has been used.
Noting that |||uh|||0 and ||uh||0 are equivalent, viewing φ(t) = |||uh|||0 as an unknown func-

tion, integrating the above inequality, and by means of the Gronwall inequality, we have

||uh(t)||20 +

∫ t

0

||uh||
2
1,hdt ≤ C(||u0h||

2
0 +

∫ t

0

||f ||20dt), 0 ≤ t ≤ T. (20)

This means that the semi-discrete solution uh(t) is stable with respect to the initial value and
the right-hand side term f.

By a scaling argument, we can prove the following Lemma 3.3.

Lemma 3.3. There exists a constant C independent of h such that

C−1|v|21,h ≤

N∑

i=1

∑

K∈T i
h

∑

ek,el∈E(K)

(v(mek
) − v(mel

))2 ≤ C|v|21,h, ∀v ∈ Vh.

The following Lemma 3.4 is proved in [7]. We state it in a form that will be used in our
convergence proof.

Lemma 3.4. There exists a constant C independent of h such that, for every v ∈ L2(Ω) with
v|K ∈ H1(K) for every K ∈ Th,∫

∂K

v2ds ≤ C(h−1
K ||v||20,K + hK |v|21,K), ∀K ∈ Th.

Let ũI
i be a continuous piecewise linear function in Ωi equal to u in all vertices of T i

h . We

have ũI
i ∈ Ṽh(Ωi) and (see [8])

||u− ũI
i ||0,Ωi

+ hi|u− ũI
i |1,Ωi

≤ Ch2
i |u|2,Ωi

. (21)

The function ũI = (ũI
1, · · · , ũ

I
N) ∈ Ṽh may not satisfy the mortar condition across the interfaces.

From (3), we know that uI = ũI +
∑

δj∈Γ Eδj
ũI ∈ Vh.

The following interpolation error estimates are proved in [3].

|u− uI |1,h ≤ C

(
N∑

i=1

h2
i |u|

2
2,Ωi

) 1
2

; |u− uI |0,Ω ≤ C

(
N∑

i=1

h4
i |u|

2
2,Ωi

) 1
2

. (22)
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4 Error estimation

In this section, we establish the error estimate for the mortar upwind finite volume element
method. For this purpose, we split the error into two parts: u−uh = ρh +eh, where ρh = u−uI ,
eh = uI − uh.

As an auxiliary tool, we introduce the following bilinear form:

ā(1)(u, I∗hvh) =

N∑

i=1

∑

e∈Ein
h,i

vh(me)

∫

∂be

(b · n)uds

+
∑

γi=δj∈Γ




∑

e⊂γi

vh(me)

∫

∂be\γi

b · nuds+
∑

e⊂δj

vh(me)

∫

∂be\δj

b · nuds



 .

From (6) and the definition of ā(1)(u, I∗hvh), we obtain

a(1)(u, I∗hvh) = ā(1)(u, I∗hvh) +
∑

γi=δj∈Γ

(∫

γi

b · nuI∗hvhds+

∫

δj

b · nuI∗hvhds

)
. (23)

Lemma 4.1. For any u ∈ H1(Ω) and vh ∈ Vh, we have

|ā(1)(u, I∗hvh) − a
(1)
h (u, I∗hvh)| ≤ C

(
N∑

i=1

h2
i ||u||

2
2,Ωi

) 1
2

|vh|1,h. (24)

Proof We introduce the function H(x) = 0, x < 0; H(x) = 1, x ≥ 0, and rewrite the upwind
value as follows:

β+
klu(mek

) − β−
klu(mel

) = (H(βkl)u(mek
) + (1 −H(βkl))u(mel

))βkl

=

∫

γkl

b · n(H(βkl)u(mek
) + (1 −H(βkl))u(mel

))ds.

Since γkl = ∂bek
∩∂bel

, the integral along γkl in a
(1)
h (u, I∗hvh) appears twice with opposite normal

directions n. Writing two such terms together, we obtain

a
(1)
h (u, I∗hvh) =

1

2

N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

(vh(mek
) − vh(mel

))

×

∫

γkl

b · n(H(βkl)u(mek
) + (1 −H(βkl))u(mel

))ds.

Similarly, we have

ā(1)(u, I∗hvh) =
1

2

N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

(vh(mek
) − vh(mel

))

∫

γkl

b · nuds.

Set
E(1)(u, I∗hvh) = ā(1)(u, I∗hvh) − a

(1)
h (u, I∗hvh). (25)



Chunjia Bi 91

Thus,

E(1)(u, I∗hvh) =
1

2

N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

(vh(mek
) − vh(mel

))

×

∫

γkl

b · n{H(βkl)(u− u(mek
)) + (1 −H(βkl))(u − u(mel

))}ds.

It follows from the Cauchy-Schwarz inequality and Lemma 3.3 that

|E(1)(u, I∗hvh)|

≤

N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

|vh(mek
) − vh(mel

)|

∫

γkl

|b · n| (|u− u(mek
)| + |u− u(mel

)|) ds.

≤ C|vh|1,h




N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

(∫

γkl

|b · n|(|u − u(mek
)| + |u− u(mel

)|)ds

)2



1
2

≤ C|vh|1,h




N∑

i=1

∑

ek∈Eh,i

∑

l∈Λk

(∫

γkl

|b · n||u− u(mek
)|ds

)2

+

(∫

γkl

|b · n||u− u(mel
)|ds

)2
) 1

2

. (26)

From the Cauchy-Schwarz inequality and Lemma 3.4, we get

(∫

γkl

|b · n||u− u(mek
)|ds

)2

≤

∫

γkl

|b · n|2ds

∫

γkl

|u− u(mek
)|2ds

≤ Chi

(
h−1

i ||u − u(mek
)||20,K + hi|u|

2
1,K

)

≤ Ch2
i ||u||

2
2,K , (27)

where γkl ⊂ K and ||u − u(mek
)||0,K ≤ ||u− uI ||0,K + ||uI − I∗hu

I ||0,K ≤ ChK ||u||2,K .

From (26) and (27), we get the desired result (24). This completes the proof.

The following Lemma 4.2 will be used in our later convergence analysis.

Lemma 4.2. For u ∈ H2(Ω) ∩H1
0 (Ω), vh ∈ Vh, then there exists a constant independent of the

mesh parameter and the number of the subdomains such that

|I| =

∣∣∣∣∣∣

∑

γi=δj∈Γ

(∫

γi

(A∇u) · nI∗hvhds+

∫

δj

(A∇u) · nI∗hvhds

)∣∣∣∣∣∣

≤ C

(
N∑

i=1

h2
i ||u||

2
2,Ωi

) 1
2

|vh|1,h. (28)
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Proof From the triangle inequality we obtain

|I| ≤
∑

γi∈Γ

|

∫

γi

(A∇u) · n(I∗hvh|γi
− vh|γi

)ds| +
∑

δj∈Γ

|

∫

δj

(A∇u) · n(I∗hvh|δj
− vh|δj

)ds|

+
∑

δj∈Γ

|

∫

δj

(A∇u) · n(vh|γi
− vh|δj

)ds|

= R1 +R2 +R3. (29)

The estimation for R3 is given in the proof of Lemma 3.7 in [18]:

R3 ≤ C

(
N∑

i=1

h2
i ||u||

2
2,Ωi

) 1
2

|vh|1,h. (30)

Next, we estimate R1. From the definitions of the function I∗hvh|γi
, we have

∫

γi

(I∗hvh|γi
− vh|γi

)ds = 0, I∗hvh|γi
= Qγivh.

Based on this fact, by the Cauchy-Schwarz inequality and Lemma 2.1 we have

|

∫

γi

(A∇u) · n(I∗hvh|γi
− vh|γi

)ds|

= |

∫

γi

(A∇u · n−Qγi(A∇u · n))(Qγivh|γi
− vh|γi

)ds|

≤ Chi||u||2,Ωi
|vh|1,h,Ωi

. (31)

From the Cauchy-Schwarz inequality, we get

R1 ≤ C

(
N∑

i=1

h2
i ||u||

2
2,Ωi

) 1
2

|vh|1,h. (32)

A similar estimation also holds for R2. Then, the desired result (28) follows from (29), (30) and
(32).

From the proof of Lemma 4.2 we obtain the following result:
∣∣∣∣∣∣

∑

γi=δj∈Γ

(

∫

γi

b · nuI∗hvhds+

∫

δj

b · nuI∗hvhds)

∣∣∣∣∣∣
≤ C(

N∑

i=1

h2
i ||u||

2
2,Ωi

)
1
2 |vh|1,h. (33)

Now we introduce the linear functionals ηkl(u):

ηkl(u) = −

∫

γkl

A∇(uI − u) · nds, γkl = bek
∩ bel

, ek, el ∈ Eh,i. (34)

For ek, el ∈ Eh,i, since the restriction of uI to any edge γkl = bek
∩bel

is the standard interpolation
function, from Lemma 3.4 and the interpolation error estimates, we get the following lemma:

Lemma 4.3. If u ∈ H2(Ω), then there is a constant C independent of h such that for γkl ⊂
K,K ∈ Th,

|ηkl(u)| ≤ Ch||A||0,∞|u|2,K .
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Lemma 4.4. If u ∈ H2(Ω), then there exists a constant C independent of u and h such that

|a
(2)
h (u− uI , I∗hvh)| ≤ C

(
N∑

i=1

h2
i |u|

2
2,Ωi

)1/2

|vh|1,h, ∀vh ∈ Vh.

Proof From the definitions of the bilinear form ah(·, ·) and the linear functionals ηkl(u) we
obtain

a
(2)
h (u − uI , I∗hvh) = −

∑

K∈Th

∑

ek,el∈E(K)

vh(mek
)

∫

∂bek
∩∂bel

A∇(u − uI) · nds

=
1

2

∑

K∈Th

∑

ek,el∈E(K)

(ηkl(u)vh(mek
) + ηlk(u)vh(mel

))

=
1

2

∑

K∈Th

∑

ek,el∈E(K)

ηkl(u)(vh(mek
) − vh(mel

)). (35)

It then follows from the Cauchy-Schwarz inequality and from Lemmas 3.3 and 4.3 that

|a
(2)
h (u− uI , I∗hvh)| ≤ C




∑

K∈Th

∑

ek,el∈E(K)

η2
kl





1
2

·




∑

K∈Th

∑

ek,el∈E(K)

(vh(mek
) − vh(mel

))2





1
2

≤ C

(
N∑

i=1

h2
i |u|

2
2,Ωi

)1/2

|vh|1,h.

This completes the proof.

Theorem 4.1. Assume that u and uh are the solutions of (4) and (7), respectively. Then, there
exists a constant C independent of h and the number of the subdomains such that

||u− uh||
2
0 +

∫ t

0

||u− uh||
2
1,hds

≤ C

N∑

i=1

h2
i

(
||u||22,Ωi

+

∫ t

0

||u(s)||22,Ωi
ds+

∫ t

0

||ut(s)||
2
2,Ωi

ds

)
. (36)

Proof From (4), (7) and (23), we get

(
∂eh

∂t
, I∗hvh

)
+ a

(2)
h (eh, I

∗
hvh) + a

(1)
h (eh, I

∗
hvh)

= ((uI)t − ut, I
∗
hvh) − a

(2)
h (ρh, I

∗
hvh) + a

(1)
h (uI − u, I∗hvh) +

(
a
(1)
h (u, I∗hvh) − ā(1)(u, I∗hvh)

)

+
∑

γi=δj∈Γ

(∫

γi

(A∇u) · nI∗hvhds+

∫

δj

(A∇u) · nI∗hvhds

)

−
∑

γi=δj∈Γ

(∫

γi

(b · n)uI∗hvhds+

∫

δj

(b · n)uI∗hvhds

)

= J1 + J2 + J3 + J4 + J5 + J6. (37)
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Using the Cauchy-Schwarz inequality and the interpolation error estimate (22), we obtain

|J1| ≤ C

(
N∑

i=1

h4
i ||u||

2
2,Ω

) 1
2

||vh||0 ≤ C

(
N∑

i=1

h4
i ||u||

2
2,Ω

) 1
2

|vh|1,h, (38)

where the equivalence of ||I∗hvh||0 and ||vh||0 and the Poincare inequality are used.
By means of Lemma 4.4, we get the estimation for J2 :

|J2| ≤ C

(
N∑

i=1

h4
i ||u||

2
2,Ω

) 1
2

|vh|1,h. (39)

Next, we estimate J3. If ek, el ∈ Ein
h,i ∪ γi, (u − uI)(mek

) = 0, (u − uI)(mel
) = 0, then β+

kl(u −

uI)(mek
) − β−

kl(u− uI)(mel
) = 0. Therefore,

−J3 =
∑

δj∈Γ

∑

ek⊂δj

vh(mek
)
∑

l∈Λk

{β+
kl(u− uI)(mek

) − β−
kl(u− uI)(mel

)}. (40)

We know from the definition of the interpolation operator that, if ek ⊂ δj , (u − uI)(mek
) =

Eδj
ũI(mek

); l ∈ Λk, el ∈ Ein
h,j , (u−u

I)(mel
) = 0. Since γkl = ∂bek

∩∂bel
, the integral along γkl in

(40) appears twice with opposite normal directions n. Write such two terms together to obtain

−J3 =
1

2

∑

δj∈Γ

∑

ek⊂δj

∑

l∈Λk,el∈Ein
h,j

(vh(mek
) − vh(mel

))β+
kl(u− uI)(mek

)

=
1

2

∑

δj∈Γ

∑

ek⊂δj

∑

l∈Λk,el∈Ein
h,j

(vh(mek
) − vh(mel

))

∫

γkl

b · nH(βkl)(Eδj
ũI)(mek

)ds.

From the Cauchy-Schwarz inequality and Lemma 3.3 we have

|J3| ≤ C
∑

δj∈Γ

∑

ek⊂δj

∑

l∈Λk,el∈Ein
h,j

|vh(mek
) − vh(mel

)||Eδj
ũI(mek

)|hj

≤ C|vh|1,h



∑

δj∈Γ

∑

ek⊂δj

h2
j(Eδj

ũI(mek
))2




1
2

. (41)

Let Q
δj

e be the L2(e)-orthogonal projection operator onto the one-dimensional space of constant

functions on e. By the definition of Eδj
and Q

δj
e , we easily get

(Eδj
ũI(me))

2 = (Qδj

e ((ũI)M
γi

− (ũI)NM
δj

)(me))
2

= (
1

|e|

∫

e

((ũI)M
γi

− (ũI)NM
δj

)ds)2 ≤
1

|e|

∫

e

((ũI)M
γi

− (ũI)NM
δj

)2ds. (42)

It then follows from the triangle inequality, Lemma 3.4 and (22) that

∑

δj∈Γ

∑

ek⊂δj

h2
j(Eδj

ũI(mek
))2 ≤ C

∑

δj∈Γ

hj

∫

δj

((ũI)M
γi

− (ũI)NM
δj

)2ds

≤ C
∑

δj∈Γ

hj

(
||(ũI)M

γi
− u||20,δj

+ ||u− (ũI)NM
δj

||20,δj

)
≤ C

N∑

i=1

h4
i |u|

2
2,Ωi

. (43)
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Thus, by (40), (41) and (43), we obtain

|J3| ≤ C

(
N∑

i=1

h2
i |u|

2
2,Ωi

) 1
2

|vh|1,h. (44)

By means of (38), (39), (44), employing Lemma 4.1 to estimate J4, Lemma 4.2 to estimate J5

and (33) to estimate J6, taking vh = eh in (37), from (16), (12), Lemma 3.1 and the ε-inequality,
we obtain

∂

∂t
|||eh|||

2
0 + α0||eh||

2
1,h ≤ C

N∑

i=1

h2
i

(
||u||22,Ωi

+ ||ut||
2
2,Ωi

)
. (45)

Integrating the above inequality, and noting that e0h = 0 leads to

||eh||
2
0 +

∫ t

0

||eh(t)||21,hdt ≤ C

N∑

i=1

h2
i (

∫ t

0

||u(s)||22,Ωi
ds+

∫ t

0

||ut(s)||
2
2,Ωi

ds), (46)

where the equivalence |||eh|||0 and ||eh||0 has been used.
Combining (46) with the interpolation error estimate (22) yields the desired result (36).
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