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Abstract

Let SE denote the least-squares symmetric solution set of the matrix equation AXB =

C, where A, B and C are given matrices of suitable size. To find the optimal approximate

solution in the set SE to a given matrix, we give a new feasible method based on the

projection theorem, the generalized SVD and the canonical correction decomposition.
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1. Introduction

Denote by Rm×n the set of real m× n matrices, and SRn×n the set of symmetric matrices in

Rn×n. In this paper, we consider the following problem:

Problem 1.1. Given A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p and X∗ ∈ SRn×n. Let

SE = {X |X ∈ SRn×n, ‖AXB − C‖ = min
Y ∈SRn×n

‖AY B − C‖}.

Find X̂ ∈ SE such that

‖X̂ −X∗‖ = min
X∈SE

‖X −X∗‖,

where ‖ · ‖ denotes the Frobenius norm.

In other word, SE is the least-squares symmetric solution set of the matrix equation

AXB = C, (1.1)

and X̂ is the optimal approximate least-squares symmetric solution of the matrix equation (1.1)

to the given matrix X∗.

The consistency conditions of the matrix equation (1.1) with the symmetric solution were

given by Chu [1] (see also Dai [3]), and the symmetric solutions can also be obtained by using

the generalized singular value decomposition (GSVD) when the matrix equation is consistent.

For the matrix equation (1.1), Wang and Chang [17] gave the least-squares symmetric solution

by using GSVD; Liao and Bai [12] and Deng [5] considered the least-squares solution over

the symmetric positive semi-definite matrices and positive semi-definite matrices, respectively;

and Yuan [19] also gave the minimum-norm least-squares symmetric solution for the consistent

matrix equation (1.1) by using the canonical correlation decomposition (CCD).
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The problem of finding a nearest matrix in the least-squares symmetric solution set of a

matrix equation to a given matrix in the sense of the Frobenius norm, that is, Problem 1.1

in this paper, is called the matrix nearness problem. The matrix nearness problem is initially

proposed in the processes of test or recovery of linear systems due to incomplete dates or

revising dates. A preliminary estimate X∗ of the unknown matrix X can be obtained by the

experimental observation values and the information of statical distribution. There are many

important results on the discussions of the matrix nearness problem associated with other

matrix equations, we refer the reader to [2, 4, 8, 9, 10, 15] and references therein.

In this paper, we develop an efficient method to solve Problem 1.1. Our approach is based on

the projection theorem in Hilbert space, GSVD and CCD of matrix pairs. It can be essentially

divided into three parts: First, we find a least-squares solution X0 of the matrix equation

(1.1) by using GSVD; then utilizing the solution X0 and the projection theorem, we transfer

Problem 1.1 to a problem of finding the optimal approximate symmetric solution of a consistent

matrix equation; finally, we find the optimal approximate symmetric solution of the consistent

matrix equation by using CCD.

The paper is organized as follows. After introducing some necessary notations and several

useful lemmas in Section 2, we will discuss Problem 1.1 in Section 3, and give the expression

of its solution. Then, in Section 4, we give the numerical algorithm to compute the solution of

Problem 1.1. Numerical experiments will be carried out in Section 4.

2. Notations and Lemmas

The notation used in this paper can be summarized as follows: the set of all n×n orthogonal

matrices in Rn×n is denoted by ORn×n. Denote by I the unit matrix. AT , tr(A) and rank(A)

respectively denote the transpose, the trace and the rank of the matrix A. For A = (aij) ∈

Rm×n, B = (bij) ∈ Rm×n, A ∗ B represents the Hadamard product of the matrices A and B,

that is, A ∗B = (aijbij)m×n. Let 〈A,B〉 represent the inner product of the matrices A and B,

that is, 〈A,B〉 = tr(BTA). Then Rm×n is a Hilbert inner product space, and the norm of a

matrix produced by the inner product is the Frobenius norm.

We first state the concepts of the GSVD and CCD, which are essential tools for deriving

the solution of Problem 1.1. See [6, 7, 11, 13, ?, 16] for details.

Let A ∈ Rm×n and B ∈ Rn×p. Then the GSVD of the matrix pair (A,BT ) is given by

A = UΣAM and BT = V ΣBM, (2.1)

where U ∈ ORm×m and V ∈ ORp×p; M ∈ Rn×n is a nonsingular matrix; and

ΣA =




Ir 0 0 0

0 SA 0 0

0 0 0(m−r−s)×(k−r−s) 0


 and ΣB =




0(p+r−k)×r 0 0 0

0 SB 0 0

0 0 I(k−r−s) 0




are block matrices, with the diagonal matrices SA and SB being given by

SA = diag(α1, α2, · · · , αs) > 0 and SB = diag(β1, β2, · · · , βs) > 0.

Here

k = rank(AT , B), r = k − rank(B), s = rank(A) + rank(B) − k.
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We further partition the orthogonal matrices

U = ( U1 U2 U3 ) and

r s m− r − s

V = ( V1 V2 V3 )

p+ r − k s k − r − s
(2.2)

compatibly with the block row partitioning of ΣA and ΣB, respectively.

The CCD of the matrix pair (AT , B) is given by

AT = Q(ΞA, 0)E−1
A and B = Q(ΞB, 0)E−1

B , (2.3)

where Q ∈ ORn×n; EA ∈ Rm×m and EB ∈ Rp×p are nonsingular matrices; and

ΞA =




Ir′ 0 0

0 CA 0

0 0 0

0 0 0

0 DA 0

0 0 It′




and ΞB =




Ir′ 0 0

0 Is′ 0

0 0 Ih−r′−s′

0 0 0

0 0 0

0 0 0




are block matrices, with the diagonal matrices CA and DA being given by

CA = diag(µ1, µ2, · · · , µs′) > 0 and DA = diag(λ1, λ2, · · · , λs′ ) > 0.

Here,

g = rank(A) = r′ + s′ + t′, h = rank(B),

r′ = rank(A) + rank(B) − rank(AT , B), s′ = rank(AB) − r′.

We further partition the nonsingular matrices

EA = ( A1 A2 A3 A4 ) and

r′ s′ t′ m− g

EB = ( B1 B2 B3 B4 )

r′ s′ h− r′ − s′ p− h
(2.4)

compatibly with the block column partitioning of (ΞA, 0) and (ΞB , 0), respectively.

The following lemmas are important for deriving an analytical formula of the solution of

Problem 1.1.

Lemma 2.1. (The Projection Theorem [18]) Let X be an inner product space, M be a

subspace of X, and M⊥ be the orthogonal complement subspace of M . For a given x ∈ X, if

there exists an m0 ∈ M such that ‖x − m0‖ ≤ ‖x − m‖ holds for any m ∈ M , then m0 is

unique and m0 ∈ M is the unique minimization vector in M if and only if (x −m0)⊥M , i.e.,

(x−m0) ∈M⊥.

Lemma 2.2. Given matrices F = (fij) ∈ Rt
′
×s′ , E = (eij) ∈ Rs

′
×t′ and G = (gij) ∈ Rs

′
×t′ .

Let

CA = diag(µ1, µ2, · · · , µs′) and DA = diag(λ1, λ2, · · · , λs′)

be given diagonal matrices of positive diagonal entries, satisfying µ2
i + λ2

i = 1 (i = 1, . . . , s′),

and define

ϕ(Y ) = ‖Y − F‖2 + ‖C−1
A (E −DAY

T ) −G‖2.
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Then there exists a unique matrix Ỹ = (ỹij) ∈ Rt
′
×s′ such that

ϕ(Ỹ ) = min
Y ∈Rt′×s′

ϕ(Y ).

Moreover, the matrix Ỹ possesses the analytical expression

Ỹ = [FC2
A + ETDA −GTDACA]. (2.5)

Proof. For the given matrices, we have

ϕ(Ỹ ) =
∑

i,j

[(ỹij − fij)
2 + (

1

µj
eji −

λj

µj
ỹij − gji)

2].

Because ϕ(Ỹ ) is a convex, continuous and differentiable function with respect to the t′s′ vari-

ables ỹij (i=1, . . . , t′, j=1, . . . , s′), we easily know that ϕ(Ỹ )=min if and only if ∂ϕ(Ỹ )
∂ỹij

=0. It

then follows from direct computations that

ỹij = fijµ
2
j + ejiλj − gijλjµj , i = 1, . . . , t′, j = 1, . . . , s′. (2.6)

By rewriting (2.6) in matrix form, we immediately obtain (2.5). �

Lemma 2.3. Given matrices F = (fij) ∈ SRs
′
×s′ , E = (eij) ∈ Rs

′
×s′ and G = (gij) ∈ Rs

′
×s′ .

Let

CA = diag(µ1, µ2, · · · , µs′) and DA = diag(λ1, λ2, · · · , λs′)

be given diagonal matrices of positive diagonal entries, satisfying µ2
i + λ2

i = 1 (i = 1, . . . , s′),

and define

ψ(Y ) = ‖Y − F‖2 + 2‖ETD−1
A − Y CAD

−1
A −G‖2.

Then there exists a unique matrix Ŷ = (ŷij) ∈ SRs
′
×s′ such that

ψ(Ŷ ) = min
Y ∈SRs′×s′

ψ(Y ).

Moreover, the matrix Ŷ possesses the analytical expression

Ỹ = K ∗ [DAFDA +D2
AE

TCA + CAED
2
A −D2

AGDACA −DACAG
TD2

A], (2.7)

where K = (kij) ∈ Rs
′
×s′ is defined by

kij =
1

λ2
j + λ2

iµ
2
j

, i, j = 1, . . . , s′.

Proof. For the given matrices, we have

ψ(Ŷ ) =
∑
i

[
(ŷii − fii)

2 + 2( 1
λi
eii −

µi

λi
ŷii − gii)

2
]

+
∑
i<j

[
2(ŷij − fij)

2 + 2( 1
λj
eji −

µj

λj
ŷij − gij)

2 + 2( 1
λi
eij −

µi

λi
ŷij − gji)

2
]
.

Since ψ(Ŷ ) is a convex, continuous and differentiable function with respect to the s′(s′+1)
2

variables ŷij (i, j = 1, . . . , s′), we easily know that ψ(Ŷ ) = min if and only if ∂ψ(Ŷ )
∂ŷij

= 0. It then

follows from direct computations that

ŷij =
λifijλj + λ2

i ejiµj + µieijλ
2
j − λ2

i gijλjµj − λiµigjiλ
2
j

λ2
j + λ2

iµ
2
j

, i, j = 1, . . . , s′. (2.8)

By rewriting (2.8) in matrix form, we immediately obtain (2.7). �
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3. The Solution of Problem 1.1

In this section, we derive an analytical expression for the solution of Problem 1.1. To this

end, we first transform the least-squares problem with respect to the matrix equation (1.1) to

a consistent matrix equation. This technique is precisely described in the following theorem.

Theorem 3.1. Suppose that the matrices A,B and C are given in Problem 1.1. Let X0 be one

of the least-squares solutions of the matrix equation (1.1), and define

C0 = AX0B. (3.1)

Then the matrix equation

AXB = C0 (3.2)

is consistent over symmetric matrices, and its symmetric solution set is the same as the least-

squares symmetric solution set SE of the matrix equation (1.1).

Proof. Let

S = {Y |Y = AXB,X ∈ SRn×n}.

Then S is obviously a linear subspace of Rm×p. Because X0 is a least-squares symmetric

solution of the matrix equation (1.1), from (3.1) we see that C0 ∈ S and

‖C0 − C‖ = ‖AX0B − C‖

= min
X∈SRn×n

‖AXB − C‖

= min
Y ∈S

‖Y − C‖.

Now, by Lemma 2.1 we have

(C0 − C)⊥S, or (C0 − C) ∈ S⊥.

For X ∈ SRn×n, we know that (AXB − C0) ∈ S. It then follows that

‖AXB − C‖2
F = ‖(AXB − C0) + (C0 − C)‖2

F

= ‖AXB − C0‖
2
F + ‖C0 − C‖2

F .

Hence, the conclusion of this theorem holds true. �

From Theorem 3.1, we easily see that the optimal approximate solution X̂ of the consistent

matrix equation (3.2) to a given matrix X∗ is just the solution of Problem 1.1. Therefore,

solving Problem 1.1 essentially reduces to find C0, or a least-squares solution X0 of the matrix

equation (1.1). Based on the GSVD (2.1) of the matrix pair (A,BT ), the following theorem

gives such a matrix C0.

Theorem 3.2. Suppose that the matrices A,B and C are given in Problem 1.1. Denote by

UTCV = (Cij)3×3, with Cij = UTi CVj , i, j = 1, 2, 3, (3.3)

where the matrices Ui and Vi (i=1, 2, 3) are given by (2.2). Then the following matrix C0

corresponds a least-squares solution X0 of the matrix equation (1.1) and satisfies (3.1):

C0 = U




0 C12 C13

0 SAX̄22SB C23

0 0 0


V T , (3.4)
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where

X̄22 = Φ ∗ (SAC22SB + SBC
T
22SA) with Φ = (

1

α2
iβ

2
j + β2

i α
2
j

) ∈ SRs×s, i, j = 1, . . . , s. (3.5)

Proof. From [17] we know that the least-squares solutions of the matrix equation (1.1) can

be given by using the GSVD of the matrix pair (A,BT ), and are of the following form

X = M−1




X11 C12S
−1
B C13 X14

S−1
B CT12 X̄22 S−1

A C23 X24

CT13 CT23S
−1
A X33 X34

XT
14 XT

24 XT
34 X44


M−T , (3.6)

where the block matrix X̄22 is defined by (3.5); Xii (i = 1, 3, 4) are arbitrary symmetric matrix

blocks; Xi4 (i = 1, 2, 3) are arbitrary matrix blocks. By substituting (2.1) and (3.6) into (3.1),

after concrete manipulations we can obtain (3.4). �

Evidently, (3.4) shows that the matrix C0 given in Theorem 3.2 is unique, and only de-

pendent on the matrices A, B, and C, but independent of the least-squares solution X0 of the

matrix equation (1.1). Therefore, we can conclude that

‖C0 − C‖ = min
X∈SRn×n

‖AXB − C‖.

Based on Theorems 3.1 and 3.2, we can obtain the analytical expression of the solutions of

Problem 1.1 by using the CCD (2.3) of the matrix pair (AT , B). To state the results, we denote

ETAC0EB = (Eij)4×4, with Eij = ATi C0Bj i, j = 1, 2, 3, 4, (3.7)

where C0 is defined by (3.4), and the matrices Ai and Bi (i=1, 2, 3, 4) are given by (2.4).

Theorem 3.3. Suppose that the matrices A,B,C and X∗ are given in Problem 1.1. Partition

the matrix QTX∗Q compatibly to the block row partitioning of ΞA and ΞB into

QTX∗Q = (X∗
ij)6×6, with X∗T

ij = X∗
ji, i, j = 1, 2, . . . , 6, (3.8)

where the matrix Q is defined in (2.3). Then the unique solution X̂ of Problem 1.1 can be

expressed as

X̂ = Q




E11 E12 E13 X∗

14 Ŷ15 ET

31

ET

12 Ŷ22 C−1

A
(E23 − DAŶ T

35) X∗

24 (ET

22 − Ŷ22CA)D−1

A
ET

32

ET

13 (ET

23 − Ŷ35DA)C−1

A
X∗

33 X∗

34 Ŷ35 ET

33

X∗T

14 X∗T

24 X∗T

34 X∗

44 X∗

45 X∗

46

Ŷ T

15 D−1

A
(E22 − CAŶ T

22) Ŷ T

35 X∗T

45 X∗

55 X∗

56

E31 E32 E33 X∗T

46 X∗T

56 X∗

66



QT ,(3.9)

where




Ŷ15 = (ET21 − E12CA)D−1
A ,

Ŷ35 = X∗
35C

2
A + ET23DA −X∗

23CADA,

Ŷ22 = K ∗ [DAX
∗
22DA +D2

AE
T
22CA + CAE22D

2
A −D2

AX
∗
25DACA −DACAX

∗T
25 D

2
A],

(3.10)

with

K = (kij) ∈ Rs
′
×s′ , kij =

1

λ2
j + λ2

iµ
2
j

i, j = 1, . . . , s′.
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Proof. From Theorems 3.1 and 3.2 we know that the least-squares symmetric solution set

of the matrix equation (1.1) is the same as the symmetric solution set of the consistent matrix

equation (3.2), with the matrix E0 being given by (3.4). From [19] we see that the solutions of

the consistent matrix equation (3.2) can be expressed as

X = Q




E11 E12 E13 Y14 Ŷ15 ET

31

ET

12 Y22 X̃23 Y24 X̃25 ET

32

ET

13 X̃T

23 Y33 Y34 Y35 ET

33

Y T

14 Y T

24 Y T

34 Y44 Y45 Y46

Ŷ T

15 X̃T

25 Y T

35 Y T

45 Y55 Y56

E31 E32 E33 Y T

46 Y T

56 Y66



QT , (3.11)

where
{
X̃23 = C−1

A (E23 −DAY
T
35),

X̃25 = ET22D
−1
A − Y22CAD

−1
A ;

(3.12)

the matrix block Ŷ15 is defined by (3.10); Yii (i = 2, 3, 6) are arbitrary symmetric matrix blocks;

and the other matrix blocks Yij (i, j = 1, 2, 6) are arbitrary.

It follows from (3.8) and (3.11) that

‖X −X∗‖2 = ‖QTXQ−QTX∗Q‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥




E11 −X∗
11 E12 −X∗

12 E13 −X∗
13 Y14 −X∗

14 Ŷ15 −X∗
15 ET31 −X∗

16

ET12 −X∗T
12 Y22 −X∗

22 X̃23 −X∗
23 Y24 −X∗

24 X̃25 −X∗
25 ET32 −X∗

26

ET13 −X∗T
13 X̃T

23 −X∗T
23 Y33 −X∗

33 Y34 −X∗
34 Y35 −X∗

35 ET33 −X∗
36

Y T14 −X∗T
14 Y T24 −X∗T

24 Y T34 −X∗T
34 Y44 −X∗

44 Y45 −X∗
45 Y46 −X∗

46

Ŷ T15 −X∗T
15 X̃T

25 −X∗T
25 Y T35 −X∗T

35 Y T45 −X∗T
45 Y55 −X∗

55 Y56 −X∗
56

E31 −X∗T
16 E32 −X∗T

26 E33 −X∗T
36 Y T46 −X∗T

46 Y T56 −X∗T
56 Y66 −X∗

66




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

Hence,

‖X −X∗‖ = min, ∀X ∈ SE

(see the definition of the matrix set SE in Problem 1.1) if and only if

{
Y14 = X∗

14, Y24 = X∗
24, Y34 = X∗

34, Y45 = X∗
45, Y46 = X∗

46,

Y56 = X∗
56, Y33 = X∗

33, Y44 = X∗
44, Y55 = X∗

55, Y66 = X∗
66,

(3.13)

‖Y35 −X∗
35‖

2 + ‖C−1
A (E23 −DAY

T
35) −X∗

23‖
2 = min, ∀ Y35 ∈ R(h−r′−s′)×s′ (3.14)

and

‖Y22 −X∗
22‖

2 + 2‖(ET22 − Y22CA)D−1
A −X∗

25‖
2 = min, ∀ Y22 ∈ SRs

′
×s′ . (3.15)

By making use of Lemmas 2.2 and 2.3 we know that the solutions of (3.14) and (3.15) are of

the form
{

Ŷ35 = X∗
35C

2
A + ET23DA −X∗

23CADA,

Ŷ22 = K ∗ [DAX
∗
22DA +D2

AE
T
22CA + CAE22D

2
A −D2

AX
∗
25DACA −DACAX

∗T
25 D

2
A].

Substituting these Ŷ35, Ŷ22 and (3.13) into (3.11) yields (3.9). �
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Remark 3.1. In Problem 1.1, if the matrix X∗ is not symmetric, then from

‖X −X∗‖2 = ‖X −
1

2
(X∗ +X∗T )‖2 + ‖

1

2
(X∗ −X∗T )‖2, ∀X ∈ SE ,

we know that the minimization problem

‖X −X∗‖ = min ∀X ∈ SE

is equivalent to the following minimization problem

‖X −
1

2
(X∗ +X∗T )‖ = min ∀X ∈ SE .

Therefore, without loss of generality, in following discussion we suppose that the matrix X∗ is

symmetric in Problem 1.1.

4. A Numerical Algorithm for Solving Problem 1.1

Based on Theorem 3.3, we can establish an algorithm for finding the solution of Problem 1.1.

Algorithm for solving Problem 1.1

1. Input matrices A,B,C and X∗.

2. Make the GSVD of the matrix pair (A,BT ) according to (2.1).

3. Partition the matrix UTCV = (Cij)3×3 according to (3.3).

4. Compute X̄22 according to (3.5).

5. Compute C0 according to (3.4).

6. Make the CCD of the matrix pair (AT , B) according to (2.3).

7. Partition the matrices EA and EB according to (2.4).

8. Compute the matrix X̂ according to (3.9).

Example 1. Let

A =

(
ones(5, 5) zeros(5, 4)

zeros(4, 5) pascal(4)

)
, B =

(
hankel(1 : 4) zeros(4, 5)

zeros(5, 4) zeros(5, 5)

)
,

C =

(
toeplitz(1 : 4) zeros(4, 5)

zeros(5, 4) hilb(5)

)
, X∗ =

(
eye(4) 1

2ones(4, 5)
1
2ones(5, 4) eye(5)

)
,

where hilb(n) and pascal(n) denote the n-th order Hilbert matrix and Pascal matrix, respec-

tively, and toeplitz(1 : n) and hankel(1 : n) denote the n-th order Toeplitz matrix and Hankel

matrix whose first row is (1, 2, · · · , n), respectively.
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By using Matlab 6.5, we obtain

C0 =




2.0000 1.6000 1.6000 2.0000 0 0 0 0 0

2.0000 1.6000 1.6000 2.0000 0 0 0 0 0

2.0000 1.6000 1.6000 2.0000 0 0 0 0 0

2.0000 1.6000 1.6000 2.0000 0 0 0 0 0

2.0000 1.6000 1.6000 2.0000 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




and

X̂ =




0.8258 −0.2692 −0.2480 −0.2214 0.4129 0 0 0 0

−0.2692 0.6358 −0.3430 −0.3164 0.3179 0 0 0 0

−0.2480 −0.3430 0.6783 −0.2952 0.3391 0 0 0 0

−0.2214 −0.3164 −0.2952 0.7314 0.3657 0 0 0 0

0.4129 0.3179 0.3391 0.3657 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




.

By concrete computations, we have

AX̂B = C0, min
X∈SE

‖X −X∗‖ = ‖[X̂ −X∗]‖ = 4.4141.

In addition, we also have

min
X∈SRn×n

‖AXB − C‖ = ‖C0 − C‖ = 5.7358

and

〈C0, C0 − C〉 = tr(CT0 (C0 − C)) = −4.7073× 10−14.

This demonstrates that the above-described algorithm is feasible for solving Problem 1.1.
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