
Journal of Computational Mathematics, Vol.22, No.4, 2004, 545–556.

THE LOWER APPROXIMATION OF EIGENVALUE BY
LUMPED MASS FINITE ELEMENT METHOD ∗1)

Jun Hu Yun-qing Huang Hongmei Shen
(Department of Mathematics, Xiangtan University, Xiangtan 411105, China)

Abstract

In the present paper, we investigate properties of lumped mass finite element method
(LFEM hereinafter) eigenvalues of elliptic problems. We propose an equivalent formulation
of LFEM and prove that LFEM eigenvalues are smaller than the standard finite element
method (SFEM hereinafter) eigenvalues. It is shown, for model eigenvalue problems with
uniform meshes, that LFEM eigenvalues are not greater than exact solutions and that
they are increasing functions of the number of elements of the triangulation, and numerical
examples show that this result equally holds for general problems.
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1. Introduction

The finite element method has been widely and successfully applied to both boundary value
and eigenvalue problems for a solid continuum. In the boundary value problem, it has been
shown that if the interpolation functions satisfy certain criteria [7],the finite element solution
will converge to the exact solution as the size of the element is diminished. The convergence
likewise occurs for the eigenvalue problems (Ref. [7, 3, 5, 8, 1, 2] and references therein).

There exist two finite element methods for solving eigenvalue problems, one is SFEM
(Ref.[1, 2]), the other is LFEM. LFEM has been extensively applied to science and engineering
computations because of its simplicity. LFEM in particular can largely simplify the computa-
tion of generalized eigenvalue problems (Ref.[3, 5]). The convergence of LFEM for eigenvalue
problems was established by Tong.et al [8] and Strang and Fix [7]. Strang and Fix in [7] gave
an error expansion of LFEM eigenvalue for one dimensional Neumann problem, the error ex-
pansion of LFEM eigenvalue for one dimensional Dirichlet problem was presented in [1], where
some comments on the asymptotic lower bound when h tends to zero for the problem therein
were also given. Tong.et al in [8] proved that LFEM didn’t lose the accuracy of approximation
compared with SFEM as long as proper lumped mass method was chosen. The concept of lower
approximations of eigenvalues was first introduced in [6]. Numerical experiments therein indi-
cated that LFEM eigenvalues are lower approximations to the exact ones, however the analysis
therein is not rigorous.

In the present paper, we investigate properties of LFEM eigenvalues. It is well known that
SFEM eigenvalues approximate exact solutions from above [1, 2] and that they are in some
sense decreasing functions of the number of elements of the partition of the domain considered,
on the contrary, what we are interested in is to show that LFEM eigenvalues approximate
exact solutions from below and that they are increasing functions of the number of elements.
For model eigenvalue problems with uniform meshes, we provide a rigorous analysis for these
properties. For general problems, we propose an equivalent form for LFEM and show that
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LFEM eigenvalues are smaller than SFEM eigenvalues, and the final numerical experiments
demonstrate that LFEM eigenvalues are exactly increasing functions of the number of elements,
then we can safely assert LFEM eigenvalues are not greater than exact ones. The paper is
organized as following. In section 2, we recall the weak formulation of the elliptic eigenvalue
problem. LFEM and its equivalent formulation will be described in section 3, and in section 4
we shall show that LFEM eigenvalues are not greater than SFEM eigenvalues, as applications,
we shall also prove, for model problems with uniform meshes, that LFEM eigenvalues are lower
approximations in the same section. Numerical results are illustrated in section 5. This paper
ends with section 6, which brings our final remark.

2. Variational Formulation of Eigenvalue Problem

We shall consider the eigenvalue problem in the divergence form which is read as

{
Lu = − ∂

∂xj
(aij

∂
∂xi

u) + c(x)u = λρu on Ω
u = 0 on ∂Ω

(2.1)

where Ω ⊂ Rd is a bounded open domain with smooth enough boundary ∂Ω, aij(x) have local
integrable derivatives, c(x) ∈ L∞(Ω) and c(x) ≥ 0. We assume L is a strict elliptic operator.

For the eigenvalue problem Lu = λρu, there are two variational formulation forms: Rayleigh
quotient and weak form, which are expressed as, respectively

R(v) =
a(v, v)
(ρv, v)

a(u, v) = λ(ρu, v) ∀v ∈ H1
0

where

a(u, v) =
∫

Ω

[aij
∂u

∂xi

∂v

∂xj
+ c(x)uv]dx and (ρu, v) =

∫
Ω

ρuvdx

G.Strang and G.J.Fix in [7] show that the two forms are equivalent, in particular, one has

Lemma 2.1 (min-max principle). Let λl be l-th eigenvalue of problem (2.1), it holds that

λl = min
sl

max
v∈sl

R(v) (2.2)

where sl is any l-dimension subspace of H1
0 (Ω).

Let A and B be n × n real symmetric and positive definite matrixes, discrete counterpart of
Rayleigh quotient with respect to A and B can be stated as

R(x) =
xT Ax

xT Bx
(x ∈ Rn, x �= 0)

where xT denotes the transpose of n-dimensional vector x, then one has

Lemma 2.2. Let λk be k-th generalized eigenvalue of A with respect to B, then

λk = min
Vk

max
x∈Vk,x �=0

R(x) (2.3)

where Vk is any k-dimension subspace of Rn.
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3. LFEM And Its Equivalent Form

3.1. Example of LFEM

Lumped mass means that element mass is lumped at nodes of element in some average
sense, and the mass matrix of the discrete generalized eigenvalue problem in right-hand side
becomes a diagonal matrix and even becomes an unit matrix in the simplest case. To fix the
idea, let us recall the example given by G.Strang and Fix as following,{

−pd2u
dx2 + qu = λu 0 < x < π

u(0) = 0, u
′
(π) = 0

(3.1)

where p > 0 and q > 0 are two constants.
Partitioning domain [0, π] into N subintervals by introducing grid points xj = jh, where

h = π/N is constant width of subintervals, and taking the piecewise linear function space with
natural nodal basis ϕi(x) as the finite element approximation space, denoting approximation

eigenfunction by uh =
N∑

i=1

Qiϕi(x), where Qi, i = 1, · · · , N are values of uh at nodes, recalling

the standard manipulation of finite element procedure, we get, in the end, the system of discrete
eigenvalue equations as follows

KhQh = λhMhQh (3.2)

where global stiff matrix Kh = pKh
1 + qMh, and

Mh = h/6

⎛
⎜⎜⎜⎜⎜⎝

4 1
1 4 1
. . .

. . .
. . .
1 4 1

1 2

⎞
⎟⎟⎟⎟⎟⎠ , Kh

1 = 1/h

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
. . .

. . .
. . .
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎠

So-called lumped mass is to let a diagonal matrix, say Mh
1 , take the place of the mass matrix

Mh in right-hand side, whose diagonal component takes as the value the sum of components
of Mh in the same row, in this case, the diagonal matrix Mh

1 is

Mh
1 =

h

6
diag(5, 6, · · · , 6, 3)

the system of eigenvalue equations becomes

KhQh = λh
1Mh

1 Qh (3.3)

In particular, (3.2) can be represented as the following difference formulation

p

h
(2Qh

i − Qh
i−1 − Qh

i+1) +
qh

6
(4Qh

i + Qh
i+1 + Qh

i−1) = λh h

6
(4Qh

i + Qh
i+1 + Qh

i−1) (3.4)

where Qh
N+1 = Qh

N−1 and Qh
0 = 0 because of u(0) = 0

Likewise, (3.3) can be rewritten as

p

h
(2Qh

i − Qh
i−1 − Qh

i+1) +
qh

6
(4Qh

i + Qh
i+1 + Qh

i−1) = λh
1hQh

i (3.5)
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where Qh
N+1 = Qh

N−1 and Qh
0 = 0.

3.2. An Equivalent Form of LFEM

In this section, we establish an equivalent form of lumped mass finite element method here.
Let Jh be a partition of domain Ω and Sh be the the usual conforming piecewise linear or bilinear
function( trilinear when d = 3 respectively) space associated with Jh, and let Sh

0 = Sh∩H1
0 (Ω).

Then the standard finite element method for the eigenvalue problems is that: Find uh ∈ Sh
0

and 0 �= λh ∈ R such that

a(uh, vh) = λh(ρuh, vh) ∀vh ∈ sh
0 (3.6)

Denote {pi}N
i=1 the interior nodes and ϕ1, · · · , ϕN the natural nodal basis of Sh

0 associated,
then uh ∈ sh

0 can be expressed as

uh =
N∑

j=1

qjϕj (3.7)

where qj , j = 1, · · · , N are values of uh at nodes. Substituting (3.7) into (3.6), and let vh =
ϕk (k = 1, · · ·N) successively, we obtain the system of eigenvalue equations for SFEM as follows

KhQ = λhMhQ (3.8)

where Kh is the stiff matrix and Mh is the mass matrix, Q = (q1, q2, · · · , qN )T .
As mentioned above, lumped mass is to let a diagonal matrix Mh

1 , take the place of the
mass matrix Mh in right-hand side, whose the diagonal component takes as the value the sum
of components of Mh in the same row, thus the system of LFEM eigenvalue equations takes
the form

KhQ = µhMh
1 Q, Mh = diag(m1, m2, · · · , mN ) (3.9)

where mi, i = 1, N denote the mass lumped in the sense described above at the nodes.
In the case of linear or bilinear(trilinear respectively) element, we can interpret lumped mass

procedure from another point of view. We may think the above procedure of lumping mass is
to change the density function ρ(x) into the form ρ(x) =

∑
k

mkδ(x − xk), where xk denote the

coordinates of the nodes, and keep nodal shape functions ϕi invariant. Another interpreting
of lumping mass is to introduce a set of special nodal shape functions, say {ϕ1

j(x)}N
j=1, for the

right-hand side of weak form (3.6) and keep ρ(x) invariant.
We now define this set of shape functions {ϕ1

j(x)}N
j=1. For element T , let {ϕj(x)}ν

j=1 be
the linear or bilinear(trilinear respectively) basis defined on T , define

mT
j =

ν∑
i=1

∫
T

ρϕjϕidx

then {ϕj(x)1}ν
j=1 when restricted on T are defined such that:

1). ϕ1
j ≡ 1 on Tj the neighbourhood of node Pj such that

∫
Tj

ρ(x)dx = mT
j and ϕ1

j ≡ 0 on
T/Tj

2). suppϕ1
j∩suppϕ1

k = ∅, if k �= j.

Note that
ν∑

j=1

mT
j =

∫
T ρdx, it is easy to see there exists a partition Tj, j = 1, · · · , ν of T such
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that the two condidtions 1) and 2) are satisfied.
To fix the idea and simplify the representation, we give some examples for the case where the

density ρ is constant and linear element is used, for the general case, the argument is similar,
in this case, any partition of T such that | Tj | the volume of Tj equals to |T |

ν is desirable.
In the case of one dimension, let T = [xi, xi+1], then ϕ1

i , ϕ1
i+1 can be defined as

ϕ1
i (x) =

{
1 xi ≤ x ≤ xi+xi+1

2
0

ϕ1
i+1(x) =

{
1 xi+xi+1

2 ≤ x ≤ xi+1

0

xi
xi+xi+1

2 xi+1

In the case of two dimension, let p be the center of gravity of the triangle T and M1, M2, M3

are middle points, then ϕ1
i , ϕ1

j , ϕ1
k can be defined as.

ϕ1
i (x) =

{
1 x ∈ Ti

0 otherwise

ϕ1
j(x) =

{
1 x ∈ Tj

0 otherwise

ϕ1
k(x) =

{
1 x ∈ Tk

0 otherwise

 i j 

k 

p 

M1 

M2 
M3 

where Ti, Tj and Tk are quadrilaterals taking the node i, j, k as a vertex respectively as
illustrated in the figure, for example, Ti is quadrilateral iM1pM3.

Set v1 =
N∑

i=1

qiϕi and v0 =
N∑

i=1

qiϕ
1
i , namely, let vh

1 and vh
0 take the same values at nodes

pi, i = 1, · · · , N , then the equivalent form of lumped mass finite method is that : find uh
1 ∈ Sh

0 ,
0 �= µh ∈ R such that

a(uh
1 , vh

1 ) = µh(ρ(x)uh
0 , vh

0 ) ∀vh
1 ∈ sh

0 (3.10)

where uh
0 is similarly defined as v0.

It is easy to show that (3.10) is an equivalent form of lumped mass finite element scheme,
because we can get the same system of discrete lumped mass eigenequations.

4. Properties of LFEM Eigenvalues

In this section, we provide an analysis for properties of lumped finite element eigenvalues.
Here we just consider the case where the density ρ is constant. We first show, for general
problems, that LFEM eigenvalues are not greater than SFEM eigenvalues, then as applications
of this result, we prove a stronger result for model problems with uniform meshes, that LFEM
eigenvalues are lower approximations to exact ones. Our analysis is based on the equivalent
form of LFEM proposed in the previous section. For the convenience of expression, we just
consider the affine element.

Since Kh and Mh are symmetric and positive definite matrixes, the Rayleigh quotient
follows

R(Q) =
QT KhQ

QT MhQ
(4.1)
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where Q = [q1, · · · , qN ]T , qi are the values of uh at nodes pi. From Lemma 2.2, we have

λh
l = min

s
max

Q∈s,Q�=0
R(Q) (4.2)

where λh
l is the l-th eigenvalue of (3.8) and s is an arbitrary l-dimension subspace of RN .

Obviously, Mh
1 is a symmetric and positive definite matrix, Rayleigh quotient of Kh with

respect to Mh
1 is

R1(Q) =
QT KhQ

QT Mh
1 Q

(4.3)

Likewise

µh
l = min

s
max

Q∈s,Q�=0
R1(Q) (4.4)

where µh
l is the l-th eigenvalue of (3.9) and s is an arbitrary l-dimension subspace of RN .

We first establish some technical results by using the equivalent form of LFEM (3.10).

Lemma 4.1. Let µh
l be the l-th eigenvalue of (3.9), it holds that

µh
l = min

s2
max
v1∈s2

a(v1, v1)
(ρv0, v0)

(4.5)

where s2 is any l-dimension subspace of sh
0 .

Proof. This is an immediate consequence of (4.4) and (3.10).

Lemma 4.2. Let {ϕi}N
i=1 and {ϕ1

i }N
i=1 be defined as in the previous section, v1 =

N∑
i=1

qiϕi,

v0 =
N∑

i=1

qiϕ
1
i , Q = {q1, · · · , qN}, it holds that

max
Q∈RN ,Q�=0

(v1, v1)
(v0, v0)

≤ 1 (4.6)

Proof. Since (v1, v1) =
∑

T∈Jh

∫
τ
v2
1dx, and (v0, v0) =

∑
T∈Jh

∫
τ
v2
0dx therefore, we just need to

establish (4.6) on each element T ∈ Jh. Moreover, we just consider the affine element, T can
be mapped into the reference element T̂ by an affine mapping, and the affine transformation
does not change the ratio (v1,v1)

(v0,v0) , with this in mind, we now establish (4.6) on T̂ .

1) In one dimension case, T̂ = [0, 1],

v1 = (q2 − q1)x + q1

v0 =
{

q1 0 ≤ x < 1/2
q2 1/2 ≤ x ≤ 1

(v1, v1)0,T

(v0, v0)0,T
=

1
3 (q2

1 + q2
2) + 1

3q1q2

1
2 (q2

1 + q2
2)

≤ 1
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2) In two dimension case, the reference element T̂ is an isosceles right angle triangle whose right
angle zenith is placed at origin and two right angle sides with unit length lie along x axes and
y axes, respectively,

v1 = q3(1 − x − y) + q1x + q2y

v0 =

⎧⎨
⎩

q1 (x, y) ∈ T̂1

q2 (x, y) ∈ T̂2

q3 (x, y) ∈ T̂3

where T̂i, i = 1, 2, 3 are chosen such that | Ti |= 1
6 .

Direct calculation yields

(v1, v1)0,T

(v0, v0)0,T
=

1
12 (q2

1 + q2
2 + q2

3) + 1
12 (q1q2 + q1q3 + q2q3)

1
6 (q2

1 + q2
2 + q2

3)
≤ 1

Similar argument shows that (4.6) holds for the three dimension case.
Now we show our main result in this section

Theorem 4.1. Let λh
l be the l-th eigenvalue of standard finite element method, and µh

l be l-th
eigenvalue of lumped mass finite element method, assume ρ is constant, then we have

µh
l ≤ λh

l (4.7)

Proof. set v1 =
N∑

i=1

qiϕi, v0 =
N∑

i=1

qiϕ
1
i , Q = (q1, q2, · · · , qN )T . From (4.2), and Lemma 4.1,

we have

λh
l = min

s
max

v1∈s,v1 �=0

a(v1, v1)
(ρv1, v1)

, and µh
l = min

s
max

v1∈s,v1 �=0

a(v1, v1)
(ρv0, v0)

where s is any l-dimension subspace of Sh
0 .

For given s1, by virtue of Lemma 4.2, we deduce

max
v1∈s1

a(v1, v1)
ρ(v0, v0)

= max
v1∈s1

a(v1, v1)
ρ(v1, v1)

(v1, v1)
(v0, v0)

≤ max
v1∈s1

a(v1, v1)
ρ(v1, v1)

max
v1∈s1

(v1, v1)
(v0, v0)

≤ max
v1∈s1

a(v1, v1)
ρ(v1, v1)

Then

min
s

max
v1∈s

a(v1, v1)
ρ(v0, v0)

≤ max
v1∈s1

a(v1, v1)
ρ(v1, v1)

Thus, we get

min
s

max
v1∈s

a(v1, v1)
ρ(v0, v0)

≤ min
s1

max
v1∈s1

a(v1, v1)
ρ(v1, v1)

µh
l ≤ λh

l

which ends the proof.
Remark 4.1. For the linear element, it is well-known that SFEM eigenvalue λh

l is in some
sense a decreasing function of the number of elements of the triangulation of Ω and is not
smaller than exact solution λl, therefore, if one show that LFEM eigenvalue µh

l is in some sense
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an increasing function, then from Theorem 4.1, we can assert µh
l is a lower approximation to

λl.
We shall in what follows examine LFEM eigenvalues of model problems with unform meshes.

Example 1. One dimensional Neumann problem. We recall the example given in section
3. By using the knowledge of constant coefficient difference equations and the special Toeplitz
structure of eigenvalue equations (3.5), we get l-th eigenvector and eigenvalue as follow

(Qh
l )j =

√
π

2
sin[(l − 1

2
)jh], and µh

l = pkh(l) + qmh(l)

where kh(l) = 2h−2[1 − cos(l − 1
2 )h], mh(l) = 2+cos(l− 1

2 )h

3 . Assume that (l − 1
2 )h ≤ π

2 , it is
easy to see µh

l is a decreasing function of h, which amouts to µh
l is a increasing function of the

number of elements of the partition.
Remark 4.2. Without assumption (l − 1

2 )h ≤ π
2 , it equally holds that

µh
l ≤ λl (4.8)

Proof. In fact, carefully exploiting the Taylor expansion of kh(l), mh(l), we obtain

kh(l) = (l − 1
2
)2 − 2

h2
(
[(l − 1

2 )h]4

4!
− [(l − 1

2 )h]6

6!
+

[(l − 1
2 )h]8

8!
· · ·)

mh(l) = 1 − 1
3
(
[(l − 1

2 )h]2

2!
− [(l − 1

2 )h]4

4!
+

[(l − 1
2 )h]6

6!
− · · ·)

i) For (l − 1
2 )h ≥ 2

µh
l = λl − 2p

h2
(
[(l − 1

2 )h]2

2!
− 1 + cos(l − 1

2
)h) − q

3
(1 − cos(l − 1

2
)h)

≤ λl

ii) For (l − 1
2 )h < 2

Obviously the series
[(l − 1

2 )h]4

4!
− [(l − 1

2 )h]6

6!
+

[(l − 1
2 )h]8

8!
· · ·

and the series
[(l − 1

2 )h]2

2!
− [(l − 1

2 )h]4

4!
+

[(l − 1
2 )h]6

6!
− · · ·

are Newton-Leibniz series, signs of sums are determined by the first term, then we come to

kh(l) ≤ (l − 1
2
)2, mh(l) ≤ 1

which ends the proof.
Remark 4.3. The one dimensional Dirichlet example in [1] can be put into this framework,
and a similar result can be obtained. Note that, contrarily to [1], we needn’t assume h is small
enough and tends to zero.
Example 2. Two dimensional Dirichlet Problem. We now consider lumped mass finite
element eigenvalues of Laplace operator in the square domain with Dirichlet boundary condition
as following { −
u = λu (x, y) ∈ Ω

u(x, y) = 0 (x, y) ∈ ∂Ω (4.9)



The Lower Approximation of Eigenvalue by Lumped Mass Finite Element Method 553

where Ω is the rectangle domain:0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Exact eigenvalues of this problem are
λkl = (k2 + l2)π2 (k, l = 1, 2, · · ·). At this stage ,we confine ourselves to uniform triangle mesh.

Partitioning Ω into 2N2 triangles by introducing nodes pi,j = (ih, jh), i, j = 0, · · · , N where
h = 1/N is constant width of subintervals, taking the piecewise linear function space with
natural nodal basis as finite element approximation space, and applying lumped mass finite ele-
ment method to discretize the continuous eigenvalue equation, the system of discrete eigenvalue
equations reads as

−Qi−1,j − Qi,j−1 + 4Qi,j − Qi+1,j − Qi,j−1 = h2µhQi,j (4.10)

Qi,0 = Q0,j = QN,j = Qi,N = 0 (4.11)

i, j = 1, 2, · · · , N − 1, where Qi,j are values of uh at nodes pi,j .
Taking qi,j = A sin kiπh sin ljπh as trial eigenvector, then we obtain lumped mass finite

element eigenvalues as follow

µh
kl = (4 sin2 kπh

2
+ 4 sin2 lπh

2
)/h2

= [4 − 2(cos kπh + cos lπh)]/h2 (4.12)

It is easy, from (4.12), to show that µh
kl is a decreasing function of h, provided that kπh

2 ≤ π
2

and lπh
2 ≤ π

2 , thus µh
kl is a increasing function of the number of elements, by virtue of Remark

4.1, we come to

µh
kl ≤ λkl (4.13)

Similar argument shows that, (4.13) is also true for the rectangle element.

5. Numerical Examples

In the following figures, small box stands for SFEM, and plus LFEM, horizontal axis is
refered to the number of elements of the partition and vertial axis is refered to errors or ap-
proximate eigenvalues.

5.1. Eigenvalue of Laplace operator with Dirichlet boundary condition

0 0.5 1 1.5 2 2.5

x 10
4

0

SFEM 

LFEM 

Fig.1 Errors of LFEM and SFEM

eigenvalues with quasi-uniform

triangular mesh (exact solu-

tion=19.7392088)

0 2000 4000 6000 8000 10000 12000 14000
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

SFEM 

LFEM 

Fig.2 Errors of LFEM and SFEM
eigenvalues with quasi-uniform
rectangular mesh (exact solu-
tion=19.7392088)
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5.2. Eigenvalue of Laplace operator in unit circle domain

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

5.74

5.75

5.76

5.77

5.78

5.79

5.8

5.81

5.82

SFEM 

LFEM 

Fig.3 LFEM and SFEM eigen-
values with quasi-uniform
triangular mesh

Fig.4 mesh of unit circle do-
main

5.3. Eigenvalue of Lu=-
u+(x+y+1)u in unit square domain with ρ(x,y) =x+y+1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10.5

10.6

10.7

10.8

10.9

11

11.1

SFEM 

LFEM 

Fig.5 LFEM and SFEM eigen-
values with quasi-uniform
triangular mesh
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SFEM 
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Fig.6 LFEM and SFEM eigenval-
ues with quasi-uniform rectangu-
lar mesh

5.4. Eigenvalue of Lu=-∂y [(xy +1)∂xu]+(sin(x)+ sin(y)+1)u in unit square domain
with ρ(x, y) = cos(x) cos(y) + 1
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Fig.7 LFEM and SFEM eigen-
values with uniform triangular
mesh
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Fig.8 LFEM and SFEM eigenval-
ues with quasi-uniform triangu-
lar mesh
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5.5. Eigenvalue of beam vibration problem
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Fig.9 LFEM and SFEM eigen-
values with quasi-uniform mesh
(exact solution=97.409090588)

60 80 100 120 140 160 180 200
41.74

41.75

41.76

41.77

41.78

41.79

41.8

SFEM 

LFEM 

Fig.10 LFEM and SFEM eigen-
values with quasi-uniform mesh

We shall consider the transverse free vibration of elastic beams in this subsection. Let Y be
the transverse displacement, which agrees the following fourth order differential equation

− ∂2

∂x2
[EI(x)

∂2Y (x, t)
∂x2

] = ρ(x)
∂2Y (x, t)

∂t2

The corresponding eigenvalue problems is

− d2

dx2
[EI(x)

d2Y (x)
dx2

] = λρ(x)Y (x)

Where E is elastic modulus, I(x) is moment of inertia.
In order to use piecewise linear function space as finite element approximation space, we have

to reduce the fourth order differential equation into a system of second differential equations by
introducing the bending moment M(x) = EI(x)d2Y (x)

dx2 as an independent variable, we obtain

{
− d2M(x)

dx2 = λρ(x)Y (x)
M(x) = EI(x)d2Y (x)

dx2

In our numerical examples, we set E=1,I=1,ρ = 1 and E=1,I=1, ρ = 1.5+sin 4∗πx, the results
are illustrated in Fig.9 and Fig.10 respectively

6. Final Conclusion

In the present paper, we provide analysis for properties of LFEM eigenvalues. We show that
SFEM eigenvalues are not smaller than LFEM eigenvalues for the elliptic eigenvalue problem
where the density ρ is constant, however, numerical examples in the previous section denonstrate
this result equally holds for the problem where ρ is no constant. As applications of this result,
we examine the LFEM eigenvalues of model problems and prove they are lower approximations
to exact solutions, for general problems, whether such a result is valid or not is still an open
problem, but as Remark 4.1 points out, if the fact that has been demonstrated by our numerical
examples, namely, LFEM eigenvalues are in some sense increasing functions of the number of
elements, is provd, then one can safely assert LFEM eigenvalues are lower approximations.
For one dimensional problem with constant coefficients, let Jh

2 be the refinement of Jh
1 by

introducing a more node, by comparing the Rayleigh quotients of them, for the first LFEM
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eigenvalue, we can show it is an increasing function in this sense, unfortunately, such an idea
can not be extended to general problems, so we skill the proof here. Whether LFEM eigenvalues
are increasing functions and therefore lower approximations or not for the general case needs
and is worth further studying.
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