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Abstract

In this paper, we perform a nonlinear multiscale analysis for incompressible Euler equa-
tions with rapidly oscillating initial data. The initial condition for velocity field is assumed
to have two scales. The fast scale velocity component is periodic and is of order one.
One of the important questions is how the two-scale velocity structure propagates in time
and whether nonlinear interaction will generate more scales dynamically. By using a La-
grangian framework to describe the propagation of small scale solution, we show that the
two-scale structure is preserved dynamically. Moreover, we derive a well-posed homoge-
nized equation for the incompressible Euler equations. Preliminary numerical experiments
are presented to demonstrate that the homogenized equation captures the correct averaged
solution of the incompressible Euler equation.

Mathematics subject classification: 76F25, 76B47, 35L45
Key words: Incompressible flow, Multiscale analysis, Homogenization, Multiscale compu-
tation.

1. Introduction

In this paper, we study homogenization of the incompressible Euler equation with highly
oscillating initial velocity field. The understanding of scale interactions for 3-D incompressible
Euler and Navier-Stokes equations has been a major challenge. For high Reynolds number flows,
the degrees of freedom are so high that it is almost impossible to resolve all small scales by
direct numerical simulations. Deriving an effective equation for the large scale solution is very
useful in engineering applications. The nonlinear and nonlocal nature of the Euler equations
makes it difficult to construct a properly-posed multiscale solution. If one does not make the
correct assumption in the asymptotic expansion of the multiscale solution, one may not be able
to derive a well-posed homogenized equation.

The homogenization of the incompressible Euler equation with oscillating data was first
studied by McLaughlin, Papanicolaou and Pironneau (MPP for short) in 1985 [8]. To construct
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a multiscale expansion for the solution of the Euler equation, they made a critical assumption
that the oscillation is convected by the mean flow. Using multiscale expansion techniques, MPP
obtained a periodic cell problem for the velocity field and the pressure. However, it is not clear
whether the resulting cell problem has a solution that is periodic in both the fast space variable
y and the fast time variable τ . Even if such solution exists, it may not be unique. Additional
assumptions were imposed on the solution of the cell problem in order to derive a variant of
the k − ε model.

Our study shows that the small scale oscillations are actually convected by the full oscillatory
velocity field. The multiscale structure of the solution becomes apparent when we formulate the
Euler equations in vorticity-stream function formulation and use the Lagrangian flow map to
describe the propagation of oscillations. Vorticity preserves naturally the multiscale structure of
its initial data via the Lagrangian formulation. Velocity can be constructed using the vorticity-
stream function formulation. By using a Lagrangian description, we characterize the nonlinear
convection of small scales exactly and turn a convection dominated transport problem into an
elliptic problem for the stream function. Thus, traditional homogenization result for elliptic
problems [1] can be used to obtain multiscale expansions for the stream function and the flow
map respectively. Using the insight we obtain from the homogenization theory in the Lagrangian
frame, we also derive the corresponding homogenized equation in the Eulerian frame, which can
be used more effectively for computational purpose. The effect of viscosity can be included in
our analysis. For the sake of simplicity in our presentation, we will not include the viscous
effect in the present analysis.

The homogenization theory of the incompressible Euler equation provides a useful guideline
in designing effective multiscale computational methods for incompressible flows. In particular,
we can use the homogenization theory to examine the role of the so-called Reynolds stress
[10, 4]. By making appropriate assumption on the homogeneity of the flow, we can propose
new coarse grid model for the large scale solution which is dynamically coupled to a subgrid cell
problem. Our multiscale analysis also reveals that without external forcing and viscosity effect,
we need to remove certain resonant velocity component in the cell velocity field in order to avoid
some secular growth in the multiscale expansion. This resonant cell velocity field corresponds
to the non-mixable part of the velocity field. Removing this non-mixable velocity component is
equivalent to adding a high frequency forcing term to the incompressible Euler equation, which
has the effect of accelerating the flow mixing.

We have performed some preliminary numerical experiments to confirm the convergence
of our multiscale analysis. For practical purpose, it is important to generalize our two-scale
analysis to problems that do not have scale separation. We can do this either in the physical
space or in the Fourier space. From the preliminary computations we present in this paper, we
found that the numerical solution obtained from the homogenized equation gives an accurate
approximation to the corresponding well-resolved solution of the incompressible Euler equation.
Small scale velocity field can be reconstructed from the large scale solution and the subgrid cell
solution. Furthermore, we found that there is no need to use a projection method to remove
the resonant velocity component if the initial velocity field does not contain such resonant
component.

The organization of the rest of the paper is as follows. In Section 2, we will present the
formulation of the Euler equations with rapidly oscillating initial data. We will also review
the previous work by MPP in some details. Section 3 is devoted to developing the multiscale
analysis of the Euler equations in the Lagrangian formulation. We will use the insight gained in
Section 3 to perform a multiscale analysis in the Eulerian formulation in Section 4. In Section
5, we will present some numerical examples to demonstrate the convergence of our multiscale
analysis.
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2. Formulation

We consider the incompressible Euler equation

uε
t + (uε · ∇)uε = −∇pε, (1)
∇ · uε = 0, (2)

with multiscale initial data uε(x, 0) = uε
0(x). Here uε(t,x) and pε(t,x) are velocity and pressure

respectively. Throughout the paper, we will use boldface letters to denote vector variables. For
the time being, we only consider the infinite domain and assume that the solution decays to
zero sufficiently fast at infinity. Further, we assume that uε(x, 0) = U(x) + W(x, x

ε ), where
W(x,y) is periodic in y and has mean zero. This is a typical assumption in homogenization
theory [1]. The question of interest is how to derive a homogenized equation for the averaged
velocity field for small but finite ε.

The homogenization of the Euler equation with oscillating data was first studied by McLaugh-
lin-Papanicolaou-Pironneau (MPP for short) [8]. In [8], MPP made an important assumption
that the small scale oscillation is convected by the mean flow. Based on this assumption, they
made the following multiscale expansion for the velocity and pressure:

uε(t,x) = u(t,x) + w(t,x,
t

ε
,
θ(t,x)
ε

) + εu1(t,x,
t

ε
,
θ(t,x)
ε

) + · · ·

pε(t,x) = p(t,x) + q(t,x,
t

ε
,
θ(t,x)
ε

) + εp1(t,x,
t

ε
,
θ(t,x)
ε

) + · · ·
where w(t,x, τ,y), u1(t,x, τ,y), q, and p1 are assumed to be periodic in both y and τ , and the
phase θ is convected by the mean velocity field u

∂θ

∂t
+ u · ∇xθ = 0, θ(0,x) = x . (3)

By substituting the above multiscale expansions into the Euler equation and equating coef-
ficients of the same order, MPP obtained a homogenized equation for (u, p), a periodic cell
problem for (w(t,x, τ,y), q(t,x, τ,y)). On the other hand, it is not clear whether the resulting
cell problem for w and q has a unique solution that is periodic in both y and τ . Additional
assumptions were imposed on the solution of the cell problem in order to derive a variant of
the k − ε model.

The understanding of how small scale solution being propagated dynamically is clearly
very important in deriving the homogenized equation. Our study shows that the small scale
oscillations are convected by the full oscillatory velocity field, not just the mean velocity:

∂θε

∂t
+ uε · ∇xθ

ε = 0, θε(0,x) = x . (4)

This is clear for the 2-D Euler equation since vorticity, ωε, is conserved along the characteristics:

ωε(t,x) = ω0(θε(t,x),
θε(t,x)

ε
),

where ω0(x,x/ε) is the initial vorticity, which is of order O(1/ε). Similar conclusion can be
drawn for the 3-D Euler equation. Now the multiscale structure of θε(x, t) is coupled to the
multiscale structure of uε. In some sense, we embed multiscale structure within multiscale
expansions. It is quite a challenge to unfold the multiscale solution structure. Naive multiscale
expansion for θε may lead to generation of infinite number of scales for t > 0.

3. Multiscale Analysis in Lagrangian Frame

The key idea in our multiscale analysis for the Euler equation is to reformulate the problem
using θε as a new variable. This amounts to using a Lagrangian description of the Euler
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equation. Specifically, we introduce a change of variables from x to α with α = θε(t,x). It is
easy to see that the inverse of this map, denoted as x = Xε(t,α), is the Lagrangian flow map:

∂X(t,α)
∂t

= uε(t,X(t,α)), X(0,α) = α. (5)

In terms of the α variable, the vorticity of the 3-D Euler equation has a simple expression [2]:

ωε(t,Xε(t,α)) =
∂Xε

∂α
(t,α)ω0(α,

α

ε
) , (6)

where ωε = ∇x × uε, and ω0 is the initial vorticity. Velocity can be computed via the stream
function ψε, i.e. uε = ∇x ×ψε. Further, the stream function, ψε, satisfies

−�x ψ
ε = ωε .

In terms of the α variable, we have

−∇α ·
(AA�∇αψ

ε
)

=
∂Xε

∂α
(t,α)ω0(α,

α

ε
) , (7)

where A =
(

∂Xε

∂α
)−1

, and A� is the transpose of A. Since the flow is incompressible, we have
|∂Xε

∂α | = 1. Thus we can express A in terms of ∂Xε

∂α . We can see clearly that the small scale
structure is propagated along the Lagrangian trajectory as a function of α/ε.

We are interested in studying the mixing property and the large time behavior of the Euler
equation. For this reason, we look for multiscale solutions of the form:

ψε = ψ(0)(t,α) + εψ(1)(t,α, τ,y) +O(ε2) ,
Xε = X(0)(t,α) + εX(1)(t,α, τ,y) +O(ε2),

where y = α/ε, τ = t/ε, and ψ(1) and X(1) are periodic functions with respect to y and have
zero mean.

By performing careful multiscale analysis, we can obtain the homogenized equations for
both two and three space dimensional Euler equations. For simplicity, we only state the main
result for the 2-D Euler equation. Detailed multiscale analysis for the 3-D Euler equation can
be found in [7]. The homogenized equations for X(0), X(1), and ψ(0), ψ(1) are given as follows:

∂tX(0) −
(
∇⊥

αψ
(0) · ∇α

)
X(0) = 0, X(0)|t=0 = α, (8)

∂τX(1) −
(
∇αX(0) +∇yX(1)

)
∇⊥

y ψ
(1) = 0, X(1)|τ=0 = 0, (9)

∇⊥
α ·

(
∇αX

(0)�∇αX
(0)∇⊥

αψ
(0)

)
+∇⊥

α · 〈A�
0 A0∇⊥

y ψ
(1)〉 = ∇⊥

α ·U, (10)

∇⊥
y ·

(
A�

0 A0∇⊥
y ψ

(1)
)

= ∇⊥
y ·W, (11)

where ∇⊥
α = (−∂α2 , ∂α1), 〈f〉 stands for the average of f as a function y over one period,

U and W are the initial mean and fluctuating velocity components respectively, and A0 =
∇αX(0) +∇yX(1) is the leading order term in the expansion of the Jacobian matrix of A. It
can be shown that |A0| ≡ 1, which implies the well-posedness of the ψ(1)-equation. Note that
equation (11) is an elliptic equation for the first order corrector ψ(1) as a function of y with
periodic boundary condition. It is similar to the first order corrector in the standard elliptic
homogenization.

The elliptic problems (10)-(11) for ψ(0) and ψ(1) are clearly solvable with appropriate bound-
ary condition. However, to avoid the secular growth of the multiscale expansion, we need to
ensure that εX1 → 0 as ε→ 0.

Let w = ∇⊥
y ψ

(1) be the cell velocity, and Y(τ,y) be the cell characteristic, i.e. for each α
and t fixed, Y(τ,y) satisfies

dY
dτ

= w(τ,Y) , Y(0,y) = y.



224 THOMAS Y. HOU, D.P. YANG AND K. WANG

If there is a non-mixable resonant component in the cell velocity field, we will have

1
T

∫ T

0

w(t,α, τ,Y(τ,y))dτ → η(t,α,y) �= 0 as T →∞.

In this case, εX1 will be of order O(t) for t > 0, i.e. the flow map will develop an O(1)
oscillation dynamically. To avoid this secular growth, we will use the following projection
method to remove the resonant component from the cell velocity field w:

w(t,α, τ,y) ← w(t,α, τ,y)− lim
T→∞

1
T

∫ T

0

w(t,α, τ,Y(τ,y))dτ .

For the Navier-Stokes equation, viscosity and random forcing play the role to eliminate
the non-mixable component of the flow velocity. Eliminating this non-mixable component is
essential for the flow to be fully mixed. For the inviscid Euler equation, the projection method
is equivalent to adding a high frequency forcing to the momentum equation to eliminate the
non-mixable component. This can be also viewed as an acceleration method to enhance the
mixing of the flow.

4. Multiscale Analysis in the Eulerian Frame

In this section, we will derive the homogenized equation in the Eulerian formulation. In
practice, it is more convenient to compute the homogenized equation in the Eulerian formula-
tion. In deriving the multiscale analysis in the Eulerian frame, we use the phase variable θε to
describe the propagation of the small scale component of the velocity field, but use the Eulerian
variable to describe the large scale averaged solution. One advantage of this approach is that
we can characterize the nonlinear convection of small scales exactly using this phase variable
and turn a convection dominated transport problem into an elliptic problem for the pressure.
Thus, other multiscale computational methods for elliptic problems (e.g. [6]) can be applied to
study the upscaling of the multiscale pressure equation.

Motivated by our multiscale analysis in the Lagrangian frame, we look for multiscale ex-
pansions of the velocity field and the pressure of the following form:

uε(t,x) = u(t,x) + w(t,θ(t,x), τ,y) + εu(1)(t,θ(t,x), τ,y) + · · · , (12)
pε(t,x) = p(t,x) + q(t,θ(t,x), τ,y) + εp(1)(t,θ(t,x), τ,y) + · · · , (13)

where τ = t/ε and y = θε(t,x)/ε. We assume that w, and q have zero mean with respect to y.
The phase function θε is defined in (4) and it has the following multiscale expansion:

θε = θ(t,x) + εθ(1)(t,θ(t,x), τ,
θε

ε
) + · · · . (14)

This particular form of multiscale expansion was suggested by our Lagrangian multiscale anal-
ysis. If one tried to expand θε naively as a function of x/ε and t/ε, one would find that there is
a generation of infinite number of scales at t > 0 and would not be able to obtain a well-posed
cell problem.

Expanding the Jacobian matrix, we get∇xθ
ε = B(0)+εB(1)+· · · . Substituting the expansion

into the Euler equation and matching the terms of the same order, we obtain the following
homogenized equation:

∂tu + u · ∇xu +∇x · 〈〈ww〉〉 = −∇xp, u|t=0 = U(x) , (15)
∇x · u = 0, (16)

where 〈〈ww〉〉 stands for the space-time average in (y, τ). The equation for w is given by

∂τw + B(0)�∇yq = 0, τ > 0;

(B(0)�∇y) ·w = 0, w|τ=0 = W(x,y), t = 0 .
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Further, it can be shown that B(0)�∇yq has zero mean in y.
Moreover, we can derive the evolution equations for θ and θ(1) as follows

∂tθ + (u · ∇x)θ = 0, θ|t=0 = x, (17)

∂τθ
(1) + (w · ∇x)θ = 0, θ(1)|τ=0 = 0. (18)

From θ and θ(1), we can compute the Jacobian matrix B(0) as follows:

B(0) = (I −Dyθ
(1))−1∇xθ . (19)

As in the Lagrangian case, we also need to remove the non-mixable component of the cell
velocity to avoid secular growth in εθ(1). For this purpose, we apply a projection method to w
to remove the component of w that has nonzero mean in τ :

w ← w − lim
T→∞

1
T

∫ T

0

w dτ.

We remark that there is some related work on homogenization of the Navier-Stokes equation
with large amplitude high frequency periodic forcing, see, e.g. [3, 9]. In these problems, the
multiscale solution has a simple structure, uε = u(t,x) + w(t,x,x/ε) + · · · . The cell problem
is diffusion dominated, based on the balance between the high frequency forcing and the cell
diffusion.

5. Numerical Experiments

The above multiscale analysis can be generalized to problems with general multiscale initial
data without scale separation and periodic structure. This can be done either in the physical
space or in the Fourier space. We found it more effective to work on the Fourier space. We
restrict our computation to 2-D incompressible fluids with oscillatory initial data in a doubly
periodic box of size 2π × 2π. We apply the pseudo-spectral method to compute both the
large-scale homogenized equation for u and the small-scale cell problem for w. The 4th-order
Adamas-Bashforth time discretization method is used for both the homogenized equation and
the cell problem. To obtain a more effective discretization of the cell problem, we reformulate
the cell problem by making the following change of variables in y and w:

z = y − θ1(t,θ(t,x), τ,y), (20)
w̃ = (∇xθ)w. (21)

Then, the cell problem for w becomes

∂τ w̃ + (w̃ · ∇z)w̃ + (∇xθ)(∇xθ
�)∇zq = 0, (22)

∇z · w̃ = 0, (23)
w̃|τ=0 = W(x, z), t = 0. (24)

In our computations, we solve the homogenized equation (15) and the cell problem (22) together
within each coarse grid time step. For example, we update the mean velocity by an explicit
time marching method using the mean velocity at time tn = n∆t and the cell velocity w from
the previous time step, τn = tn/ε. We then update the cell solution w in the fast time variable
τ from τn to τn+1 using the mean velocity at tn and the cell velocity w at τn.

To check the accuracy of our homogenized equation, we compare the computational result
obtained by solving the homogenized equation with that obtained by a well resolved direct
numerical simulation (DNS). Further, we use the first two terms in the multiscale expansion
for the velocity field to reconstruct the fine grid velocity field. More specifically, we use the
spectral interpolation of the phase function, and approximate the velocity field by

uε(t,x) ∼ u(t,x) + w(t,θ(t,x), τ,
θε(t,x)

ε
). (25)
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In setting up initial data, we sample the stream function for both the mean flow and the
fluctuation from the same Fourier distribution ψ̂(k), e.g.,

|ψ̂(k)| = k

kα + δ
, k ≡ |k|, k ≤ kmax, (26)

with random phases and properly chosen α and δ. This choice of initial velocity field is inspired
by the earlier work of Henshaw-Kreiss-Reyna [5]. In the computation, we choose α = 4 and
δ = 10−5. The Fourier transform of the large scale components of the stream function is given
by

ψ̂<(k) = ψ̂(k), k ≤ kcutoff , (27)

and the Fourier transform of the small scale components of the stream function is given in terms
of ψ>(y) with y = x/ε, where ψ>(y) is homogeneous with no dependence on slow variable and
is given by

ψ̂>(k) =
1
ε2
ψ̂(

k
ε
),

k

ε
≤ kmax. (28)

One can now generate the initial velocity field for the mean, U(x), and the fluctuation, W(y)
from ψ<(x) and ψ>(y) respectively. For this particular initial condition, U has a maximum
value equal to 1, and W has a maximum value 0.8. We plot the Fourier spectrum of the initial
horizontal velocity field in Figure 4a. As we can see, there is no scale separation in this initial
condition.

In the computation, we choose ε = 0.05, kmax = 200 and accordingly kcutoff = 1/ε. The
dimension of the coarse grid (slow variable) is 64× 64 and that of small scale (fast variable) is
32×32. The time-step for the homogenized equation is ∆t = 10−2 and the subgrid time-step for
the cell problem is ∆τ = 10−2. The time average is applied over each interval of length ∆t/ε.
In Figure 1a, we plot the initial horizontal velocity field in the fine mesh. The corresponding
coarse grid velocity field is plotted in Figure 1b. We compare the computation obtained by the
homogenized equation with that obtained by DNS at t = 0.5 in Figure 2. We use the spectral
interpolation to reconstruct the fine grid velocity field as a sum of the homogenized solution
u and the cell velocity field w. We can see that the reconstructed velocity field (plotted only
on the coarse grid) captures very well the fine grid velocity field obtained by DNS using a
512 × 512 grid. We also compare the accuracy in the Fourier space, which is given in Figure
4b. The agreement is excellent in both low frequencies and high frequencies. Further, we
compare the mean velocity field obtained by the homogenized equation with that obtained
by direct simulation using a low pass filter. The results are plotted in Figure 3 and Figure
5 respectively. We can see that the agreement between the two calculations is very good up
to t = 1.0. The low pass filter we used is a Gaussian-type filter which has a spectral symbol
exp(−sk2), where s is known as filter scale and k is the module of Fourier modes. We use
s = 0.01 and s = 0.005 respectively in our calculations. The choice of s = 0.01 seems to give
a better result. We are currently performing convergence study of long time calculations. To
avoid excessive deformation in the phase variable, we need to reinitialize the phase variable
from time to time. This will be reported elsewhere in the future.

Our objective is to use the homogenization theory to design an effective coarse grid model
that can capture correctly the large scale behavior but with a computational cost comparable
to the traditional Large Eddy Simulation (LES) models [10, 4]. To achieve this, we need to take
into account the special structures in the fully mixed flow, such as homogeneity and possible
local self-similarity of the flow. When the flow is fully mixed, we expect that the Reynolds
stress term, i.e. 〈ww〉, will reach to a statistical equilibrium relatively fast. As a consequence,
we may need to solve for the cell problem in τ for only a small number of time steps after
updating the effective velocity in one coarse grid time step. Moreover, for homogeneous flow,
we need not solve the cell problem for every coarse grid. It should be sufficient to solve one or a
few representative cell problems for fully mixed flow and use the solution of these representative
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cell solutions to compute the Reynolds stress term in the homogenized velocity equation. If
this can be achieved, it will offer a significant computational saving.

References

[1] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,

Volume 5 of Studies in Mathematics and Its Applications, North-Holland Publ., 1978.

[2] A.J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd ed.,

Springer-Verlag, New York, 1993.

[3] W. E and C.W. Shu, Effective Equations and the Inverse Cascade Theory for Kolmogorov Flows,

Phy.s Fluids A, 5 (1993), 998-1010.

[4] M. Germano, U. Pimomelli, P. Moin, and W. Cabot, A Dynamic Subgrid-Scale Eddy Viscosity

Model, Phys. Fluids A, 3 (1991), 1760-1765.

[5] W. D. Henshaw, H. O. Kreiss, and L. G. Reyna, Smallest Scale Estimates for the Navier-Stokes

Equations for Incompressible Fluids, Arch. Ration. Mech. An., 112 (1990), 21-44.

[6] T. Y. Hou and X. H. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite

Materials and Porous Media, J. Comput. Phys., 134 (1997), 169-189.

[7] T. Y. Hou, D.-P. Yang, K. Wang, Multiscale Analysis for Incompressible Euler Equations, preprint,

2004.

[8] D. W. McLaughlin, G. C. Papanicolaou, and O. Pironneau, Convection of Microstructure and

Related Problems, SIAM J. Applied Math., 45 (1985), 780-797.

[9] A. Novikov and G. Papanicolaou, Eddy Viscosity of Cellular Flows, J. Fluid Mech., 446 (2001),

173-198.

[10] J. Smogorinsky, General Circulation Experiments with the Primitive Equations, Mon. Weather

Review, 91 (1963), 99-164.



228 THOMAS Y. HOU, D.P. YANG AND K. WANG

[p]



Homogenization of Incompressible Euler Equations 229

[p]


