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Abstract. This paper applies a 3-D nonuniform fast Fourier transform (NUFFT) migration
method to image both free-space and buried targets from data collected by a ultra-wideband
ground penetrating radar (GPR) system. The method incorporates the NUFFT algorithm
into 3-D phase shift migration to evaluate the inverse Fourier transform more accurately and
more efficiently than the conventional migration methods. Previously, the nonuniform na-
ture of the wavenumber space required linear interpolation before the regular fast Fourier
transform (FFT) could be applied. However, linear interpolation usually degrades the qual-
ity of reconstructed images. The NUFFT method mitigates such errors by using high-order
spatial-varying kernels. The NUFFT migration method is utilized to reconstruct GPR im-
ages collected in laboratory. A plywood sheet in free space and a buried plexiglas chamber
are successfully reconstructed. The results in 3-D visualization demonstrate the outstanding
performance of the method to retrieve the geometry of the objects. Several buried landmines
are also scanned and reconstructed using this method. Since the images resolve the features
of the objects well, they can be utilized to assist the landmine discrimination.

Key words: Ground-penetrating radar (GPR); migration; interpolation; phase shift; nonuniform fast
Fourier transform (NUFFT).

1 Introduction

Ground-penetrating radar (GPR) is an ultra-wideband detecting technique used for subsurface
exploration and monitoring. Many works have been done in the area of statistical signal pro-
cessing to develop powerful statistical models to discriminate the targets [6,8,10]. On the other
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hand, the abundant information carried by GPR data also provides a possibility to reconstruct
high resolution images of the objects beyond just a confidence of detection. Three-dimensional
image reconstruction from GPR data is therefore of great interest lately. Migration is one of
the most useful time domain inversion methods as it focuses the reflections and diffractions to
their actual positions. Various migration techniques have been studied to refocus the scattered
signals from the time domain back to their true spatial locations in the object space. Kirchhoff
depth migration [2–4], finite difference migration [16, 17] and phase-shift migration [9, 11] are
the ones most widely used for seismic imaging. Recently, based on the seismic migration, Song
and Liu [20] proposed a two-dimensional phase-shift migration method using nonuniform DFT
for GPR landmine imaging and achieved promising results.

The migration methods usually migrate data in the frequency-wavenumber domain, therefore
inverse Fourier transform is needed as a key step to transform the migrated data back to spatial
domain. However, due to the nonuniform nature of the frequency-wavenumber space data, most
of the migration methods share a common problem, i.e., the FFT is not directly applicable.
This is because when data are not located on a uniform Cartesian grid, the multi-dimensional
discrete Fourier transform can no longer be evaluated by the tensor product of multiple 1-D
FFTs. Previous works used linear interpolation method [27] or direct summation method [20]
to solve this problem. However, the interpolation-FFT method degrades the accuracy of discrete
Fourier transform (DFT) and direct summation is computationally too expensive to evaluate.

The problem with the nonuniformly sampled data has been recently addressed by the nonuni-
form fast Fourier transform (NUFFT) algorithms [1, 7, 12–15, 26]. The direct evaluation of a
nonuniform discrete Fourier transform (NUDFT) costs O(N2) arithmetic operations, whereas
the NUFFT algorithms reduce this to O(N log N). The NUFFT algorithms have been applied
to biomedical image reconstruction [18,19,23,25], as well as to subsurface sensing for landmine
detection and other buried objects [21, 22,24].

Recently, several new data sets for complicated objects and landmines have been obtained
by an ultra-wideband radar system developed at Georgia Institute of Technology. In this paper,
an NUFFT-based image processing method based on the phase-shift migration [9,20] is applied
to process these data sets to achieve high resolution images. The nonuniform fast Fourier
transform (NUFFT) algorithm proposed by Liu and Nguyen [13,15] has been utilized to process
the nonuniform discrete Fourier transform data. The NUFFT-based reconstruction method
improves both accuracy and speed compared to the conventional phase-migration method. In
section 2, the formulation and application are applied to 3-D objects. In section 4, the new
3-D NUFFT GPR migration method is applied to experimental data sets collected at Georgia
Institute of Technology (section 3). The reconstructed results for a plywood sheet, a buried
plexiglas chamber, and several landmines are excellent.

2 Theory

In subsurface sensing application of a GPR system, the transmitter sends out an electromagnetic
wave to the ground. The transmitted signal traverses the ground surface and is scattered by
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Figure 1: The 3-D multi-static GPR experiment setup for the free space target scan. The antennas are

placed 73 cm from the surface of the ground and the targets are at a 36.5 cm height.

the target as well as the ground surface and potential heterogeneous soil. The scattered waves
are then received by a receiving antenna, which is usually located in a close vicinity of the
transmitting antenna. The ultra-wideband GPR we utilize here consists of two transmitting
antennas and four receiving antennas, but only data from the two closest antennas are actually
used. In Figs. 1 and 2, transmitter T1 and receiver R1 pair shows such a bistatic measurement
setup where the object is located in the air or buried. If the mid-point between R1 and T1
antennas is denoted as (x, y, z) and is called the location of the GPR, the received signal for a
wideband system can be denoted as u(x, y, z, t) where t is time. The objective of GPR imaging
is to reconstruct the induced source in the target that gives rise to this received signal.

Imaging the unknown target from the measured waveforms is an inverse problem. Among
various inverse solutions, migration methods [5, 9] is a very attractive method because of their
simplicity. The objective of migration methods is to refocus the scattered waves back to the
actual spatial positions of the scatterers that give rise to such scattering. The phase shift method
[9, 27] is utilized here for its simplicity and robustness. Among various migration methods [5],
the phase-shift method can most easily incorporate the depth variation in wave velocity of the
medium. The method is based on an exploding-reflector model with initial conditions defined by
a zero-offset section (i.e., when the transmitter-receiver spacing is zero). Similar to the seismic
migration method [9], the 3-D electromagnetic migration method utilized here was developed
by assuming that only one electromagnetic field component is radiated and received so that
it is reasonable to use a scalar wave equation; this is a reasonable simplification because in
our measurements, we only used the co-polarized component in the transmitting and receiving
antennas. Since the phase-shift migration method has been well documented in [5,9], below we
will only summarize the parts relevant to the NUFFT and its application.
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Figure 2: The 3-D multi-static GPR experiment setup for subsurface target scan. The antennas are

placed 10 cm from the surface of the ground and the targets are buried at depths of 1 cm to 40 cm.

2.1 The NUFFT phase-shift migration

The measured waveform u(x, y, z = 0, t) is obtained on a uniform spatial grid on the xy plane
at z = 0 and is sampled uniformly in the temporal (t) direction. From u(x, y, z = 0, t), the goal
of a 3-D phase-shift migration method is to obtain the 3-D induced “source” at the scatterer, or
u(x, y, z, t = 0). To achieve this goal, the time-space domain (x, y, z, t) waveform u(x, y, z, t) is
transformed into the frequency-wavenumber domain (kx, ky, z, ω) through a regular 3-D Fourier
transform (FT) to arrive at the transformed wave field U(kx, ky, z, ω). The original wave field
u(x, y, z, t) can be viewed as the plane-wave expansion of the transformed wave field. In this
transformed domain, the plane wave propagates in the downward (+z) direction with a propaga-
tor eikzz. Therefore, the transformed data U(kx, ky, 0, ω) can be downward continued with eikzz

to obtain the corresponding data U(kx, ky, z, ω) at a depth z. From the 3-D inverse Fourier trans-
form one can obtain the wave field at z as u(x, y, z, t). Subsequently, by evaluating u(x, y, z, t)
at t = 0 where the scatterers are located, one obtains the 3-D induced “source” u(x, y, z, t = 0).
Consequently, starting from surface z = 0, the wavenumber-space data at an arbitrary depth can
be obtained by this wave extrapolation. Mathematically, the migrated wavenumber-space data
are transformed back to the spatial domain electromagnetic field u(x, y, z, 0) using the inverse
Fourier transform

u(x, y, z, 0) =
1

8π3

∫ ∫ ∫

U(kx, ky, 0, ω)ei(kxx+kyy+kzz)dkxdkydω (2.1)

where the wavenumbers kx, ky, kz and frequency ω satisfy the dispersion relation

v2(k2
x + k2

y + k2
z) = ω2 (2.2)
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and v is the wave speed in the medium. The discretization of (2.1) leads to

u(xp, yq, zr, 0) =
∆kx∆ky∆ω

8π3

J−1
∑

j=0

M−1
∑

m=0

N−1
∑

n=0

U(kj
x, km

y , 0, ωn)ei(kj
xxp+km

y yq+kn
z zr) (2.3)

where J , M , and N are the number of data points in x, y, and t directions, respectively, and
(xp, yq, zr) denotes the locations of uniform grid points for the 3-D image of the target.

As can be observed from equation (2.2), since the frequency and wave numbers are nonlin-
early related with each other, at least one wavenumber dimension is nonuniform if the temporal
discretization is uniform. As a result, the regular FFT cannot be directly applied. In practice,
since the data are sampled uniformly on the ground surface and in time domain, kx, ky, and
ω are equally spaced, thus the samples are then non-equally spaced along kz. Linear interpo-
lation is conventionally used to resample the nonuniform data onto a uniform grid. However,
such linear interpolation usually introduces a significant approximation error. In this work, Liu
and Nguyen’s [13,15] NUFFT is integrated into the phase-shift migration to solve this problem.
The NUFFT algorithm can efficiently evaluate the DFT. A weight matrix is computed by ap-
proximating the exponential of one node as a summation of exponentials of q + 1 nodes. The
approximation error is minimized in a least square sense. With this migration algorithm, the
discrete Fourier transforms along kx and ky directions in (2.3) can be accurately evaluated with
the regular 2-D FFT while the one along kz is computed by the NUFFT, i.e.,

u(xp, yq, zr, 0) =
∆kx∆ky∆ω

8π3
[FFTkx,ky ][NUFFTkz ]{U(kj

x, km
y , 0, ωn)}. (2.4)

The advantage of using the NUFFT algorithm for the above migration are: (a) there is no
need to perform linear interpolation of the data at different measurement sites, since the weight
matrices are obtained for the exponential kernel rather than the data; (b) the accuracy is much
higher as the NUFFT uses a much more accurate approximation.

2.2 The NUFFT algorithm

Here we summarize the NUFFT algorithm we used for this imaging application. For more
details, the reader is referred to [13, 15]. As is well known, the condition of using the regular
FFT algorithm is that the data acquisition must be equispaced. However, as described above,
although the data acquisition in our GPR sensing is uniformly spaced on the xy plane and along
the temporal direction, it is not uniform in the kz space because of the nonlinear dispersion
relation (2.2). In [13, 15], an accurate and efficient NUFFT algorithm was developed by using
the regular Fourier matrices. In the NUFFT algorithm, the goal is to develop a fast algorithm
to find the nonuniform discrete Fourier transform (NUDFT)

h̃m =
1√
N

N−1
∑

n=0

h(tn)eitnm 2π
N , tn ∈ [0, N), m = 0, · · · , N − 1 (2.5)
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where for notation simplicity we identify t with the nonuniform wavenumber kz in (2.3). Obvi-
ously, the direct summation of this NUDFT costs O(N2).

The principle of using the regular Fourier matrices [13, 15] to solve (2.5) is as follows.
Instead of interpolating the input data {h(tn)}, we will interpolate the exponential function
exp (i2πtm/N) for each t = tn (n = 0, · · · , N − 1). We consider a discrete sequence

f(m) = smei2πtnm/N , m ∈ {0, · · · , N − 1}, (2.6)

where tn ∈ [0, N) is real, q is an even positive integer, and the accuracy factors sm, 0 ≤ sm ≤ 1

for m = 0, · · · , N − 1, are chosen to minimize the error. Denoting w = ei 2π
νN , we will now

interpolate f(m) using the exponential function at q + 1 points on a unit circle, i.e.,

smwmνt =

q/2
∑

k=−q/2

xk(t)w
m([νt]+k), m = 0, · · · , N − 1, (2.7)

where [a] denotes the integer nearest to a, and x−q/2(t), · · · , xq/2(t) are some unknown interpo-
lation coefficients to be determined.

It was shown in [13,15] that the unknown interpolation coefficients x(t) = [x−q/2(t), · · · , xq/2(t)]
T

can be determined by the least-squares method

x(t) = F−1y(t) (2.8)

where for j, k = 0, · · · , q we have a closed-form solution for the regular Fourier matrix

Fjk(ν, N, q) =

{

N, j = k
w(j−k)N/2−w(k−j)N/2

1−w(k−j) , j 6= k
(2.9)

It is observed that while y(t) depends on t, matrix F (p, N, q) is completely independent of t
and is uniquely determined by ν, N and q. The matrix F (ν, N, q) is called the regular Fourier

matrix; it is a (q + 1) × (q + 1) Hermitian matrix, F (ν, N, q)† = F (ν, N, q).
If the scaling factors are chosen as the cosine functions sm = cos πm

νN for m = 0, · · · , N − 1,
vector {yk} can also be written in a closed form:

yk(t) =
N−1
∑

m=0

smw({νt}+q/2−k)m = i
∑

γ=−1,1

sin[ π
2ν (2k − γ − q − 2{νt})]

1 − ei π
νN

(2{νt}+q−2k+γ)
(2.10)

where {νt} = νt − [νt].

The NUFFT algorithm consists of following steps:

(i) Compute yk(tn) by (2.10) for k = 0, ..., q and n = 0, · · · , N − 1. The complexity is O(Nq).

(ii) Compute Pjn =
q

∑

k=0

[F−1]jkyk(tn), where the inverse regular Fourier matrix F−1 is pre-

computed. The complexity is O(Nq2).
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(iii) Find the inverse of the scaling factor s−1
m . For the cosine scaling factors s−1

m = sec πm
νN for

m = 0, · · · , N − 1. The complexity is O(N).

(iv) Calculate Fourier coefficients

τl =
∑

j,n,[νtn]+j=l

h(tn) · Pjn.

The complexity is O(Nq).

(v) Use the regular uniform FFT to evaluate

Tm =

νN−1
∑

l=0

τl · ei2πml/νN .

The complexity is O(νN log N).

(vi) With a complexity of O(N), scale the values to arrive at the approximated nonuniform
FFT

h̃m = Tm · s−1
m .

The total complexity is O(N · q2 + νN log N), noting that q ∼ log(1/ε) where ε is the precision,
and ν ¿ N (usually ν = 2).

Depending on the nonuniformity of the data, the NUFFT retains the accuracy of direct DFT
with a relative error level of 10−6 ∼ 10−12. Compared to the linear interpolation method, the
NUFFT relative error is usually five orders of magnitude lower. Furthermore, the complexity
for evaluating a sequence of length N approaches O(νN log N), where ν is an oversampling rate.
The pre-processing time to calculate the weight matrix has been reasonably excluded from the
overall processing time since typically it remains unchanged for practical systems where the data
acquisition configuration is fixed. This is much faster than the direct summation approach that
requires O(N2) operations.

3 Data acquisition

A multi-static GPR experiment has been performed at Georgia Institute of Technology with
six ultra-wideband antennas. The configurations for the free-space experiment is illustrated in
Fig. 1, while the configuration for buried objects is shown in Fig. 2. The antenna beams point
toward the ground and the array lies along the y axis. A 192 cm-wide synthetic array aperture
is obtained by using reciprocity and synthesizing the scans at 90 positions.

Data acquisition is performed on targets both in free space and underground. In these
experiments, a square region of 180 cm × 180 cm is scanned with a sampling interval of 2 cm.
The antennas operate in the frequency range of 60 MHz ∼ 8.06 GHz, with 401 equally spaced
frequency sample points. From these frequency-domain data, the time-domain waveforms are
obtained by the inverse FFT to arrive at 1024 equally spaced temporal sample points for each
received signal before our 3-D NUFFT migration processing is performed.
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As shown in Fig. 1, in the free space case, the antennas are placed 73 cm above the ground
and the targets are at a height of 36.5 cm. The targets scanned in free space include several metal
spheres, landmines, and a plywood sheet of the letters “GT”. Fig. 2 shows the configuration
to scan the buried targets. In this case, the antennas are 10 cm above the ground surface. A
plexiglas chamber, a grid of metal spheres and landmines are buried under sand at depths varying
from 1 cm to 40 cm. In both of the free-space and underground cases, datasets corresponding
to the absence of targets are also acquired for calibration purpose.

4 Data processing

For the purpose of NUFFT migration, the wave field data acquired by the two closest antennas,
i.e., transmitter 1 (T1) and receiver 1 (R1), are used, and denoted below as “raw data”. The
waveform recorded by this pair can be treated as the backscattered data, as assumed in the
formulation. One advantage of the NUFFT migration is that it works well without much prior
information about the medium. In contrast, to reconstruct buried targets, many other inversion
methods require the prior information of soil electrical parameters such as conductivity, per-
mittivity and permeability. However, this NUFFT migration method can process without any
specific knowledge about the soil properties except the mean wave velocity through the two way
path. We estimate this velocity by using the corresponding 2-D migration method as part of the
preprocessing. Assuming that the subsurface wave velocity is generally the same over the entire
3-D volume, a 2-D xz slice is extracted for velocity estimation. The velocity is gradually changed
from a lower value to the speed of light in vacuum, and the one with best focusing performance
is selected. As a result, compared to many iterative inversion algorithms, this method is much
simpler and faster.

The preprocessing of this migration method includes calibration, wave velocity estimation
and calculation of the weight matrix in NUFFT given the measurement configuration. The
calibration first removes artifacts from the free space measurements by zeroing out late-time
signals, then normalizes using the through-calibration data obtained by directly transmitting
the signal from the transmitter to the receiver in the absence of objects. After calibration, one
2-D xz slice containing the target signal is extracted from the 3-D dataset and a 2-D NUFFT
migration is performed. The 2-D NUFFT migration method can be readily obtained from the
formulation by fixing one horizontal dimension. An optimal estimate of wave velocity in the soil
is decided while the migrated image of the target is best focused, as shown in Fig. 3. The 2-D
processing is used because it can provide an accurate wave velocity estimate for the subsequent
3-D migration with little computation time. Both the calibration and velocity estimation are
location dependent hence need to be done for each different target.

The weights matrix, however, does not need to be re-calculated as long as the experimental
configuration remains the same. This is one of the key intrinsic advantages of using NUFFT
algorithm versus other interpolation methods. With NUFFT, the speed of Fourier transform
evaluation approaches the regular FFT (except for an oversampling factor of ν = 2 in our
calculation). In the GPR processing, since the experimental setups for all the targets in both
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Figure 3: The 2-D processing of a xz slice to estimate the wave velocity in the soil. For the case of a

buried chamber, the velocity is estimated to be 1.8 × 108m/s. Left: The 2-D GPR raw data. Right: The

2-D NUFFT migrated data.

Figure 4: The 3-D isosurface of the reconstructed “GT” plywood.

free space and underground cases are the same, the weights matrices for all the reconstructions
are identical and are pre-calculated. The GPR datasets are then processed by the 3-D NUFFT
migration with the velocity estimated using the 2-D NUFFT migration method. Some of the
migrated results are listed in the next section, including a plywood sheet in free space, a plexiglas
chamber and a grid of landmines buried under sand.
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Table 1: The estimated dimensions of the “GT” plywood and the relative estimation errors compared to

the ground truth.

Size Ground Truth Estimation Relative Error (%)

Width 38.5 cm 38 cm 1.30%

Height 46.5 cm 44 cm 5.38%

Thickness 1.8 cm 1.76 cm 2.22%

5 Results

3-D images are obtained by the NUFFT migration of array waveforms collected at the 2-D array
parallel to the ground surface. Horizontal slices at specified depths are good presentations of
the 3-D migration results. Below the raw data and the images obtained by migration are listed
together for comparison.

5.1 Case 1: The GT plywood

A plywood sheet is carved into a relatively complicated shape consisting of two letters “G” and
“T”. The plywood is 38.5 cm wide, 46.5 cm high, and 1.8 cm thick, and lies on a horizontal
plane parallel to the ground surface. The complicated shape and small thickness pose significant
challenges for accurate reconstruction. The magnitudes of the inverted wave field as well as the
raw data are plotted as gray scale images and shown in Fig. 5. The reconstructed “GT” sign
(right) using NUFFT migration is very close to the true target and the complicated details are
well resolved. It is certainly much better than the image of raw data (left). The raw image suffers
from the overlapping diffraction hyperbolae in the received GPR waveforms, while the NUFFT-
migration method collapses those hyperbola to their diffraction apices, thus uncovering the true
3-D image of the target. The horizontal slice suggests good contrast on the boundary of the
reconstructed image so that the target can be clearly differentiated from the background. A 3-D
visualization of the “GT” plywood generated using an isosurface is provided in Fig. 4 to further
demonstrate that the method is capable of reconstructing the high-resolution target geometry.
The isovalue selected to produce the 3-D view is 0.5226 relative to the maximum. Actually, the
dimensions of the plywood sheet can be estimated quantitatively using the migrated 3-D image.
The estimated object is 38 cm wide, 44 cm high, and 1.76 cm thick. The horizontal spatial
resolution is 2 cm in each of the two dimensions and the vertical spatial resolution is 0.29 cm.
The relative estimation errors of this “GT” plywood geometry are listed in Table 1.

5.2 Case 2: A buried plexiglas chamber

A chamber made of 2.54 cm-thick plexiglas is buried in a sand pit at a depth of 9.5 cm from
the top of the chamber. The exterior dimensions of the chamber are 40.64 cm × 30.48 cm ×
20.32 cm. Based on the 2-D migrated results, a wave velocity of 1.8 × 108 m/s is utilized for
the sand in the 3-D processing. The horizontal slices at the depths of 12 cm (near the upper
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Table 2: The estimated dimensions of the buried plexiglas chamber and the relative estimation errors

compared to the ground truth.

Size Ground Truth Estimation Relative Error (%)

Width 40.64 cm 42 cm 3.35%

Height 30.48 cm 34 cm 11.55%

Thickness 20.32 cm 16.1 cm 20.77%

Depth 9.5 cm 10.5 cm 10.53%

Figure 5: The horizontal slice of the raw image and the 3-D migration reconstructed image of the GT

plywood in free space. Left: The GPR raw data. Right: 3-D NUFFT migrated data at the plywood

surface. The estimated size is 38 cm wide, 44 cm high and 1.76 cm thick.

chamber’s surface) and 17 cm (around the middle of the chamber) from the ground surface are
shown in Figs. 6 and 7. Because of the ground surface reflections and interference of the soil,
as expected, the reconstructions are not as good as the above free space case. In particular, the
image resolution is limited by the relatively low signal-to-noise ratio of the sensor data and the
velocity estimation error as the soil is never strictly homogeneous. However, compared to the
raw images, this NUFFT migration method significantly enhances the detection of the object
and the identification of the geometry. The NUFFT migrated result of the chamber provides an
estimation of 42 cm in width, 34 cm in length, and 16.1 cm in height, and the relative errors are
given in Table 2.
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Figure 6: The horizontal slice of the raw image (left) and the 3-D migration reconstructed image (right)

of the plexiglas chamber at a depth of 12 cm.

Figure 7: The horizontal slice of the raw image (left) and the 3-D migration reconstructed image (right)

of the plexiglas chamber at a depth of 17 cm. The estimated size is 42 cm in width, 34 cm in length, and

16.1 cm in height.

5.3 Case 3: A grid of mines and clutters

Finally, a grid of several landmines and rock clutters are buried at different depths. The mines
include M14, TMA-5, TS-50, PFM 1, VS 1.6, and VS 2.2, and the clutters are metal spheres,
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Figure 8: The buried map and sizes of the testing landmines.

rocks and a Nylon cylinder of various dimensions. The reconstructions at two depths (4 cm
and 17 cm) in Figs. 9 and 10 are compared with the actual depths and sizes of the mines
in Fig. 8. Both positions and geometries of TMA-5, VS 1.6 and VS 2.2 landmines are well
reconstructed, but mines of smaller sizes are much more difficult to reconstruct. Although
these reconstructed images alone may not be sufficient to accurately classify between mines and
clutters, the focused energy and coarse geometry information will be very useful information for
improving the discrimination based on the target features. Therefore, the NUFFT migration
method can be further integrated with existing statistical classification techniques to improve
the detection performance. A 3-D visualization of the VS 2.2 landmine buried at a depth of 13
cm is compared to the real geometry of the mine in Fig. 11. The isovalue selected for the 3-D
view is 0.3200 relative to the maximum intensity value.

5.4 The processing speed

Besides its accuracy, the fast processing speed and the simplicity are also the advantages of
the NUFFT migration method. With the weights matrix pre-computed, a 2-D slice can be
processed within 0.2 second and the 3-D processing time for a dataset of 1024 × 91 × 91 size is
around 40 seconds. The fast evaluation of NUFFT enhances the speed of the overall migration
processing. Given the GPR acquisition of a 3-D object usually takes around one minute, the
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Figure 9: The horizontal slice of landmine image at a depth of 4 cm. The four buried TS-50 mines

centered at (−20,−40, 1.5) cm, (20,−40, 1.5) cm, (45,−40, 2) cm and (45, 5, 1.5) cm, the mine stimulant

at (0,−20, 2) cm and two PFM-1 at (0, 5, 2) cm can be observed on the reconstructed image.
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Figure 10: The horizontal slice of landmine image at a depth of 17 cm. The buried TMA-5 centered at

(−45,−50, 12) cm, the VS 2.2 at (0, 50, 13) cm, the Nylon cylinder at (45, 50, 10.5) cm, and the VS 1.6

at (0,−40, 11.5) cm can be observed on the reconstructed image.

NUFFT migration method can finish the processing of one dataset within the acquisition time
of next dataset. This makes the real time 3-D GPR imaging very promising.
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Figure 11: The actual (left) landmine VS 2.2 and its reconstructed 3-D isosurface. The landmine has a

diameter of 24.0 cm and a height of 12.0 cm.

6 Conclusions

A 3-D NUFFT migration method has been applied for GPR image reconstruction. With the
help of NUFFT, the Fourier transform of nonuniform frequency-wavenumber space samples can
be evaluated efficiently and accurately. The method is demonstrated on several ultra-wideband
GPR data collected in laboratory with multi-static experiments. It successfully reconstructs the
3-D geometries of several targets in both free space and buried underground. The estimated
object sizes are very close to the ground truth. The method is simple, robust and efficient.
Only a little background information is needed for the reconstruction. The processing speed
is approximately the same as that of FFT because the latter include data interpolation, but
NUFFT has an accuracy several times higher based on our synthetic image reconstruction.
Thus, the NUFFT migration method is promising for real time GPR imaging of subsurface
objects. The application on landmine, in particular, suggests that it can significantly improve
the feature information from the raw data. It is hence very helpful to the mine detection if
incorporated with existing statistical demining models.

Acknowledgments

This work was supported by a DARPA/ARO MURI grant DAAD19-02-1-0252, by NSF through
grant CCR-0219528, and by National Institute of Health under grant number 5R21CA114680-02.

References

[1] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmonic
Anal., 2 (1995), 363–382.

[2] G. Blacquiere, H. W. J. Debeye, C. P. A. Wapenaar and A. J. Berkhout, 3-D table-driven migration,
Geophys. Prosp., 37 (1989), 925-958.

[3] J. Cabrera, W. Perkins, T. Hagen, D. W. Ratcliffe and W. Lynn, 3-D prestack depth migration:
Implementation and case history, Soc. Expl. Geophys., Expanded Abstracts, 11 (1992), 948-951.



191 Song, Liu, Kim and Scott / Commun. Comput. Phys., 1 (2006), pp. 176-191

[4] J. Cao, A practical implementation of the multi-processing 3-D Kirchhoff prestack migration scheme
on the Cray YMP systems, 54rd Mtg. Eur. Assoc. Expl. Geophys., Abstracts, (1992), 284-285.

[5] J. F. Claerbout, Imaging Earth’s Interior, Blackwell Sci. Pub., Oxford, 1985.
[6] L. M. Collins, P. Gao and L. Carin, An improved Bayesian decision theoretic approach for land mine

detection, IEEE T. Geosci. Remote Sensing, 37(2) (1999), 811-819.
[7] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput.,

14(6) (1993), 1368-1393.
[8] P. D. Gader, M. Mystkowski and Y. Zhao, Landmine detection with ground penetrating radar using

hidden Markov models, IEEE T. Geosci. Remote Sensing, 39(6) (2001), 1131-1144.
[9] J. Gazdag, Wave equation migration with the phase shift method, Geophysics, 43 (1978), 1342-1351.

[10] A. H. Gunatilaka and B. A. Baertlein, Subspace decomposition technique to improve GPR imaging
of antipersonnel mines, in: A. C. Debey, J. F. Harrey, J. T. Broach and R. E. Dugan (Eds.),
Proceedings of SPIE, vol. 4038, 2000, pp. 1008-1018.

[11] S. Lee, G. McMechan and C. Aiken, Phase-field imaging: The electromagnetic equivalent of seismic
migration, Geophysics, 52 (1987), 678-693.

[12] Q. H. Liu, Fast Fourier Transforms and NUFFT, in: K. Chang (Ed.), Encyclopedia of RF and
Microwave Engineering, Wiley-Interscience, 2005, pp. 1401-1418.

[13] Q. H. Liu and N. Nguyen, An accurate algorithm for nonuniform fast Fourier transform (NUFFT’s),
IEEE Microw. Guided Wave Lett., 8 (1998), 18-20.

[14] Q. H. Liu and X. Y. Tang, Iterative algorithm for nonuniform inverse fast Fourier transform (NU-
IFFT), Electron. Lett., 34(20) (1998), 1913–1914.

[15] N. Nguyen and Q. H. Liu, The regular Fourier matrices and nonuniform fast Fourier transforms,
SIAM J. Sci. Comput., 21(1) (1999), 283-293.

[16] J. Rickett, J. Claerbout and S. Fomel, Implicit 3-D depth migration by wavefield extrapolation with
helical boundary conditions, Soc. Expl. Geophys., Expanded Abstracts, 17 (1998), 1124-1127.

[17] D. Ristow and T. Ruhl, Fourier finite-difference migration, Geophysics, 59(12) (1994), 1882-1893.
[18] G. Sarty, R. Bennett and R. Cox, Direct reconstruction of non-Cartesian k-space data using a

nonuniform fast Fourier transform, Magn. Reson. Med., 45 (2001), 908-915.
[19] L. Sha, H. Guo and A. W. Song, An improved gridding method for spiral MRI using nonuniform

fast Fourier transform, J. Magn. Reson., 162 (2003), 250-258.
[20] L. Song and Q. H. Liu, Ground-penetrating radar land mine imaging: Two-dimensional seismic

migration and three-dimensional inverse scattering in layered media, Radio Sci., in press.
[21] J. Song and Q. H. Liu, 2D nonuniform fast Fourier transform (NUFFT) method for synthetic aper-

ture radar and ground penetrating radar signal processing, 2004 URSI Meeting Abstract, Monterey,
CA, June 2004.

[22] J. Song and Q. H. Liu, 3D non-uniform fast Fourier transform (NUFFT) based migration for sub-
surface object imaging, 2005 URSI Meeting Abstract, Washington, DC, July 2005.

[23] J. Song and Q. H. Liu, A novel medical ultrasound image reconstruction method through migration,
2005 URSI Meeting Abstract, Washington, DC, July 2005.

[24] J. Song, Q. H. Liu, P. Torrione and L. Collins, 2-D and 3-D NUFFT migration method for landmine
detection using ground-penetrating radar, IEEE T. Geosci. Remote Sensing, submitted, 2005.

[25] B. Sutton, J. Fessler and D. Noll, A min-max approach to the nonuniform N-dimensional FFT for
rapid iterative reconstruction of MR images, Proc. Int. Soc. Magn. Reson. Med., 9 (2001), 763.

[26] A. F. Ware, Fast approximate Fourier transforms for irregularly spaced data, SIAM Rev., 40 (1998),
838-856.

[27] O. Yilmaz and S. M. Doherty (Eds.), Seismic Data Analysis: Processing, Inversion, and Interpreta-
tion of Seismic Data, Society of Exploration Geophysicists, Tulsa, 2001.


