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Abstract. For a Banach space E, we give sufficient conditions for the Grothendieck
property of ⊗̂n,s,πE, the symmetric projective tensor product of E. Moreover, if E∗ has
the bounded compact approximation property, then these sufficient conditions are also
necessary.
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1 Results

Recall that a Banach space is said to have the Grothendieck property (GP in short) if every
weak∗ convergent sequence in its dual is weakly convergent (see, e.g., [6, 10]). González
and Gutiérrez in [8] showed that if n> 2 then ⊗̂n,s,πE, the symmetric projective tensor
product of a Banach space E, has GP if and only if ⊗̂n,s,πE is reflexive. In this short
paper, we show that for any n > 1, if E has GP and every scalar-valued continuous n-
homogeneous polynomial on E is weakly continuous on bounded sets, then ⊗̂n,s,πE has
GP. Moreover, if E∗ has the bounded compact approximation property, then these suffi-
cient conditions for ⊗̂n,s,πE having GP are also necessary.

Let E and F be Banach spaces over R or C and let n be a positive integer. A map
P : E → F is said to be an n-homogeneous polynomial if there is a symmetric n-linear
operator T from E×···×E (a product of n copies of E) into F such that P(x)=T(x,. . .,x).
Indeed, the symmetric n-linear operator TP : E×···×E→ F associated to P can be given
by the Polarization Formula:

TP(x1,. . .,xn)=
1

2nn! ∑
ǫi=±1

ǫ1 ···ǫnP
( n

∑
i=1

ǫixi

)
, ∀ x1,. . .,xn ∈E.
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Let P(nE;F) denote the space of all continuous n-homogeneous polynomials from E
into F with its norm

‖P‖=sup{‖P(x)‖ : x∈E,‖x‖61},

and let Pw(nE;F) denote the subspace of all P in P(nE;F) that are weakly continuous on
bounded sets. In particular, if F=R or C, then P(nE;F) and Pw(nE;F) are simply denoted
by P(nE) and Pw(nE) respectively.

Let ⊗nE denote the n-fold algebraic tensor product of E. For x1⊗···⊗xn ∈⊗nE, let x1⊗s

···⊗s xn denote its symmetrization, that is,

x1⊗s ···⊗s xn =
1

n! ∑
σ∈π(n)

xσ(1)⊗···⊗xσ(n),

where π(n) is the group of permutations of {1,.. . ,n}. Let ⊗n,sE denote the n-fold symmet-
ric algebraic tensor product of E, that is, the linear span of {x1⊗s ···⊗s xn : x1,. . .,xn ∈E} in
⊗nE. It is known that each u∈⊗n,sE has a representation u=∑

m
k=1λkxk⊗···⊗xk where

λ1,. . .,λm are scalars and x1,. . .,xm are vectors in E. Let ⊗̂n,s,πE denote the n-fold symmetric
projective tensor product of E, that is, the completion of ⊗n,sE under the symmetric projective
tensor norm on ⊗n,sE defined by

‖u‖= inf

{
m

∑
k=1

|λk|·‖xk‖
n : xk ∈E,u=

m

∑
k=1

λkxk⊗···⊗xk

}
, u∈⊗n,sE.

For each n-homogeneous polynomial P : E→F, let AP :⊗n,sE→F denote its lineariza-
tion, that is,

AP(x⊗···⊗x)=P(x), ∀ x∈E.

Then under the isometry: P→AP,

P(nE;F)=L(⊗̂n,s,πE;F),

where L(⊗̂n,s,πE;F) is the space of all continuous linear operators from ⊗̂n,s,πE to F. In
particular,

P(nE)=(⊗̂n,s,πE)∗,

where (⊗̂n,s,πE)∗ is the topological dual of ⊗̂n,s,πE.
For the basic knowledge about homogeneous polynomials and symmetric projective

tensor products, we refer to [7, 12, 13].
For a Banach space E, let E∗ denote its dual and E∗∗ denote its second dual. For

every P∈P(nE), let P̃∈P(nE∗∗) denote the Aron-Berner extension of P (see, e.g., [1, 5]).
To obtain ⊗̂n,s,πE having GP, we first need the following lemma, which is a special case
of [9, Corollary 5].

Lemma 1.1. ([9]) Let Pk,P∈Pw(nE) for each k∈N. Then limk Pk=P weakly in Pw(nE) if and
only if limk P̃k(z)= P̃(z) for every z∈E∗∗.
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Now we give sufficient conditions to ensure that ⊗̂n,s,πE has GP.

Theorem 1.1. If E has GP and P(nE)=Pw(nE), then ⊗̂n,s,πE has GP.

Proof. Take Pk,P∈P(nE)=(⊗̂n,s,πE)∗ for each k∈N such that limk Pk=P weak∗ in P(nE).
Then limk Pk(x) = P(x) for every x ∈ E. Let TPk

denote the symmetric n-linear operator
associated to Pk. By the Polarization Formula, for every x1,. . .,xn ∈E,

lim
k

TPk
(x1,. . .,xn)=TP(x1,. . .,xn). (1.1)

For every fixed x2,. . .,xn ∈E, define φk(x)=TP̃k
(x,x2,. . .,xn) and φ(x)=TP̃(x,x2,. . .,xn) for

every x ∈ E, respectively. Then φk,φ ∈ E∗, and 〈φk,z1〉= TP̃k
(z1,x2,. . .,xn) and 〈φ,z1〉=

TP̃(z1,x2,. . .,xn) for every z1 ∈E∗∗. By (1), limk φk =φ weak∗ in E∗ and hence, limk φk =φ
weakly in E∗. Thus, for every z1∈E∗∗ and every x2,. . .,xn ∈E,

lim
k

TP̃k
(z1,x2,. . .,xn)=TP̃(z1,x2,. . .,xn).

Using the induction, we can show that for every z1,z2,. . .,zn ∈E∗∗,

lim
k

TP̃k
(z1,z2,. . .,zn)=TP̃(z1,z2,. . .,zn).

In particular, limk P̃k(z)= P̃(z) for every z∈E∗∗. It follows from Lemma 1 that limk Pk=P
weakly in Pw(nE)=P(nE), and hence ⊗̂n,s,πE has GP.

To ensure that the sufficient conditions for GP of ⊗̂n,s,πE in Theorem 1.1 are also nec-
essary, we need the bounded compact approximation property. Recall that a Banach
space E is said to have the bounded compact approximation property (BCAP in short) (see,
e.g., [4, p. 308]), if there exists λ>1 so that for every compact subset C of E and for every
ε>0, there is a compact operator T :E→E such that ‖T‖6λ and ‖T(x)−x‖6ε for all x∈C.
It is well known that the bounded approximation property implies the bounded compact
approximation property, but the converse is not true (see, e.g., [14] or [4, p. 309]).

Theorem 1.2. If E∗ has the BCAP, then ⊗̂n,s,πE has GP if and only if E has GP and Pw(nE)=
P(nE).

Proof. Suppose that ⊗̂n,s,πE has GP. By [2, Theorem 3], E is a complemented subspace
of ⊗̂n,s,πE and hence, E has GP. It is known that every dual Banach space is weak∗

sequentially complete (see, e.g., [11, p. 230, Corollary 2.6.21]). This fact yields that
P(nE) = (⊗̂n,s,πE)∗ is weakly sequentially complete and hence, Pw(nE) also is weakly
sequentially complete. It follows from [3, Theorem 3.5] that Pw(nE)=P(nE).

It is worth while to mention here that González and Gutiérrez in [8] showed that if
n>2 then ⊗̂n,s,πE has GP if and only if ⊗̂n,s,πE is reflexive. Thus Theorem 1.1 yields the
following corollary.

Corollary 1.1. If E has GP and P(nE)=Pw(nE) for some n>2, then ⊗̂n,s,πE is reflexive. In
particular, E is reflexive.
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