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Abstract. In this paper, we prove the convergence of homotopy analysis method
(HAM). We also apply the homotopy analysis method to obtain approximate an-
alytical solutions of systems of the second kind Volterra integral equations. The
HAM solutions contain an auxiliary parameter which provides a convenient way
of controlling the convergence region of series solutions. It is shown that the solu-
tions obtained by the homotopy-perturbation method (HPM) are only special cases
of the HAM solutions. Several examples are given to illustrate the efficiency and
implementation of the method.
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1 Introduction

Differential equations, integral equations or combinations of them, integro-differential
equations, are obtained in modeling of real-life engineering phenomena that are inher-
ently nonlinear with variable coefficients. Most of these types of equations do not have
an analytical solution. Therefore, these problems should be solved by using numerical
or semi-analytical techniques. In numeric methods, computer codes and more power-
ful processors are required to achieve accurate results. Acceptable results are obtained
via semi-analytical methods which are more convenient than numerical methods. The
main advantage of semi-analytical methods, compared with other methods, is based
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on the fact that they can be conveniently applied to solve various complicated prob-
lems. Several analytical methods including the linear superposition technique [14],
the exp-function method [16], the Laplace decomposition method [8], the matrix ex-
ponential method [15], the homotopy perturbation method [7], variational iteration
methods [2] and the Adomian decomposition method [12] have been developed for
solving linear or nonlinear non-homogeneous partial differential equations. One of
these semi-analytical solution methods is the Homotopy analysis method (HAM).
In 1992, Liao [9] employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely the Homotopy analysis
method, [5, 6, 9–11]. In recent years, homotopy analysis method has been used in
obtaining approximate solutions of a wide class of differential, integral and integro-
differential equations. The method provides the solution in a rapidly convergent series
with components that are elegantly computed. The main advantage of the method is
that it can be used directly without using assumptions or transformations. In this
work, we aim to implement this reliable technique to solving systems of Volterra in-
tegral equations. A system of integral equations of the second kind can be presented
as

f (t) = g(t) +
∫ t

a
K(s, t, ( f (s))ds,

where

f (t) =
(

f1(t), · · · , fn(t)
)T, g(t) =

(
g1(t), · · · , gn(t)

)T,

K(s, t, ( f (s)) =
(
K1(s, t, ( f (s)), · · · , Kn(s, t, ( f (s))

)T.

2 Basic idea of HAM

We consider the following differential equation

N [u(τ)] = 0, (2.1)

where N is a nonlinear operator, τ denotes independent variable, u(τ) is an unknown
function, respectively. For simplicity, we ignore all boundary or initial conditions,
which can be treated in the similar way. By means of generalizing the traditional
homotopy method, Liao [11] construct the so-called zero-order deformation equation

(1 − p)L[ϕ(τ; p)− u0(τ)] = p h̄H(τ)N [ϕ(τ; p)], (2.2)

where p ∈ [0, 1] is the embedding parameter, h ̸= 0 is a non-zero auxiliary parameter,
H(τ) ̸= 0 is an auxiliary function, u0(τ) is an initial guess of u(τ) and ϕ(τ; p) is an
unknown function and L an auxiliary linear operator with the property

L[ f (τ)] = 0 when f (τ) = 0. (2.3)
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It is important, that one has great freedom to choose auxiliary things in HAM. Obvi-
ously, when p = 0 and p = 1, it holds

ϕ(τ; 0) = u0(τ), ϕ(τ; 1) = u(τ), (2.4)

respectively. Thus, as p increases from 0 to 1, the solution ϕ(τ; p) varies from the initial
guess u0(τ) to the solution u(τ). Expanding ϕ(τ; p) in Taylor series with respect to p,
we have

ϕ(τ; p) = u0(τ) +
+∞

∑
m=1

um(τ)pm, (2.5)

where

um(τ) =
[ 1

m!
∂mϕ(τ; p)

∂pm

]
p=0

. (2.6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h̄, and the
auxiliary function are so properly chosen, the series (2.4) converges at p = 1, then we
have

u(τ) = u0(τ) +
+∞

∑
m=1

um(τ), (2.7)

which must be one of solutions of original nonlinear equation, as proved by [11]. As
h̄ = −1 and H(τ) = 1, Eq. (2.2) becomes

(1 − p)L[ϕ(τ; p)− u0(τ)] + pN [ϕ(τ; p)] = 0, (2.8)

which is used mostly in the homotopy perturbation method [13], where as the solution
obtained directly, without using Taylor series [7]. According to the definition (2.5), the
governing equation can be deduced from the zero-order deformation equation (2.2).
Define the vector

−→u n =
{

u0(τ), u1(τ), · · · , un(τ)
}

.

Differentiating Eq. (2.2) m times with respect to the embedding parameter p and then
setting p = 0 and finally dividing them by m!, we have the so-called m th-order defor-
mation equation

L[um(τ)− χmum−1(τ)] = h̄H(τ)Rm(
−→u m−1), (2.9)

where

Rm(
−→u m−1) =

[ 1
(m − 1)!

∂m−1N [ϕ(τ; p)]
∂pm−1

]
p=0

, (2.10)

and

χm =

{
0, m ≤ 1,
1, m > 1.

(2.11)

It should be emphasized that um(τ) for m ≥ 1 is governed by the linear equation (2.8)
under the linear boundary conditions that come from original problem, which can be
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easily solved by symbolic computation software such as Matlab. For the convergence
of the above method we refer the reader to Liao’s work [11] . If Eq. (2.1) admits unique
solution, then this method will produce the unique solution. If Eq. (2.1) does not
possess unique solution, the HAM will give a solution among many other (possible)
solutions.

3 Series solutions when convergent

In this section, we will prove that, as long as the solution series (2.7) given by the
homotopy analysis method is convergent, it must be the solution of the considered
nonlinear problem.

Theorem 3.1. As long as the series

u0(t) +
+∞

∑
m=1

um(t),

is convergent, where um(t) is governed by the high-order deformation equation (2.9) under the
definitions (2.10) and (2.11), it must be a solution of Eq. (2.1).

Proof. Let

s(t) = u0(t) +
+∞

∑
m=1

um(t),

denote the convergent series. Using (2.9) and (2.11), we have

h̄H(t)
+∞

∑
m=1

ℜm(um−1)

=
+∞

∑
m=1

L
[
um(t)− χmum−1(t)

]
= L

[ +∞

∑
m=1

um(t)−
+∞

∑
m=1

χmum−1(t)
]

=L
[
(1 − χ2)

+∞

∑
m=1

um(t)
]
= L

[
(1 − χ2)(s(t)− u0(t))

]
,

which gives, since h̄ ̸= 0, H(t) ̸= 0 and from (2.3),

+∞

∑
m=1

ℜm(um−1) = 0. (3.1)

On the other side, we have according to the definition (2.10), that

+∞

∑
m=1

ℜm(um−1) =
+∞

∑
m=1

1
(m − 1)!

∂m−1N [ϕ(t; q)]
∂qm−1

∣∣∣
q=0

= 0. (3.2)
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In general, ϕ(t; q) does not satisfy the original nonlinear equation (2.1). Let

ϵ(t; q) = N [ϕ(t; q)],

denote the residual error of Eq. (2.1). Clearly,

ϵ(t; q) = 0.

Corresponds to the exact solution of the original equation (2.1). According to the
above definition, the Maclaurin series of the residual error ϵ(t; q) about the embed-
ding parameter q is

+∞

∑
m=0

1
m!

∂mϵ(t; q)
∂qm qm|q=0 =

+∞

∑
m=0

1
m!

∂mN [ϕ(t; q)]
∂qm qm|q=0.

When q = 1, the above expression gives, using (3.2),

ϵ(t; q) =
+∞

∑
m=0

1
m!

∂mϵ(t; q)
∂qm

∣∣∣
q=0

= 0.

This means, according to the definition of ϵ(t; q), that we gain the exact solution of the
original equation (2.1) when q. Thus, as long as the series

u0(t) +
+∞

∑
m=1

um(t),

is convergent, it must be the solution of the original equation (2.1). This ends the proof.
�

4 Applications

In order to assess the advantages and the accuracy of homotopy analysis method for
solving system of integral equations of the second kind, we will consider the following
four examples.

Example 4.1. Consider the following linear system of integral equations

f1(t) = cosh t + t sin t −
∫ t

0

[
e−(s−t) f1(s) + cos(s − t) f2(s)

]
ds, (4.1a)

f2(t) = 2 sin t + t(sin2 t + et)−
∫ t

a

[
e(s+t) f1(s) + t cos s f2(s)

]
ds. (4.1b)

The exact solutions [21] of (4.1) are given below:

f1(t) = e−t, f2(t) = 2 sin t.
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To solve the system (3.2) by means of homotopy analysis method, we choose the linear
operators

Li[ϕi(t; p)] = ϕi(t; p), i = 1, 2. (4.2)

We now define a nonlinear operators as

N1[ϕ1, ϕ2] = ϕ1(t; p)− (cosh t + t sin t) +
∫ t

0

[
e−(s−t)ϕ1(s; p) + cos(s − t)ϕ2(s; p)

]
ds,

N2[ϕ1, ϕ2] = ϕ2(t; p)− (2 sin t + t(sin2 t + et)) +
∫ t

0

[
e(s+t)ϕ1(s; p) + t cos sϕ2(s; p)

]
ds.

Using above definition, we construct the zeroth-order deformation equations

(1 − p)L1[ϕ1(t; p)− f1,0(x)] = ph̄1H1(t)N1[ϕ1, ϕ2], (4.3a)
(1 − p)L2[ϕ2(t; p)− f2,0(x)] = ph̄2H2(t)N2[ϕ1, ϕ2]. (4.3b)

Thus, we obtain the m th-order (m ≥ 1) deformation equations

L1[ f1,m(t)− χm f1,m−1(t)] = h̄1H1(t)R1,m( f⃗1,m−1), (4.4a)

L2[ f2,m(t)− χm f2,m−1(t)] = h̄2H2(t)R2,m( f⃗2,m−1), (4.4b)

where

R1,m( f⃗1,m−1, f⃗2,m−1) = f1,m−1(t) +
∫ t

0

[
e−(s−t) f1,m−1(s) + cos(s − t) f2,m−1(s)

]
ds

− (1 − χm)(cosh t + t sin t),

R2,m( f⃗1,m−1, f⃗2,m−1) = f2,m−1(t) +
∫ t

0

[
e(s+t) f1,m−1(s) + t cos s f2,m−1(s)

]
ds

− (1 − χm)(2 sin t + t(sin2 t + et)).

Now the solution of the m th-order (m ≥ 1) deformation equations (4.3) becomes

f1,m(t) = χm f1,m−1(t) + h̄1H1(t)R1,m( f⃗1,m−1, f⃗2,m−1),

f2,m(t) = χm f2,m−1(t) + h̄2H2(t)R2,m( f⃗1,m−1, f⃗2,m−1).

By start with an initial approximations

f1,0(t) = cosh t + t sin t, f2,0(t) = 2 sin t + t(sin2 t + et),

and by choose Hi = 1 (i = 1, 2) we suppose

f1(t) ≈
5

∑
m=0

f1,m and f2(t) ≈
5

∑
m=0

f2,m.

The comparison of the results of the HAM and the HPM [21] are presented in Table 1.
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Table 1: The absolute error between the HAM (h = −0.98), the HPM (h = −1) and the exact solution.

ti e( f1(HAM)) e( f1(HPM)) e( f2(HAM)) e( f2(HPM))

0.0 0 8.8818E − 16 1.3878E − 17 4.7878E − 16
0.1 2.0163E − 09 2.3210E − 08 3.1167E − 09 1.7048E − 08
0.2 1.1357E − 07 1.9188E − 06 4.2050E − 08 1.6652E − 06
0.3 6.2312E − 06 2.8336E − 05 6.0365E − 06 2.8771E − 05
0.4 7.3007E − 05 2.0695E − 04 8.5015E − 05 2.4354E − 04
0.5 4.6483E − 04 1.0278E − 03 6.2664E − 04 1.3895E − 03

Example 4.2. Let us solve the following non-linear system of two integral equations:

f1(t) = sin t − t +
∫ t

0

[
f 2
1 (s) + f 2

2 (s)
]
ds, (4.5a)

f2(t) = cos t − 1
2

sin2 t +
∫ t

0
f1(s) f2(s)ds. (4.5b)

With the exact solutions [21]

f1(t) = sin t, f2(t) = cos t.

To solve the system (4.4) by means of homotopy analysis method, we choose the linear
operators

Li[ϕi(t; p)] = ϕi(t; p), i = 1, 2. (4.6)

We now define a nonlinear operators as

N1[ϕ1, ϕ2] = ϕ1(t; p)− (sin t − t)−
∫ t

0

[
ϕ2

1(s; p) + ϕ2
2(s; p)

]
ds,

N2[ϕ1, ϕ2] = ϕ2(t; p)−
(

cos t − 1
2

sin2 t
)
+

∫ t

0

[
ϕ1(s; p)ϕ2(s; p)

]
ds.

Using above definition, we construct the zeroth-order deformation equations

(1 − p)L1[ϕ1(t; p)− f1,0(x)] = p h̄1H1(t)N1[ϕ1, ϕ2], (4.7a)
(1 − p)L2[ϕ2(t; p)− f2,0(x)] = p h̄2H2(t)N2[ϕ1, ϕ2]. (4.7b)

Thus, we obtain the m th-order (m ≥ 1) deformation equations

L1[ f1,m(t)− χm f1,m−1(t)] = h̄1H1(t)R1,m( f⃗1,m−1), (4.8a)

L2[ f2,m(t)− χm f2,m−1(t)] = h̄2H2(t)R2,m( f⃗2,m−1), (4.8b)
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Table 2: The absolute error between the HAM (h = −1), the HPM and the exact solution.

ti e( f1(HAM)) e( f1(HPM)) e( f2(HAM)) e( f2(HPM))

0.0 0 0 5.0E − 8 5.0E − 8
0.1 1.4E − 07 1.4E − 07 3.2E − 7 3.2E − 7
0.2 3.5E − 06 3.5E − 06 1.1E − 5 1.1E − 5
0.3 5.5E − 05 5.5E − 05 1.2E − 4 1.2E − 4
0.4 3.8E − 04 3.8E − 04 6.3E − 4 6.3E − 4
0.5 1.6E − 03 1.6E − 03 2.2E − 3 2.2E − 3

where

R1,m( f⃗1,m−1, f⃗2,m−1) = f1,m−1(t)−
∫ t

0

[ m−1

∑
i=0

f1,i(s) f1,m−1−i(s) + f2,i(s) f2,m−1−i(s)
]
ds

− (1 − χm)(sin t − t),

R2,m( f⃗1,m−1, f⃗2,m−1) = f2,m−1(t) +
∫ t

0

[ m−1

∑
i=0

f1,i(s) f2,m−1−i(s)
]
ds

− (1 − χm)
(

cos t − 1
2

sin2 t
)

.

Now the solution of the m th-order (m ≥ 1) deformation equations (4.7) becomes

f1,m(t) = χm f1,m−1(t) + h̄1H1(t)R1,m( f⃗1,m−1, f⃗2,m−1),

f2,m(t) = χm f2,m−1(t) + h̄2H2(t)R2,m( f⃗1,m−1, f⃗2,m−1).

By start with an initial approximations

f1,0(t) = sin t − t, f2,0(t) = cos t − 1
2

sin2 t,

and by choose Hi = 1 (i = 1, 2) we suppose

f1(t) ≈
5

∑
m=0

f1,m and f2(t) ≈
5

∑
m=0

f2,m.

The comparison of the results of the HAM and the HPM [21] are presented in Table 2.

5 Conclusions

In this paper, the HAM was used to obtain the analytic solutions of systems of linear
and non-linear Volterra integral equations of the second kind. The comparison be-
tween the HAM and HPM was made and it was found that HAM is more effective
than HPM. Hence, it may be concluded that this method is a powerful and an efficient
technique in finding the analytic solutions for wide classes of problems. Furthermore,
the advantage of this method is the fast convergence of the solutions by means of the
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auxiliary parameter h and the freedom of choosing h̄ for HAM gives us more accuracy
than HPM. It is also worth mentioning to this end that for the example considered, we
have shown that HPM are special case of HAM. The computations associated with the
example in this paper were performed using Matlab 7.
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