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CONVERGENCE OF ONLINE GRADIENT

METHOD WITH A PENALTY

TERM FOR FEEDFORWARD NEURAL

NETWORKS WITH STOCHASTIC INPUTS∗
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Abstract Online gradient algorithm has been widely used as a learning algorithm

for feedforward neural network training. In this paper, we prove a weak convergence

theorem of an online gradient algorithm with a penalty term, assuming that the training

examples are input in a stochastic way. The monotonicity of the error function in the

iteration and the boundedness of the weight are both guaranteed. We also present a

numerical experiment to support our results.
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1 Introduction

Online gradient algorithm (OGM) is commonly used for feedforward neural network (FNN)

training [2,3,5,6]. The training is usually done by iteratively updating of the weights according

to the error signal, which is the negative gradient of a sum-square error function (SSE). However,

by using SSE as the error function sometimes the weight of the network becomes very large and

the generalization performance is poor, even though the network is trained until the error on

the training set is minimized. In order to resolve this problem, a popular choice is to add a

penalty term to the standard error function [1,4,8,9]. When the training samples are trained
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in a fixed order, the effect of the penalty term in controlling the magnitude of the weight is

investigated in [8,10]. However, the usual OGM chooses input ξi from the training samples

{ξi, Oi} in a stochastic order, which is important to help the training procedure to jump off from

local minima. In this paper we shall show that, when input sample ξi is chosen in a specially

stochastic order (cf.[7]), such an online gradient algorithm with a penalty term and stochastic

inputs (POGM-S) is weakly convergent. Besides, the monotonicity of the error function in the

training iteration and the boundedness of the weight are both guaranteed. We also present

a simulation example to illustrate our results established in the paper. Experimental results

indicate that, as well as being beneficial from controlling the magnitude of the weight, POGM-S

makes the generalization performance of the network greatly improved.

For simplicity, a two-layer FNN is considered with N input nodes and one single output

node. Assume that the transfer function σ : R → R is a pre-chosen sigmoid function, and denote

the weight by ω = (w1, · · · , wN )T . Suppose {ξi, Oi}J
i=1 is the given set of training examples.

Our error function with a penalty term has the form (cf.[8])

E(ω) =
1
2

J∑
i=1

(
Oi − σ(ω · ξi)

)2
+

λ

2

J∑
i=1

(ω · ξi)2 ≡
J∑

i=1

[fi(ω · ξi) +
λ

2
(ω · ξi)2], (1.1)

where λ > 0 is the coefficient of the penalty term. Then the gradient function is given by

∇E(ω) =
J∑

i=1

[f
′
i (ω · ξi) + λ(ω · ξi)]ξi. (1.2)

Now we introduce the POGM-S algorithm. Let {ξn1, ξn2, · · · , ξnJ} be a stochastic permutation

of {ξ1, ξ2, · · · , ξJ} in the n-th cycle of the training iteration. Starting from an initial value ω0,

we proceed to refine it iteratively by the following rule

ωnJ+i = ωnJ+i−1 + �n
i ωnJ+i−1, i = 1, 2, · · · , J ; n = 0, 1, · · · , (1.3a)

�n
i ωnJ+i−1 = −ηn[f

′
ni(ω

nJ+i−1 · ξni) + λ(ωnJ+i−1 · ξni)]ξni, (1.3b)

where ηn is the learning rate in the n-th training cycle. For an initial value η0 > 0, ηn changes

after each cycle of training iteration according to

1
ηn

=
1

ηn−1
+ β, n = 1, 2, · · ·, (1.4)

where β > 0 is a constant. The following assumption is imposed throughout the paper.

Assumption 1 There is C > 0 such that for any t ∈ R and 1 ≤ i ≤ J

|fi(t)| ≤ C, |f ′
i (t)| ≤ C, |f ′′

i (t)| ≤ C.



Convergence of Online Gradient Method with a Penalty Term for Feedforward Neural Networks · 89 ·

The rest of this paper is organized as follows. In Section 2 we present several preliminary

lemmas. A monotonicity theorem, a boundedness theorem and a convergence theorem are estab-

lished in Section 3. We also present an effective experiment in Section 4. We use ‖ · ‖ to stand

for the Euclidean norm over R
N , and C and Ci for genetic constants which may be different in

different places.

2 Preliminary lemmas

For simplicity, we denote

ri,n := �n
i ωnJ+i−1 −�n

i ωnJ , i = 1, 2, · · · , J ; n = 0, 1, 2, · · · , (2.1)

ωn
d := ω(n+1)J − ωnJ , n = 0, 1, 2, · · · . (2.2)

Proofs of the following two lemmas can be found in [7].

Lemma 1 Let {ηn}be given by (1.4), there hold the following estimates for any n =

1, 2, · · ·

(1) ηn−1 > ηn > 0;

(2) ηn <
ρ

n
, ρ =

1
β

;

(3) ηn >
τ

n
, where τ > 0 is some constant;

(4)
ηn+1

ηn
>

1
2
.

Lemma 2 Suppose that the series
∞∑

n=1

a2
n

n
< ∞, that an > 0 for n = 1, 2, · · · , and that

there exists a constant μ > 0 satisfying |an+1−an| <
μ

n
, n = 1, 2, · · · , then we have lim

n→∞ an = 0.

Lemma 3 If Assumption 1 holds, there is C > 0 such that

(1) ωnJ+i = ωnJ +
i∑

k=1

(�n
kωnJ + rk,n), i = 1, 2, · · · , J

(2)
J∑

i=1

‖ri,n‖ ≤ Cηn

J∑
i=1

‖�n
i ωnJ‖

(3) ‖ωn
d ‖ ≤ C

J∑
i=1

‖�n
i ωnJ‖

Proof Equation (1) can be directly derived from (1.3a) and (2.1). Particularly

ωn
d =

J∑
i=1

(�n
i ωnJ + ri,n). (2.3)
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A combination of (2.10 (1.3b), Assumption 1 and the mean value theorem gives

‖ri,n‖ ≤ ηn|f ′
ni(ω

nJ+i−1 · ξni) − f
′
ni(ω

nJ · ξni)|‖ξni‖ + ηnλ‖ωnJ+i−1 − ωnJ‖‖ξni‖2

≤ C1ηn‖f ′′
ni(ti,n)(ωnJ+i−1 − ωnJ) · ξni‖ + C1ηn‖ωnJ+i−1 − ωnJ‖

≤ C2ηn‖ωnJ+i−1 − ωnJ‖,

(2.4)

where ti,n ∈ R
N lies on the segment between ωnJ+i−1 · ξni and ωnJ · ξni. Using Lemma 3(1) and

Lemma 1(1) and proving by induction on ‖rk,n‖, we have

‖ri,n‖ ≤ C2ηn

(
i−1∑
k=1

‖�n
kωnJ‖ +

i−1∑
k=1

‖rk,n‖
)

≤ C3ηn

i−1∑
k=1

‖�n
kωnJ‖. (2.5)

This leads to (2)

J∑
i=1

‖ri,n‖ ≤ C3ηn

J∑
i=1

i−1∑
k=1

‖�n
kωnJ‖ ≤ Cηn

J∑
i=1

‖�n
i ωnJ‖. (2.6)

It follows from (2.3) (2.6) and Lemma 1(1) that

‖ωn
d ‖ ≤

J∑
i=1

‖�n
i ωnJ‖ +

J∑
i=1

‖ri,n‖ ≤ C1

J∑
i=1

‖�n
i ωnJ‖. (2.7)

Applying Cauchy-Schwartz Inequality leads to (3), we have

‖ωn
d ‖2 ≤

(
C1

J∑
i=1

‖�n
i ωnJ‖

)2

≤ C

J∑
i=1

‖�n
i ωnJ‖2. (2.8)

Lemma 4 Let Assumption 1 be satisfied and the sequence {ωnJ+k} be generated by the

algorithm (1.3), then there is a positive constant γ independent of n such that

E(ω(n+1)J) ≤ E(ωnJ ) − 1
ηn

∥∥ J∑
i=1

�n
i ωnJ

∥∥2 + γ

J∑
i=1

∥∥�n
i ωnJ

∥∥2
.

Proof Let {ξn1, ξn2, · · · , ξnJ} be a permutation of {ξ1, ξ2, · · · , ξJ} in the n-th cycle of

training iteration. Let ξ(n+1)i = ξnki (1 ≤ i ≤ J), where {k1, k2, · · · , kJ} is a stochastic permu-

tation of the subscription index set {1, 2, · · · , J}. From (1.3) we see that

J∑
i=1

�n
ki

ωnJ =
J∑

i=1

�n
i ωnJ . (2.9)
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Thus, using Taylor expansion and (1.1) (1.3b) (2.2) (2.3) (2.9) we obtain

E(ω(n+1)J ) =
J∑

i=1

[
f(n+1)i(ω(n+1)J · ξ(n+1)i) +

λ

2
(ω(n+1)J · ξ(n+1)i)2

]

=
J∑

i=1

[
fnki(ω

(n+1)J · ξnki) +
λ

2
(ω(n+1)J · ξnki)2

]

=
J∑

i=1

[
fnki(ω

nJ · ξnki) +
λ

2
(ωnJ · ξnki)2

]
+

J∑
i=1

[
f

′
nki

(ωnJ · ξnki)(ωn
d · ξnki)

+λ(ωnJ · ξnki)(ωn
d · ξnki)

]
+

1
2

J∑
i=1

[f
′′
nki

(t̃n,ki)(ω
n
d · ξnki)2 + λ(ωn

d · ξnki)2]

= E(ωnJ) − 1
ηn

J∑
i=1

�n
ki

ωnJ · ωn
d +

J∑
i=1

δn
ki,n

= E(ωnJ) − 1
ηn

∥∥ J∑
i=1

�n
i ωnJ

∥∥2 + δn
n ,

(2.10)

where t̃n,ki ∈ R is a vector between ω(n+1)J · ξnki and ωnJ · ξnki , i = 1, 2, · · · , J , and

δn
ki,n =

1
2
[f

′′
nki

(t̃n,ki)(ω
n
d · ξnki)2 + λ(ωn

d · ξnki)2],

δn
n = − 1

ηn
(

J∑
i=1

�n
i ωnJ) · (

J∑
i=1

ri,n) +
J∑

i=1

δn
ki,n.

It follows from Assumption 1 and (2.8) that

|δn
ki,n| ≤ C1‖ωn

d‖2 < C

J∑
i=1

‖Δn
i ωnJ‖2. (2.11)

A combination of (2.6) (2.11) and Cauchy-Schwartz Inequality produces

|δn
n | ≤

1
ηn

J∑
i=1

‖�n
i ωnJ‖ ·

J∑
i=1

‖ri,n‖ +
J∑

i=1

‖δn
ki,n‖ ≤ γ

J∑
i=1

‖�n
i ωnJ‖2. (2.12)

(2.10) together with (2.12) gives

E(ω(n+1)J) ≤ E(ωnJ ) − 1
ηn

∥∥ J∑
i=1

�n
i ωnJ

∥∥2
+ γ

J∑
i=1

∥∥�n
i ωnJ

∥∥2
. (2.13)

3 Main results

Now we first present the monotonicity theorem, of which the proof is similar to that in [7]

and omitted.

Theorem 5 (Monotonicity theorem) Let the error function E(ω) be given by (1.1) and

Assumption 1 be valid. For any initial value ω0 ∈ R
N , if the initial value η0 is chosen to satisfy

1
η0

∥∥ J∑
i=1

�0
i ω

0
∥∥2 ≥ γ

J∑
i=1

∥∥�0
i ω

0
∥∥2
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then, the sequence {E(ωkJ )} generated from the algorithm (1.3) decreases monotonically, namely

E(ω(n+1)J) ≤ E(ωnJ).

The next theorem confirms the boundedness of the weights in the training procedure.

Theorem 6 (Boundedness theorem) Under the same assumption of Theorem 5, the weight

sequence {ωk} generated by (1.3) is uniformly bounded.

Proof Note that {ξn1, ξn2, · · · , ξnJ} is the permutation of {ξ1, ξ2, · · · , ξJ} in the n-th

cycle of training iteration, there holds for any ω ∈ R

J∑
i=1

[fni(ω · ξni) +
λ

2
(ω · ξni)2] =

J∑
i=1

[fi(ω · ξi) +
λ

2
(ω · ξi)2], n = 0, 1, 2, · · · . (3.1)

According to Theorem 5, Assumption 1, and (1.1)(3.1) we have

E(ωnJ) ≤ E(ω0) =
J∑

i=1

[fi(ω0 · ξi) +
λ

2
(ω0 · ξi)2] ≤ M, (3.2)

where

M =
J∑

i=1

(
sup

1≤i≤J
fi(ω0 · ξi) +

λ

2
‖ω0‖2‖ξi‖2

)
.

From (1.1) (3.2) we get

λ(ωnJ · ξi)2 ≤ 2E(ωnJ) ≤ 2M, i = 1, 2, . . . , J. (3.3)

Combining (1.3) with (3.1) we have

ωnJ = ω0 +
n−1∑
k=0

J∑
i=1

{
−ηk[f

′
i (ω

kJ+i−1 · ξi) + λ(ωkJ+i−1 · ξi)]ξi
}

. (3.4)

Let A1 = span{ξ1, ξ2, · · · , ξJ} ⊂ R
n and A2 = A⊥

1 be the orthogonal complement space of A1.

Denote the second part of (3.4) by ωnJ
1 , obviously ωnJ

1 ∈ A1. We divide ω0 into ω0 = ω0
1 + ω0

2 ,

where ω0
1 ∈ A1 and ω0

2 ∈ A⊥
1 . Then ωnJ = (ω0

1 + ωnJ
i )

⊕
ω0

2 ≡ ω̃nJ
1

⊕
ω0

2 . Applying this to (3.3)

we have

|dk| := |ω̃nJ
1 · ξk| = |ωnJ · ξk| ≤

√
2M

λ
, k = 1, . . . , K. (3.5)

Suppose {ξi1 , ξi2 , . . . , ξiK} (ik ∈ {1, 2, · · · , J}, k = 1, 2, · · · , K) is a base of the space A1. There

are ak ∈ R(k = 1, 2, · · · , K) such that ω̃nJ
1 = a1ξ

i1 +· · ·+aKξiK . Then (a1ξ
i1 +· · ·+aKξiK )·ξik =

dk, k = 1, 2, · · · , K. The matrix form is⎛
⎜⎝

ξi1 · ξi1 · · · ξiK · ξi1

...
...

...
ξi1 · ξiK · · · ξiK · ξiK

⎞
⎟⎠
⎛
⎝ a1

...
aK

⎞
⎠ =

⎛
⎝ d1

...
dK

⎞
⎠ . (3.6)
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Because {ξi1 , . . . , ξiK} is a base, the coefficient determinant is not equal to zero, and the system

of the linear equations has a unique solution. Assume that the coefficient determinant equals to

D, then the solution is as follows

ak =

∣∣∣∣∣∣∣
ξi1 · ξi1 · · · ξik−1 · ξi1 d0 ξik+1 · ξi1 · · · ξiK · ξi1

...
...

...
...

...
...

...
ξi1 · ξiK · · · ξik−1 · ξiK dK ξik+1 · ξiK · · · ξiK · ξiK

∣∣∣∣∣∣∣ · D
−1.

Let the maximum absolute value of all the subdeterminant with rank (K-1) of the coefficient

determinant is D′, then |ak| ≤ |D′| · |D−1| ·
K∑

k=0

|dk|. By (3.5) we have |ak| ≤ |D′| · |D−1| · K ·√
2M

λ
, k = 1, 2, . . . , K. Denote M ′ = max

1≤k≤K
‖ξik‖, then

‖ω̃nJ
1 ‖ = ‖a1ξ

i1 + · · · + aKξiK‖ ≤ |D′| · |D−1| · M ′ · K2 ·
√

2M

λ
. (3.7)

So ωnJ = ω̃nJ
1

⊕
ω0

2 is also uniformly bounded. Similarly, we can show for i = 1, 2, . . . , J−1 that

{ωnJ+i}∞n=0 are uniformly bounded. In all, the weight sequence {ωk}∞k=0 is uniformly bounded.

Theorem 7 (Weak convergence theorem) Under the same assumptions of Theorem 5, we

have

lim
k→∞

‖∇E(ωk)‖ = 0.

Proof According to (2.13) we obtain

E(ω(n+1)J) ≤ · · · ≤ E(ωJ) −
n∑

k=1

(
1
ηk

‖
J∑

i=1

�k
i ωkJ‖2 − γ

J∑
i=1

‖�k
i ωkJ‖2

)
. (3.8)

Since E(ω(n+1)J) ≥ 0, let n → ∞ we get

∞∑
n=1

(
1
ηn

‖
J∑

i=1

�n
i ωnJ‖2 − γ

J∑
i=1

‖�n
i ωnJ‖2

)
≤ E(ωJ ) < ∞. (3.9)

A combination of (1.3), Assumption 1, Theorem 5 and Lemma 1 (2) gives

‖�n
i ωnJ‖ ≤ ηn

∣∣f ′
ni(ω

nJ · ξni) + λ(ωnJ · ξni)
∣∣‖ξni‖ ≤ C1ηn <

ρC1

n
. (3.10)

Thus
∞∑

n=1

(
γ

J∑
i=1

‖�n
i ωnJ‖2

)
≤ γρ2JC2

1

∞∑
n=1

1
n2

< ∞. (3.11)

It follows from (1.2) (1.3) (3.9) (3.11) and Lemma 1(3) that

∞∑
n=1

1
n

∥∥∇E(ωnJ)
∥∥2

<
1
τ

∞∑
n=1

1
ηn

∥∥ J∑
i=1

�n
i ωnJ

∥∥2
< ∞. (3.12)
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Let ∇2E(ω) =
{

∂2E

∂ωi∂ωj

}
1≤i,j≤N

be the Hessian matrix of E(ω). Then by (2.7) (3.10) and

Assumption 1, there is C1 > 0 such that

‖∇2E(ω)‖ < C1, ‖ωn
d‖ <

C1

n
. (3.13)

Again using Taylor expansion and noting (3.13) we have

∣∣‖∇E(ω(n+1)J)‖ − ‖∇E(ωnJ)‖∣∣
≤ ∥∥∇E(ω(n+1)J ) −∇E(ωnJ)

∥∥
≤ ∥∥∇E(ω(n+1)J ) −∇E(ωnJ) −∇2E(ωnJ )ωn

d

∥∥+
∥∥∇2E(ωnJ )ωn

d

∥∥
≤ (o(‖ωn

d ‖) + C1‖ωn
d‖
)

< C2‖ωn
d ‖ < C

n .

(3.14)

By (3.12) (3.14) and Lemma 2, we conclude

lim
n→∞ ‖∇E(ωnJ)‖ = 0. (3.15)

Similarly as (3.14), we have

‖∇E(ωnJ+i) −∇E(ωnJ )‖ <
C

n
, i = 1, 2, · · · , J. (3.16)

Thus, (3.15) together with (3.16) gives

‖∇E(ωnJ+i)‖ ≤ ‖∇E(ωnJ)‖ + ‖∇E(ωnJ+i) −∇E(ωnJ )‖

< ‖∇E(ωnJ)‖ + C
n → 0 (n → ∞), i = 1, 2, · · · , J.

(3.17)

A combination of (3.17) (3.15) and Lemma 2 leads to the conclusion:

lim
k→∞

‖∇E(ωk)‖ = 0,

which completes the proof.

Fig. 1 Square error and norm of gradient with penalty term
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Fig.2 Norm of weight compared with no penalty term

4 Numerical experiments

To illustrate the capacity of the learning algorithm used in this paper, a pattern classification

problem is considered. The training examples are

{ξ1 = (−1, 1), O1 = 1} {ξ2 = (1,−1), O2 = 0}

{ξ3 = (−3, 2), O3 = 1} {ξ4 = (2,−3), O4 = 0}

From Fig. 1, we can see that the square error decreases monotonically and the corresponding

gradient tends to zero. The effectiveness of the algorithm in controlling the weight is shown in

Fig. 2. Without the penalty term, the weight becomes larger and larger during the training

iteration. After adding the penalty term, the magnitude of the weight becomes smaller and

smaller, and finally tends to keep steady. Table.1 shows that the larger the coefficient λ is, the

smaller the weight becomes. Hence, our approach provides a mechanism to effectively control

the magnitude of the weights, which might be important for the neural networks.

Table.1 Effect of the coefficient λ on square error and weight

η = 0.9 Square error ‖w‖

λ = 0 0.003096 5.894
λ = 0.001 0.03249 2.487
λ = 0.002 0.05718 1.785
λ = 0.003 0.07897 1.389
λ = 0.004 0.09887 1.12
λ = 0.005 0.1174 0.9252
λ = 0.006 0.1347 0.7803
λ = 0.007 0.1511 0.6702
λ = 0.008 0.1666 0.5851
λ = 0.009 0.1814 0.5183
λ = 0.01 0.1955 0.4651

η = 0.5 Square error ‖w‖

λ = 0 0.005837 4.924
λ = 0.001 0.03222 2.583
λ = 0.002 0.05607 1.931
λ = 0.003 0.07666 1.565
λ = 0.004 0.09512 1.31
λ = 0.005 0.112 1.117
λ = 0.006 0.1276 0.9645
λ = 0.007 0.1422 0.8417
λ = 0.008 0.1559 0.7415
λ = 0.009 0.1688 0.6591
λ = 0.01 0.181 0.5907
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