Grothendieck Property for the Symmetric Projective Tensor Product

Yongjin Li^{1} and Qingying $\mathrm{Bu}^{2, *}$
${ }^{1}$ Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China,
${ }^{2}$ Department of Mathematics, University of Mississippi, Mississippi 38677, USA.

Received February 29, 2016; Accepted March 2, 2016

Abstract

For a Banach space E, we give sufficient conditions for the Grothendieck property of $\hat{\otimes}_{n, s, \pi} E$, the symmetric projective tensor product of E. Moreover, if E^{*} has the bounded compact approximation property, then these sufficient conditions are also necessary.

AMS subject classifications: 46G25, 46B28, 46H60
Key words: Grothendieck property, homogeneous polynimial, projective tensor product.

1 Results

Recall that a Banach space is said to have the Grothendieck property (GP in short) if every weak* convergent sequence in its dual is weakly convergent (see, e.g., [6,10]). González and Gutiérrez in [8] showed that if $n \geqslant 2$ then $\hat{\otimes}_{n, s, \pi} E$, the symmetric projective tensor product of a Banach space E, has GP if and only if $\hat{\otimes}_{n, s, \pi} E$ is reflexive. In this short paper, we show that for any $n \geqslant 1$, if E has GP and every scalar-valued continuous n homogeneous polynomial on E is weakly continuous on bounded sets, then $\hat{\otimes}_{n, s, \pi} E$ has GP. Moreover, if E^{*} has the bounded compact approximation property, then these sufficient conditions for $\hat{\otimes}_{n, s, \pi} E$ having GP are also necessary.

Let E and F be Banach spaces over \mathbb{R} or \mathbb{C} and let n be a positive integer. A map $P: E \rightarrow F$ is said to be an n-homogeneous polynomial if there is a symmetric n-linear operator T from $E \times \cdots \times E$ (a product of n copies of E) into F such that $P(x)=T(x, \ldots, x)$. Indeed, the symmetric n-linear operator $T_{P}: E \times \cdots \times E \rightarrow F$ associated to P can be given by the Polarization Formula:

$$
T_{P}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2^{n} n!} \sum_{\epsilon_{i}= \pm 1} \epsilon_{1} \cdots \epsilon_{n} P\left(\sum_{i=1}^{n} \epsilon_{i} x_{i}\right), \quad \forall x_{1}, \ldots, x_{n} \in E
$$

[^0]Let $\mathcal{P}\left({ }^{n} E ; F\right)$ denote the space of all continuous n-homogeneous polynomials from E into F with its norm

$$
\|P\|=\sup \{\|P(x)\|: x \in E,\|x\| \leqslant 1\}
$$

and let $\mathcal{P}_{w}\left({ }^{n} E ; F\right)$ denote the subspace of all P in $\mathcal{P}\left({ }^{n} E ; F\right)$ that are weakly continuous on bounded sets. In particular, if $F=\mathbb{R}$ or \mathbb{C}, then $\mathcal{P}\left({ }^{n} E ; F\right)$ and $\mathcal{P}_{w}\left({ }^{n} E ; F\right)$ are simply denoted by $\mathcal{P}\left({ }^{n} E\right)$ and $\mathcal{P}_{w}\left({ }^{n} E\right)$ respectively.

Let $\otimes_{n} E$ denote the n-fold algebraic tensor product of E. For $x_{1} \otimes \cdots \otimes x_{n} \in \otimes_{n} E$, let $x_{1} \otimes_{s}$ $\cdots \otimes_{s} x_{n}$ denote its symmetrization, that is,

$$
x_{1} \otimes_{s} \cdots \otimes_{s} x_{n}=\frac{1}{n!} \sum_{\sigma \in \pi(n)} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}
$$

where $\pi(n)$ is the group of permutations of $\{1, \ldots, n\}$. Let $\otimes_{n, s} E$ denote the n-fold symmetric algebraic tensor product of E, that is, the linear span of $\left\{x_{1} \otimes_{s} \cdots \otimes_{s} x_{n}: x_{1}, \ldots, x_{n} \in E\right\}$ in $\otimes_{n} E$. It is known that each $u \in \otimes_{n, s} E$ has a representation $u=\sum_{k=1}^{m} \lambda_{k} x_{k} \otimes \cdots \otimes x_{k}$ where $\lambda_{1}, \ldots, \lambda_{m}$ are scalars and x_{1}, \ldots, x_{m} are vectors in E. Let $\hat{\otimes}_{n, s, \pi} E$ denote the n-fold symmetric projective tensor product of E, that is, the completion of $\otimes_{n, s} E$ under the symmetric projective tensor norm on $\otimes_{n, s} E$ defined by

$$
\|u\|=\inf \left\{\sum_{k=1}^{m}\left|\lambda_{k}\right| \cdot\left\|x_{k}\right\|^{n}: x_{k} \in E, u=\sum_{k=1}^{m} \lambda_{k} x_{k} \otimes \cdots \otimes x_{k}\right\}, \quad u \in \otimes_{n, s} E .
$$

For each n-homogeneous polynomial $P: E \rightarrow F$, let $A_{P}: \otimes_{n, s} E \rightarrow F$ denote its linearization, that is,

$$
A_{P}(x \otimes \cdots \otimes x)=P(x), \quad \forall x \in E
$$

Then under the isometry: $P \rightarrow A_{P}$,

$$
\mathcal{P}\left({ }^{n} E ; F\right)=\mathcal{L}\left(\hat{\otimes}_{n, s, \pi} E ; F\right),
$$

where $\mathcal{L}\left(\hat{\otimes}_{n, s, \pi} E ; F\right)$ is the space of all continuous linear operators from $\hat{\otimes}_{n, s, \pi} E$ to F. In particular,

$$
\mathcal{P}\left({ }^{n} E\right)=\left(\hat{\mathbb{Q}}_{n, s, \pi} E\right)^{*},
$$

where $\left(\hat{\otimes}_{n, s, \pi} E\right)^{*}$ is the topological dual of $\hat{\otimes}_{n, s, \pi} E$.
For the basic knowledge about homogeneous polynomials and symmetric projective tensor products, we refer to $[7,12,13]$.

For a Banach space E, let E^{*} denote its dual and $E^{* *}$ denote its second dual. For every $P \in \mathcal{P}\left({ }^{n} E\right)$, let $\widetilde{P} \in \mathcal{P}\left({ }^{n} E^{* *}\right)$ denote the Aron-Berner extension of P (see, e.g., [1,5]). To obtain $\hat{\otimes}_{n, s, \pi} E$ having GP, we first need the following lemma, which is a special case of [9, Corollary 5].

Lemma 1.1. ([9]) Let $P_{k}, P \in \mathcal{P}_{w}\left({ }^{n} E\right)$ for each $k \in \mathbb{N}$. Then $\lim _{k} P_{k}=P$ weakly in $\mathcal{P}_{w}\left({ }^{n} E\right)$ if and only if $\lim _{k} \widetilde{P}_{k}(z)=\widetilde{P}(z)$ for every $z \in E^{* *}$.

Now we give sufficient conditions to ensure that $\hat{\otimes}_{n, s, \pi} E$ has GP.
Theorem 1.1. If E has $G P$ and $\mathcal{P}\left({ }^{n} E\right)=\mathcal{P}_{w}\left({ }^{n} E\right)$, then $\hat{\otimes}_{n, s, \pi} E$ has $G P$.
Proof. Take $P_{k}, P \in \mathcal{P}\left({ }^{n} E\right)=\left(\hat{\otimes}_{n, s, \pi} E\right)^{*}$ for each $k \in \mathbb{N}$ such that $\lim _{k} P_{k}=P$ weak* in $\mathcal{P}\left({ }^{n} E\right)$. Then $\lim _{k} P_{k}(x)=P(x)$ for every $x \in E$. Let $T_{P_{k}}$ denote the symmetric n-linear operator associated to P_{k}. By the Polarization Formula, for every $x_{1}, \ldots, x_{n} \in E$,

$$
\begin{equation*}
\lim _{k} T_{P_{k}}\left(x_{1}, \ldots, x_{n}\right)=T_{P}\left(x_{1}, \ldots, x_{n}\right) . \tag{1.1}
\end{equation*}
$$

For every fixed $x_{2}, \ldots, x_{n} \in E$, define $\phi_{k}(x)=T_{\widetilde{P}_{k}}\left(x, x_{2}, \ldots, x_{n}\right)$ and $\phi(x)=T_{\widetilde{P}}\left(x, x_{2}, \ldots, x_{n}\right)$ for every $x \in E$, respectively. Then $\phi_{k}, \phi \in E^{*}$, and $\left\langle\phi_{k}, z_{1}\right\rangle=T_{\widetilde{P}_{k}}\left(z_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left\langle\phi, z_{1}\right\rangle=$ $T_{\widetilde{P}}\left(z_{1}, x_{2}, \ldots, x_{n}\right)$ for every $z_{1} \in E^{* *}$. By (1), $\lim _{k} \phi_{k}=\phi$ weak ${ }^{*}$ in E^{*} and hence, $\lim _{k} \phi_{k}=\phi$ weakly in E^{*}. Thus, for every $z_{1} \in E^{* *}$ and every $x_{2}, \ldots, x_{n} \in E$,

$$
\lim _{k} T_{\widetilde{P}_{k}}\left(z_{1}, x_{2}, \ldots, x_{n}\right)=T_{\widetilde{P}}\left(z_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Using the induction, we can show that for every $z_{1}, z_{2}, \ldots, z_{n} \in E^{* *}$,

$$
\lim _{k} T_{\widetilde{P}_{k}}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=T_{\widetilde{P}}\left(z_{1}, z_{2}, \ldots, z_{n}\right) .
$$

In particular, $\lim _{k} \widetilde{P}_{k}(z)=\widetilde{P}(z)$ for every $z \in E^{* *}$. It follows from Lemma 1 that $\lim _{k} P_{k}=P$ weakly in $\mathcal{P}_{w}\left({ }^{n} E\right)=\mathcal{P}\left({ }^{n} E\right)$, and hence $\hat{\otimes}_{n, s, \pi} E$ has GP.

To ensure that the sufficient conditions for GP of $\hat{\otimes}_{n, s, \pi} E$ in Theorem 1.1 are also necessary, we need the bounded compact approximation property. Recall that a Banach space E is said to have the bounded compact approximation property (BCAP in short) (see, e.g., $[4$, p. 308]), if there exists $\lambda \geqslant 1$ so that for every compact subset C of E and for every $\varepsilon>0$, there is a compact operator $T: E \rightarrow E$ such that $\|T\| \leqslant \lambda$ and $\|T(x)-x\| \leqslant \varepsilon$ for all $x \in C$. It is well known that the bounded approximation property implies the bounded compact approximation property, but the converse is not true (see, e.g., [14] or [4, p. 309]).
Theorem 1.2. If E^{*} has the BCAP, then $\hat{\otimes}_{n, s, \pi} E$ has GP if and only if E has $G P$ and $\mathcal{P}_{w}\left({ }^{n} E\right)=$ $\mathcal{P}\left({ }^{n} E\right)$.
Proof. Suppose that $\hat{\otimes}_{n, s, \pi} E$ has GP. By [2, Theorem 3], E is a complemented subspace of $\hat{\otimes}_{n, s, \pi} E$ and hence, E has GP. It is known that every dual Banach space is weak* sequentially complete (see, e.g., [11, p. 230, Corollary 2.6.21]). This fact yields that $\mathcal{P}\left({ }^{n} E\right)=\left(\hat{\mathbb{Q}}_{n, s, \pi} E\right)^{*}$ is weakly sequentially complete and hence, $\mathcal{P}_{w}\left({ }^{n} E\right)$ also is weakly sequentially complete. It follows from [3, Theorem 3.5] that $\mathcal{P}_{w}\left({ }^{n} E\right)=\mathcal{P}\left({ }^{n} E\right)$.

It is worth while to mention here that González and Gutiérrez in [8] showed that if $n \geqslant 2$ then $\hat{\otimes}_{n, s, \pi} E$ has GP if and only if $\hat{\otimes}_{n, s, \pi} E$ is reflexive. Thus Theorem 1.1 yields the following corollary.

Corollary 1.1. If E has $G P$ and $\mathcal{P}\left({ }^{n} E\right)=\mathcal{P}_{w}\left({ }^{n} E\right)$ for some $n \geqslant 2$, then $\hat{\otimes}_{n, s, \pi} E$ is reflexive. In particular, E is reflexive.

Acknowledgments

Both authors are supported by the NNSF (No. 11571378) of China.

References

[1] R.M. Aron, P. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France, 106(1978), 3-24.
[2] F. Blasco, Complementation of symmetric tensor products and polynomials, Studia Math., 123(1997), 165-173.
[3] Q. Bu, D. Ji, N.C. Wong, Weak sequential completeness of spaces of homogeneous polynomials, J. Math. Anal. Appl., 427(2015), 1119-1130.
[4] P.G. Casazza, Approximation properties, in: Handbook of the Geometry of Banach Spaces, (Edited by Johnson and Lindenstrauss), Vol. I, North-Holland, Amsterdam, 2001, 271-316,.
[5] A.M. Davie, T.W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc., 106(1989), 351-356.
[6] J. Diestel, Grothendieck spaces and vector measures, in: Vector and Operator Valued Measures and Applications (Proc. Sympos., Snowbird Resort, Alta, Utah, 1972), Academic Press, New York, 1973,97-108.
[7] S. Dineen, Complex analysis on infinite dimensional Spaces, Springer, 1999.
[8] M. González, J.M. Gutiérrez, Polynomial Grothendieck properties, Glasgow Math. J., 37(1995), 211-219.
[9] M. González, J.M. Gutiérrez, Weak compactness in spaces of differentiable mappings, Rocky Mountain J. Math., 25(1995), 619-634.
[10] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5(1953), 129-173.
[11] R.E. Megginson, An introduction to Banach space theory, Springer-Verlag, New York, 1998.
[12] J. Mujica, Complex analysis in Banach spaces, North-Holland-Math. Stud., 120, 1986.
[13] R.A. Ryan, Applications of topological tensor products to infinite dimensional Holomorphy, Doctoral thesis, Trinity College, Dublin, 1980.
[14] G. Willis, The compact approximation property does not imply the approximation property, Studia Math., 103(1992), 99-108.

[^0]: *Corresponding author. Email addresses: stslyj@mail.sysu.edu.cn (Y. Li), qbu@olemiss.edu (Q. Bu)

