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Abstract. In this work we introduce a new unconditionally convergent explicit Tree-
Grid Method for solving stochastic control problems with one space and one time
dimension or equivalently, the corresponding Hamilton-Jacobi-Bellman equation. We
prove the convergence of the method and outline the relationships to other numerical
methods. The case of vanishing diffusion is treated by introducing an artificial diffusion
term. We illustrate the superiority of our method to the standardly used implicit finite
difference method on two numerical examples from finance.
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1. Introduction

In this work we are interested in solving stochastic control problems (SCP) numerically.
Such problems can be represented by so called Hamilton-Jacobi-Bellman (HJB) equations,
and arise in many applications in physics, economics, or finance. This article is divided into
five main sections. In this first introductory section, we define the stochastic control prob-
lem and HJB equation and discuss the most widely used numerical methods. In the Section
2, we derive the new Tree-Grid Method–the main result of this paper. The convergence of
this method is proven in Section 3. In Section 4, we test the performance of the method
on two problems from finance. We compare the results with the ones from the standardly
used implicit finite-difference method. Finally, Section 5 presents the conclusion.

1.1. Problem formulation

We are concerned with searching for the value function V (s, t) of the following general

stochastic control problem (SCP):
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V (s, t) = max
θ (s,t)∈Θ̄
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t
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r(Sk, k,θ(Sk, k))dk
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VT (ST )

�

�

�St = s

!

, (1.1a)

dSt = µ
�

St , t,θ(St , t)
�

d t +σ(St , t,θ(St , t))dWt , (1.1b)

0< t < T, s ∈ R, (1.1c)

where s is state variable and t is time. Here, Θ̄ is space of all suitable control functions
from R× [0, T] to a set Θ. For our purpose, we will suppose Θ to be discrete. If this is not
the case, we can easily achieve this property by its discretization. We also suppose that the
functions r, f ,µ,σ, VT are chosen suitably. For example, we demand Lipschitz continuity
of µ,σ:

∃K > 0 : ∀t ∈ [0, T], θ ∈Θ, s1, s2 ∈ R :
�

�µ(s1, t,θ)−µ(s2, t,θ)
�

�+
�

�σ(s1, t,θ)−σ(s2, t,θ)
�

� ≤ K |s1 − s2|.

For a detailed analysis of suitability of coefficient and control functions we reffer to some
classic stochastic control literature e.g. [14, 20]. Now following Bellman’s principle, the
dynamic programming equation holds:

V (s, t j) = max
θ (s,t)∈Θ̄t j

E





∫ t j+1

t j

exp





∫ k

t j

r(Sl , l,θ(Sl , l))dl



 f (Sk, k,θ(Sk, k))dk

+exp





∫ t j+1

t j

r(Sk, k,θ(Sk, k))dk



V (St j+1
, t j+1)

�

�

�St j
= s



 , (1.2)

where 0 ≤ t j < t j+1 ≤ T are some time-points and Θ̄t j
is a set of control functions from

Θ̄ restricted to the R× [t j , t j+1) domain. Using this Eq. (1.2), it can be shown [20, 21],
that solving the SCP (1.1a), (1.1b) is equivalent to solving the so-called Hamilton-Jacobi-
Bellman (HJB) equation:

∂ V

∂ t
+max
θ∈Θ

�

σ(·)2
2

∂ 2V

∂ s2 +µ(·)
∂ V

∂ s
+ r(·)V + f (·)

�

= 0, (1.3a)

V (s, T ) = VT (s), (1.3b)

0< t < T, s ∈ R, (1.3c)

where σ(·), µ(·), r(·), f (·) are functions of s, t,θ . We should note that the maximum op-
erator in (1.1a) and (1.3a) can be replaced by minimum, (supremum, infimum) operator
and the whole following analysis will hold analogously. Another possible generalization
is the use of both infimum and supremum in so called stochastic differential games and
corresponding Hamilton-Jacobi-Bellman-Isaac equation [16]. Use of even more general
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operators is analyzed for example in [17]. However, in this work we will restrict ourselves
to the case of minimum and maximum operators. Let us note that this covers also the
case of omitting the operator completely, as this can be seen as maximum through an one-
element set. In that case, a relationship between (1.1a), (1.1b) and (1.3a), (1.3b) is es-
tablished by the classical Feynman-Kac formula. In financial mathematics, this relationship
is represented by a connection between the option pricing problem and the Black-Scholes
equation [5].

1.2. Overview of the numerical methods

Numerical methods used to solve the above SCP can be divided into two classes, based
on the formulation they are exploiting. The main idea of methods based on the partial
differential equation (PDE) approach is to solve the PDE (1.3a), (1.3b) with numerical
methods as for example finite differences. Here the implicit finite difference methods
(FDM) using policy iteration were shown to be successful e.g. in the work of Forsyth and
Vetzal [9]. An alternative approach to policy iteration used in this method is the piecewise
constant policy timestepping (PCPT) scheme used for example in [8]. A modification
of this scheme leading to experimentally faster algorithms was proposed by the authors
in [12]. For studying the convergence of solutions of these methods to viscosity solutions
the classical theory of Barles and Souganidis [3] is used. An alternative approach based
on the transformation of the PDE was proposed by Kilianová and Ševčovič in [11].

Whereas methods based on the PDE approach are typically implicit, methods based on
the original problem formulation (1.1a), (1.1b) are mostly explicit. Apparently the most
famous of these approaches are the methods based on Markov chain approximations of
the stochastic differential equation (SDE) (1.1b) presented in the book of Kushner and
Dupuis [14]. We should note, that in this setting probabilistic techniques are used to prove
convergence. In finance, binomial and trinomial tree methods [1, 2] are widely used.
These methods often present another viewpoint on the Markov chain approximation, and
are equivalent up to some order to explicit FDMs (see for example [1]). These methods are
known to suffer from instability if a certain condition on stepsizes is not met. This is also
the reason why implicit methods are used more often. In tree and Markov chain methods,
fulfilling this condition is achieved by a problem-specific construction of the grid or lattice.
And finally, also based on the original problem formulation, there are forward shooting
grid (FSG) methods [10], combining the tree lattice of binomial or trinomial method and
the grid of the FDM or Markov chain approximation method and that are used typically
in path-dependent option pricing [4, 10], but can be easily implemented also for SCPs.
These methods however may suffer from convergence problems as outlined by Forsyth,
Vetzal and Zvan in [7]. In this article we will also briefly sketch the main reasons of these
convergence issues of FSG schemes.

Studying these methods, it’s easy to realize that they often present different viewpoints
on similar approaches. Also, the method presented in this paper exhibits certain similarities
with these established methods, which we will outline later.
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2. The Tree-Grid Method

In this section, we will derive the new Tree-Grid Method.

2.1. The basic idea

In our proposed method we compute the approximation of the solution on a rectan-
gular domain [sL , sR] × [0, T] with some grid as in PDE-based schemes. The gridpoints
are denoted as [si , t j], i ∈ {1,2, · · · , N}, j ∈ {1,2, · · · , M}, k < l ⇒ Sk < sl , tk < t l ,
t1 = 0, tM = T , s1 = sL, sN = sR. For step-sizes we use following notation: ∆is = si+1− si ,
∆ j t = t j+1 − t j . We should point out that the grid defined in such manner is very gener-
al, in contrast to grids or lattices used for Markov chain approximations or tree methods.
Later, we will show that in our new explicit method no additional restrictions on the grid
are required, in contrast to standard explicit methods. This gives us a lot of freedom to
choose the discretization not only according to problem coefficients, but also according to
the terminal condition (1.3b), being an important advantage of implicit methods.

The numerical approximation of V (si, t j) will be denoted as v(si, t j) or simply as v
j

i
.

We define a terminal condition vM
i = VT (si) and some suitable boundary conditions. In

this paper we suppose that the solution on the intervals [−∞, s1]× [0, T] resp. [sN ,∞]×
[0, T] can by approximated with known functions BCL(s, t) resp. BCR(s, t). This also
covers the case of Dirichlet boundary conditions, where BCL and BCR are constant in s. In
case of Neumann boundary conditions, BCL and BCR can be set to linear functions with a
prescribed slope, fulfilling

BCL(s2, t j) = v(s2, t j), BCR(sN−1, t j) = v(sN−1, t j).

Also generalization of the method to other cases of boundary conditions should be straight-
forward.

The main idea of this scheme follows the same principle as most numerical methods
for this kind of problems: we will start in the last time layer tM = T and then subsequently
compute values in the previous time layers t j . To intuitively derive the method we will use
the original problem formulation (1.1a), (1.1b) and the dynamic programming equation
(1.2). To prove the convergence we will however regard the scheme as an approximation
of the PDE-problem (1.3a), (1.3b).

Let us assume, we are at time t j , St j
= si and we want to compute an approximation

of the current value of the value function v
j

i
. Also assume that we already somehow know

the values v
j+1
l

, ∀l = 1,2, · · · , N from the previous time layer t j+1. Now we can compute
the approximate probability distribution of St j+1

using the SDE (1.1b) for the stochastic
process:

S̄t j+1
= St j

+µ
�

St j
, t j ,θ(St j

, t j)
�

∆ j t +σ
�

St j
, t j ,θ(St j

, t j)
�

∆ jW

= si +µ(si, t j ,θ)∆ j t +σ(si, t j ,θ)∆ jW. (2.1)
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Here, and also later if misunderstanding is not possible, we abbreviate θ(si , t j) simply as
θ and ∆ jW is normally distributed random variable (RV) with mean 0 and variance ∆ j t.

Using this approximation, we want to compute v
j

i
, the approximation of V (si, t j), by using

again some discrete approximation of the dynamic programming equation (1.2). However,
as we only know approximations of V (s, t j+1) in discrete points si , a continuous RV S̄t j+1

is
not suitable and should be replaced by a discrete one. This is the main idea of our method
as well as of FSG methods, Tree methods, and Markov chain approximation methods.

Problem 2.1. Discrete random variable (RV) with values from {s1, s2, · · · , sN} suitably ap-

proximating normally distributed S̄t j+1
from (2.1) should be found.

2.2. Excursion: FSG method

The FSG approach [4] to this problem is to approximate S̄t j+1
with a RV S̃t j+1

that
attains a finite number (typically 2, s̃+ and s̃−) of values with in-forward given probabilities
(p+ and p−). These probabilities with corresponding values arise typically from a binomial
tree model, therefore the first two moments of S̄t j+1

and of S̃t j+1
are matching, what is

a desirable property, as S̄t j+1
is normally distributed and therefore fully characterized by

its first two moments. However as the values s̃+ and s̃− of S̃t j+1
typically do not coincide

with the gridpoints from the set {s1, s2, · · · , sN}, approximations v
j+1
+ , v

j+1
− , of V (s̃+, t j+1),

V (s̃−, t j+1) are not known. Therefore, these values are computed by some interpolation

formula from known values v
j+1
1 , v

j+1
2 , · · · , v

j+1
N :

v
j+1
± =

K±
∑

k±=1

α±
k±

v
j+1
ik±

.

After that a discrete version of dynamic programming equation (1.2) will be used, and at
this step we will be interested only in an approximation of expected value E(V (St j+1

t j+1)),
that will be computed as

E(V (St j+1
, t j+1))≈ E(V (S̄t j+1

, t j+1))≈ E(V (S̃t j+1
, t j+1)) (2.2a)

≈p+v
j+1
+ + p−v

j+1
− =

K+
∑

k+=1

p+α
+
k+

v
j+1
ik+
+

K−
∑

k−=1

p−α−k− v
j+1
ik−

, (2.2b)

where the first approximation in (2.2a) is with respect to time, second is with respect
to space and the last approximation, leading to formula (2.2b), is an interpolation with
the known values in the grid points. However, the final approximation (2.2b) can be again
interpreted as an expected value E(V (S̃′t j+1

, t j+1)) where S̃′t j+1
is a discrete RV taking values

sik±
with “probabilities” p±α±k± . However in contrast to S̃t j+1

, the moments of S̃′t j+1
will most

probably not match with the moments of S̄t j+1
. This can be interpreted in such manner,

that using this approach we solve a SCP driven by an SDE different from (1.1b). Moreover,
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depending on the interpolation formula the “probabilities” may not sum up to 1 and even
not be non-negative anymore (not the case of constant or linear interpolation), what may
lead to instability of the whole scheme. This possible defect of the method is analogous
to the instability of explicit FDM schemes if the timestep-spacestep condition is not met:
both defects harm the monotonicity of the schemes. This makes such methods unsuitable
for searching viscosity solution and possibly even unstable.

We should note, that the above analysis was done for a FSG method based on S̃t j+1

attaining two values, but the case of more values is completely analogical. Of course
interpolation used in this method may be in many cases “good enough”, meaning that the
moment matching is done in the limit case, and the whole method may converge to the
solution. However this is not automatic, and it is problem-specific. An analysis of when
FSG is successful and when not for the problem of path-dependent option pricing can be
found in [7].

2.3. The basic Tree-Grid Method

In our new scheme we will also approximate S̄t j+1
from (2.1) with a discrete RV S̃t j+1

.
However, because of the problems with standard FSG schemes, we choose a different ap-
proach to construct this RV. In order to avoid interpolation S̃t j+1

will attain only values from
the set {s1, s2, · · · , sN }. Exceptions arising close to a boundary will be discussed later. In
this paper, we will derive a scheme where S̃t j+1

attains three possible values s−, so, s+ ∈
{s1, s2, · · · , sN}, s− < so < s+, with corresponding probabilities p−, po, p+. Of course, be-
cause of (2.1), these values will depend on the current state si, time t j and control θ and
should be denoted as s−(si, t j ,θ), so(si, t j ,θ), s+(si, t j ,θ), p−(si, t j ,θ), po(si, t j ,θ), p+(si ,
t j ,θ), however for simplicity we prefer the shorter form. We will try to choose the values
in such manner, that the following conditions are satisfied:

p−, po, p+ ≥ 0, (2.3a)

p− + po + p+ = 1, (2.3b)

p−s− + poso + p+s+ = E, (2.3c)

p−s2
− + pos2

o + p+s2
+ = Var + E2, (2.3d)

where

E := E(S̄t j+1
) = si +µ(si, t j ,θ)∆ j t, (2.4a)

Var := Var(S̄t j+1
) = σ(si , t j ,θ)

2∆ j t. (2.4b)

The first two conditions (2.3a), (2.3b) state that p−, po, p+ can be interpreted as proba-
bilities and, as we will see later, they also ensure stability and monotonicity of the scheme.
The following two conditions (2.3c), (2.3d) ensure that the first two moments of the RVs
S̃t j+1

and S̄t j+1
are matching, and as shown later, together with (2.3b) also ensure the
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consistency of the scheme with the PDE (1.3a). Solving Eqs. (2.3b)-(2.3d) we get

p− =
(so − E)(s+− E) + Var

(s− − so)(s− − s+)
, (2.5a)

po =
(s−− E)(s+− E) + Var

(so − s−)(so − s+)
, (2.5b)

p+ =
(s−− E)(so − E) + Var

(s+ − s−)(s+ − so)
. (2.5c)

The question remains, if we can choose s−, so, s+ in such manner, that the non-negativity
(2.3a) is also fulfilled.

Let us suppose without loss of generality that µ(si, t j ,θ) ≥ 0 ⇒ E ≥ si. If E < s− or
E > s+ then po < 0. If Var > 0, also E = s− or E = s+ lead to po < 0. Therefore, we
will choose s−, s+ so that s− < E < s+. As we will see later, for unconditional consistency
of the scheme, it is necessary that one of s−, so, or s+ equals to si. As si ≤ E < s+ we
can’t choose s+ = si . Analogously in case of negative drift µ(si, t j ,θ) ≤ 0, we would not
be able to choose s− = si. To make a suitable choice in both cases we will choose so = si .
Now, (case of a positive drift), p+ ≥ 0 automatically (in case of a negative drift it would be
p− ≥ 0). The denominator of p− is positive and hence we want a positive numerator. The
denominator of po is negative therefore we want a negative numerator.

Since s− only appears in the numerator of po and not in the numerator of p−, for
any choice of s+ we can choose s− small enough such that po ≥ 0 for any choice of s+.
Choices of s− behind the boundary (s− < s1) are also possible as a special case and will
be explained later. Therefore the only question remains, if we can choose such s+, that
the numerator of p− will be positive. We will use abbreviations ∆i+s = s+ − si = s+ − so

and ∆−is = si − s− = so − s−. Moreover, we will use abbreviations µ := µ(si, t j ,θ) and
σ = σ(si , t j ,θ) if confusion is not possible. For the condition on numerator of p− from
Eq. (2.5a) holds

(so − E)(s+ − E) + Var ≥ 0 ⇔ −µ∆ j t(∆i+s−µ∆ j t) +σ
2∆ j t ≥ 0

⇔ ∆i+s ≤ µ∆ j t +σ
2/µ. (2.6)

It should hold also s+ > E⇒∆i+s > µ∆ j t. Combining this with (2.6), we get the following
condition: µ∆ j t <∆i+s ≤ µ∆ j t+σ

2/µ. A sufficient condition, under which s+ leading to
fulfillment of this inequality can be found, is

∆s ≤ σ(si , t j ,θ)
2/µ(si, t j ,θ), (2.7)

where ∆s = maxi∈{1,2,··· ,N−1}∆is. This seems a good result, however as we will see later,
the convergence of this method depends on the distances ∆i+s, ∆−is. Unfortunately, we
do not have any bound on ∆−is now, we just know that it can be chosen to ensure that
po will be positive. Therefore we will try another approach: we will try to minimize the
distances ∆i+s, ∆−is while keeping po positive. Then we will check, if also p− is positive.
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Problem 2.2.

min
s+,s−∈{s1,s2,··· ,sn}

min
�

s+ − si, si − s−
�

, (2.8a)

|(s−− E)(s+ − E)| ≥ Var. (2.8b)

Solving this problem may not be trivial in general, however an exact solution is also
not needed. If we suppose E to be “close enough” to si then some “close to optimal” (and
possibly also optimal) solution will be:

s− =
j

E −pVar⌋s = ⌊si +µ∆ j t −
p

Var
k

s
, (2.9a)

s+ =
l

E +
p

Var⌉s = ⌈si +µ∆ j t +
p

Var
m

s
, (2.9b)

where ⌈⌉s denotes rounding to nearest greater element from s1, s2, · · · , sN , and ⌊⌋s denotes
rounding to nearest smaller element from s1, s2, · · · , sN . If such element does not exist, ⌈x⌉s
and ⌊x⌋s will return just x . This corresponds to the boundary cases where x < s1 or x > sN

and will be discussed later. As we will see later, on an equidistant or “locally equidistant”
grid it may be advantageous to choose s+ and s− symmetric around si. Therefore we
propose here also another choices of s+, s−, that will ensure this symmetry, fulfill condition
(2.8b), however possibly lead to a greater value of the minimized expression (2.8a):

s− =
j

si −
Æ

(µ∆ j t)
2 + Var

k

s
, (2.10a)

s+ =
l

si +
Æ

(µ∆ j t)
2 + Var

m

s
. (2.10b)

Now, for (2.9a), (2.9b) hold the estimates

s− ≥ si +µ∆ j t −
p

Var −∆s, (2.11a)

s+ ≤ si +µ∆ j t +
p

Var +∆s, (2.11b)

and for (2.10a), (2.10b) hold estimates

s− ≥ si −
Æ

(µ∆ j t)
2 + Var −∆s ≥ si − |µ|∆ j t −

p
Var −∆s, (2.12a)

s+ ≤ si +
Æ

(µ∆ j t)
2 + Var +∆s ≤ si + |µ|∆ j t +

p
Var +∆s. (2.12b)

Let us now check if p− is non-negative, that means, if its numerator is non-negative. Sub-
stituting (2.9b) or (2.10b) into it, and further supposing µ ≥ 0, we get

(so − E)(s+− E) + Var = −µ∆ j t(s+ − so −µ∆ j t) + Var (2.13a)

≥−µ∆ j t
�p

Var +∆s
�

+ Var = −µ∆ j t
�

σ
p

∆ j t +∆s
�

+σ2∆ j t. (2.13b)

This is greater than 0 if ∆s ≤ σ2/µ − σp∆ j t. A completely analogous analysis can be
done for the case of negative drift µ < 0⇒ E < x i. Joining both cases into one condition,
we get that if so = si and (2.9a), (2.9b) or (2.10a), (2.10b) holds, then

∆s ≤ σ(si , t j ,θ)
2

|µ(si, t j ,θ)|
−σ(si, t j ,θ)

p

∆ j t (2.14)
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is a sufficient condition for non-negativity of p−, po, p+ defined in (2.5a)-(2.5c). Last
question is, if s− < so < s+ holds. This may be a problem in (2.9a) (in case of a positive
drift) or in (2.9b) (in case of a negative drift). However it is easy to check that the condition
(2.14) is sufficient for this inequality to be fulfilled. The condition (2.14) is quite weak for
σ large enough. However for problems with vanishing σ it may be hard or even impossible
to fulfill. In the next section we will describe how to tackle this problem.

2.4. The Tree-Grid Method with artificial diffusion

Let us now examine the case that condition (2.14) is not fulfilled. This can only happen
if the variance Var defined in (2.4b) is not large enough to compensate the negative part
in (2.13a). We solve this problem by redefining the variance Var in such manner that we
add to the variance (2.4b) some additional positive term of higher order in ∆ j t:

Var := σ(si , t j ,θ)
2∆ j t + a(si, t j ,θ)

2(∆ j t)
2. (2.15)

Here a(si , t j ,θ)
2(∆ j t)

2 is the so-called artificial diffusion term, and if large enough, use of
this new modified variance (2.15) should lead to positive weights. Moreover, as the whole
term should be vanishing with ∆ j t → 0 and the true variance term σ∆t should dominate.
For this, we need however a(si, t j ,θ) (later denoted also simply as a) to be bounded. Now
assuming positive µ, we will repeat the analysis (2.13a), (2.13b) of the numerator of p−
with the new Var (results for po and p+ still hold).

(so − E)(s+ − E)+ Var ≥ −µ∆ j t
�p

Var +∆s
�

+ Var (2.16a)

=−µ∆ j t
�Æ

σ2∆ j t + a2(∆ j t)
2 +∆s

�

+σ2∆ j t + a2(∆ j t)
2

≥−µ∆ j t
�

σ
p

∆ j t + a∆ j t +∆s
�

+σ2∆ j t + a2(∆ j t)
2. (2.16b)

In the last step, we decided that a will be positive, so that we can do the above estimation.
Now in order to introduce as small artificial diffusion as needed, but still having (2.16b)
non-negative, we will choose a as the root of

−µ∆ j t
�

σ
p

∆ j t + a∆ j t +∆s
�

+σ2∆ j t + a2(∆ j t)
2 = 0.

Moreover to ensure positivity of a, we will choose the larger of both roots:

a =
µ∆ j t +

q

µ2(∆ j t)
2 − 4|µ|∆ j t

�

σ2/|µ| −σp∆ j t −∆s
�

2∆ j t
. (2.17)

We should note, that we substituted a non-negative µ with |µ| so that (2.17) holds also as
result of fully analogous analysis for negative µ.

If
�

σ2/µ−σp∆ j t −∆s
�

≥ 0, then condition (2.14) is fulfilled and we can switch

to a = 0. Let us now examine the case that
�

σ2/µ−σp∆ j t −∆s
�

< 0; in that case,
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the whole discriminant and therefore also a is positive. That means, the numerator of p−
as well as p− itself is positive and we found positive probabilities p−, po, p+. Now we
will try to find an upper bound on a, satisfying convergence of new variance to the true
variance from the problem setting. Following (2.17),

a ≤
µ∆ j t +

q

µ2(∆ j t)
2 − 4|µ|∆ j t minσ∈R+

�

σ2/|µ| −σp∆ j t −∆s
�

2∆ j t

=
µ∆ j t +

p

2µ2(∆ j t)
2 + 4|µ|∆ j t∆s

2∆ j t

≤
µ∆ j t +

p

2µ2(∆ j t)
2 +
p

4|µ|∆ j t∆s

2∆ j t

=
1

∆ j t

�

(1+
p

2)|µ|
2

∆ j t + 2
p

|µ|
p

∆ j t∆s

�

. (2.18)

Let us define the abbreviations:

m1 = (1+
p

2)|µ|/2, m2 = 2
p

|µ|. (2.19)

Following the estimation, for the whole artificial diffusion term holds:

a2(∆ j t)
2 = (m1∆ j t +m2

p

∆ j t∆s)2

= m2
1(∆ j t)

2 + 2m1m2∆ j t
p

∆ j t∆s+m2
2∆ j t∆s

≤ m2
1(∆ j t)

2 +m1m2∆ j t(∆ j t +∆s) +m2
2∆ j t∆s

= m1(m1 +m2)(∆ j t)
2 +m2(m1 +m2)∆ j t∆s

= O (∆t(∆t +∆s)), (2.20)

where ∆t =max j∈{1,2,··· ,M−1}∆ j t. Together with (2.15) we get the estimate

Var = O (∆t). (2.21)

We will use this estimation of the artificial diffusion term later to prove consistency.

2.5. The final algorithm

In the following algorithm, we are interested in the values v
j+1
i

corresponding to the
states s−, so and s+. Therefore, we define the following function:

if s ∈ {s1, s2, · · · , sN} : v j+1(s) = v
j+1
k

so that s = sk,

else if s < s1 : v j+1(s) = BCL(s, t j+1), (2.22)

else if s > sN : v j+1(s) = BCR(s, t j+1).
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Moreover, we define the short notation

v
j+1
− = v j+1(s−), v j+1

o = v j+1(so), v
j+1
+ = v j+1(s+),

f
j

i
(θ) = f (si, t j ,θ(si , t j)), r

j

i
(θ) = r(si, t j ,θ(si , t j)).

Now, assuming St j
= si in order to discretize Eq. (1.2) we use the following approxima-

tions:

•
∫ t j+1

t j

exp





∫ k

t j

r(Sl , l,θ(Sl , l))dl



 f (Sk, k,θ(Sk, k))dk ≈ f
j

i
(θ)∆ j t,

• exp





∫ t j+1

t j

r(Sk, k,θ(Sk, k))dk



 ≈ 1+ r
j

i
(θ)∆ j t,

• E
�

V (St j+1
, t j+1)

�

�

�St j
= si

�

≈ p−v
j+1
− + pov

j+1
o + p+v

j+1
+ .

Then the discretized version of the dynamic programming equation (1.2) for i =

2,3, · · · , N − 1 reads

v
j

i
=max
θ∈Θ

�

f
j

i
(θ)∆ j t +

�

1+ r
j

i
(θ)∆ j t

�

�

p−v
j+1
− + pov j+1

o + p+v
j+1
+

��

, (2.23a)

or

v
j

i
=max
θ∈Θ

w
j

i
(θ), (2.23b)

w
j

i
(θ) = f

j

i
(θ)∆ j t +

�

1+ r
j

i
(θ)∆ j t

�

�

p−v
j+1
− + pov j+1

o + p+v
j+1
+

�

. (2.23c)

We should note, that unicity of the maximum in (2.23b) is not needed. For i = 1 and i = N

we employ the boundary conditions:

v
j

1 = BCL(s1, t j), v
j

N = BCR(sN , t j). (2.24)

Finally we can summarize the whole algorithm of the Tree-Grid Method for solving the
SCP (1.1a), (1.1b) (and the HJB equation (1.3a), (1.3b)):

2.6. Relationship to other numerical methods

In this section we outline (very informally) the interesting relationships between our
new method and standard approaches, as well as point out the most relevant differences.

Forward shooting grid methods. We already discussed FSG methods in Section 2.2
in order to motivate the Tree-Grid approach. We can see the Tree-Grid Method in it’s sim-
plest version (no artificial diffusion) as modification of the FSG method with 3 “branches”
instead of 2, non-constant probabilities, and, most importantly with no need to perform
any interpolation. This differences however make the method convergent in contrast to
the (general) FSG.
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Algorithm 2.1 The Tree-Grid Method.

1: Set vM
i
= VT (si) for i = 1,2, · · · , N

2: for j = M − 1, M − 2, · · · , 1 do

3: Compute v
j

1, v
j

N according to (2.24)
4: for i = 2,3, · · · , N − 1 do

5: for θ ∈Θ do

6: Compute E according to (2.4a)
7: if Condition (2.14) holds then

8: Compute Var according to (2.4b)
9: else

10: Compute a according to (2.17)
11: Compute Var according to (2.15)
12: end if

13: Set so = si and compute s−, s+ using (2.9a)-(2.9b) or (2.10a)-(2.10b)
14: Compute p−, po, p+ using (2.5a)-(2.5c)
15: Using (2.22) and (2.23c) compute w

j

i
(θ)

16: end for

17: Compute v
j

i
according to (2.23b)

18: end for

19: end for

Tree methods. The Tree-Grid Method has many similarities with binomial and espe-
cially trinomial tree methods mostly used in option pricing. Both approaches are based
on approximating the continuum of possible outcomes after 1 time-step by a RV gaining
only 3 (in case of Tree-Grid and trinomial tree methods) values, graphically often repre-
sented by three new “branches” of the “tree”. However, in contrast to the trinomial tree
method where the branches are growing only from nodes on the tree, in Tree-Grid Method,
3 branches are “planted” in each gridpoint of an arbitrary grid. Therefore, we also chose
the name “Tree-Grid” method. In trinomial tree methods, we get the value of the value
function (e.g. option price) only in 1 space point in the first time layer, whereas in Tree-
Grid Method, we get the value of value function on a whole set of space points. One may
correctly comment, that also trinomial tree method works on some lattice that can be easi-
ly extended so that more values are computed in the first time-layer. This is true, however
this lattice is constructed depending on the problem, space-steps are already determined
by timestep (can’t be chosen according to terminal condition) and the time-step size also
can’t be determined for each layer arbitrarily. On the other hand the tree grid method
works on an arbitrary grid. Besides artificial diffusion, one of the most obvious technical
differences is the following: in trinomial tree methods from each node grow 3 branches,
and each (“inner”) node also passes its value into 3 earlier nodes. However in tree grid
method only the first statement holds: each node may pass it’s value to different number of
earlier nodes –depending on the problem and on the grid. The “tree structure” in Tree-Grid
Method is then much more flexible. This flexibility is illustrated in Fig. 1.
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Figure 1: Illustration of the flexibility of the Tree-Grid structure. The node A represents a node with
lower volatility, whereas node B exhibits higher volatility. Blue nodes are passing its values to node A
and red nodes are passing its values to node B. Purple nodes have impact on both A and B. Node C
passes its value to four different nodes in the previous time level whereas node D passes its value only
to one node in the previous time level.

Finite difference methods. FDMs are used to solve the HJB equation (1.3a), (1.3b)
instead of the original SCP. However, in the next section, we will also prove the conver-
gence of the approximation computed by the Tree-Grid Method to the solution of the HJB
equation, despite the fact that the derivation of the method was based on the original for-
mulation (1.1a), (1.1b). This motivates us to try to look at the method through a finite
difference perspective. As so = si (and therefore v

j+1
o = v

j+1
i

) it can be shown:

p−v
j+1
− + pov j+1

o + p+v
j+1
+

=v j+1
o +µ∆ j tD1v

j+1
i
+ 1/2

�

Var + (µ∆ j t)
2
�

D2v
j+1
i

, (2.25)

where D1 and D2 denote standard finite difference approximations of first and second
derivative on nonuniform grids:

D1v
j+1
i
=

�

s+ − si

s+ − s−

�

v
j+1
i
− v

j+1
−

si − s−
+

�

si − s−
s+− s−

�

v
j+1
+ − v

j+1
i

s+ − s−
, (2.26a)

D2v
j+1
i
=

 

v
j+1
+ − v

j+1
i

s+ − si

− v
j+1
i
− v

j+1
−

si − s−

!

.

�

s+− s−
2

�

. (2.26b)

Now if we substitute (2.25) into (2.23a) and suppose that no artificial diffusion is used, and
for the discount rate holds r

j

i
(θ) = 0, the only difference between the Tree-Grid scheme

and an explicit finite difference approximation with an “wide stencil” on the nodes s−, si , s+
is the term 1/2(µ∆ j t)

2D2v
j+1
i

. This term can be interpreted as some “inherent artificial
diffusion” that comes into the scheme directly from numerical modeling, and is also making
the scheme more stable than explicit FDMs (it in fact makes the derivation of condition
(2.14) possible). Therefore, even in this simplest case this scheme can’t be viewed as just
FDM on specifically chosen nodes, although the similarity is clear. Let us note that such
“inherent artificial diffusion term” is also present in tree methods (therefore they are not
equivalent to FDM as sometimes stated in literature, only equivalent up to certain order),
but not present in Markov chain approximation methods from [14].
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Markov chain approximation methods. The basic idea of Markov chain approxima-
tion methods is to construct a Markov chain (in discrete time) approximating a Markov
process (1.1b) (in continuous time) and then using this chain to find an approximation of
the solution to the SCP -an idea very similar to Tree methods, however in literature used
in more general frameworks as tree-methods are used mostly only in option pricing. From
this viewpoint Tree-Grid Method can be also seen as Markov chain approximation method
as by constructing variable S̃t j+1

gaining values s−, so, s+ with probabilities p−, po, p+. In
Section 2.3 we in fact construct a Markov chain approximating (1.1b). However, in stan-
dard Markov chain methods presented in [14], (as well as in tree methods), the grid can’t
be chosen arbitrarily, is problem-dependent and the space step is determined by the time
step. Moreover, these methods can be often linked to explicit FDM and (as stated earlier)
also do not possess the inherent artificial diffusion term.

3. Convergence of the Tree-Grid Method

In the previous section we directly discretized the SDE (1.1b) to find the approximation
of the solution of the SCP. However, in order to show the convergence of this approximation
to the viscosity solution as the stepsizes tend to zero we will look at the above algorithm
as on a method for solving the HJB equation (1.3a), (1.3b). At first, we will present the
required definitions and the convergence theorem for general nonlinear problems from [3].

3.1. The convergence theory

Let U denote some suitable function space. Let us define some nonlinear differential

operator F

F : U → R, V (x)→ FV (x).

We suppose there exists a viscosity solution (see [6]) of the equation FV (x) = 0, and
denote this solution simply by V (x). To find some approximation of the viscosity solution
we define a discrete approximation scheme

Gv(x) = G
�

v(x), v(x + b1h), v(x + b2h), · · · , v(x + bnh)
�

, (3.1)

where v(x), x ∈ RK is defined as (possibly) multidimensional function, bi ∈ RK , i =

1,2, · · · , n and h ∈ R+.
Let us consider the system of sets called discretized domains

Xh = {x i ∈ RK |i = 1,2, · · · , Nh}, (3.2)

defined for different values of h, which is often referred as step-size.

Definition 3.1 (Numerical scheme). The system of equations Gv(x) = 0 with x ∈ Xh de-

pending on a parameter h ∈ R+ is called numerical scheme.
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The numerical scheme is well-defined, if it possess a unique solution. We will assume
that this condition is met for any feasible h. By v(x), we will denote an approximation of
the solution of FV (x) = 0 computed by solving the system of equations Gv(x) = 0, x ∈ Xh.
In order to distinguish between approximations with different h, we will often denote v(x)

as vh(x).

Definition 3.2 (Monotonicity). A discrete approximation scheme Gv(x) = G
�

v(x), v(x +

b1h), v(x+b2h), · · · , v(x+bnh)
�

is monotone, if the function G is non-increasing in v(x+bih)

for bi 6= 0, i = 1, · · · , n.

Definition 3.3 (Consistency). The scheme Gv(x) = G(v(x), v(x+b1h), v(x+b2h), · · · , v(x+

bnh)) is a consistent approximation of FV (x), if limh→0 |Fφ(x)− Gφ(x)| = 0, for any C∞-

smooth test function φ(x).

A scheme is consistent on a numerical domain, if it is consistent in all points of this
numerical domain. In such case we will call the scheme consistent. In literature, often
C2-smooth test functions are used. However, as shown for example in [15], this leads to
an equivalent definition.

Definition 3.4 (Stability). The numerical scheme defined by the system of equation Gvh(x) =

0, x ∈ Xh with solution vh(x) is stable, if there exist some constant C so that ‖vh(x)‖∞ < C,

∀h> 0.

The following Theorem of Barles and Souganidis in [3] is the key for proving conver-
gence of a numerical scheme approximating a nonlinear PDE:

Theorem 3.1 (Barles-Souganidis). If the equation FV (x) = 0 satisfies the strong uniqueness

property (see [3]) and if the numerical scheme Gvh(x) = 0, x ∈ Xh approximating equation

FV (x) = 0 is monotone, consistent and stable, its solution vh(x) converges locally uniformly

to the solution V (x) of FV (x) = 0 with h→ 0.

The above mentioned strong uniqueness property [3] is a property of the problem and
not of the numerical scheme. Therefore, we will simply assume that our problems possess
this property without actually proving it.

3.2. Consistency of the scheme

For the purposes of following analysis we rewrite (2.23a) it in the form Gv(si, t j) = 0:

Gv(si, t j) =G(v(si, t j), v(s−, t j+1), v(so, t j+1), v(s+, t j+1))

=
1

∆ j t

�

v
j

i
−max
θ∈Θ

�

f
j

i
(θ)∆ j t + (1+ r

j

i
(θ)∆ j t)

·
�

p−v
j+1
− + pov j+1

o + p+v
j+1
+

���

= 0. (3.3)
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Using theory from Section 3.1, our goal is to show Eq. (3.3) is a monotone, consistent, and
stable approximation of the nonlinear differential operator F defined by the PDE (1.3a):

FV (s, t) = −∂ V

∂ t
−max
θ∈Θ

�

σ(·)2
2

∂ 2V

∂ s2 +µ()
∂ V

∂ s
+ r(·)V + f (·)

�

. (3.4)

Let us note that we multiplied both sides of (1.3a) with −1 so that the operator F is elliptic
as in the theory of Barles and Souganidis [3]. The variable x from Section 3.1 is here
represented by a 2-dimensional vector [s, t]. Let us recall ∆s = maxi∈{1,2,··· ,N−1}∆is and
∆t = max j∈{1,2,··· ,M−1}∆ j t. Then the stepsize parameter h from Section 3.1 is in our case
defined as h=min(∆s,∆t).

At first we prove the consistency of the scheme (3.3) with the HJB equation (1.3a). We
define ∆i−s = s− − si, ∆ios = so − si , ∆i+s = s+− si and rewrite (2.5a)-(2.5c) equivalently
as

p− =
(∆ios−µ∆ j t)(∆i+s−µ∆ j t) + Var

(∆i−s−∆ios)(∆i−s−∆i+s)
, (3.5a)

po =
(∆i−s−µ∆ j t)(∆i+s−µ∆ j t) + Var

(∆ios−∆i−s)(∆ios−∆i+s)
, (3.5b)

p+ =
(∆i−s−µ∆ j t)(∆ios−µ∆ j t) + Var

(∆i+s−∆i−s)(∆i+s−∆ios)
. (3.5c)

Now we can see that p−, po, p+ is also a solution of the system of equations

p− + po + p+ = 1, (3.6a)

p−∆i−s+ po∆ios+ p+∆i+s = µ∆ j t, (3.6b)

p−(∆i−s)2 + po(∆ios)2 + p+(∆i+s)2 = Var + (µ∆ j t)
2. (3.6c)

Now a lemma about a remainder-terms that will be used in our consistency proof follows.

Lemma 3.1 (Rest terms). Let ∆ios = 0 (so = si). Then for s−, s+ computed according to

(2.9a), (2.9b) or (2.10a), (2.10b) we have

R3 := p−(∆i−s)3 + po(∆ios)3 + p+(∆i+s)3 = O
�

∆t
�p
∆t +∆s

��

, (3.7)

and for s−, s+ computed according to (2.10a), (2.10b) on equidistant grid, we have

R3 = O
�

∆t
�

∆t + (∆s)2
��

. (3.8)

Moreover, for s−, s+ computed either by formulas (2.9a), (2.9b), or by (2.10a), (2.10b) it

holds

Rb
4 := b−p−(∆i−s)4 + bopo(∆ios)4 + b+p+(∆i+s)4

= O
�

∆t
�

∆t + (∆s)2
��

, (3.9a)

Rb
2 := b−p−(∆i−s)2 + bopo(∆ios)2 + b+p+(∆i+s)2 = O (∆t) , (3.9b)

where b−, bo, b+ ∈ R are arbitrary constants.
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Proof. From (3.5a)-(3.5c) follows:

R3 =∆i−s∆ios∆i+s−µ∆ j t∆ios∆i+s−µ∆ j t∆i−s∆i+s−µ∆ j t∆i−s∆ios

+ Var∆i+s+ Var∆ios+ Var∆i−s

+µ2(∆ j t)
2∆i+s+µ2(∆ j t)

2∆ios+µ2(∆ j t)
2∆i−s. (3.10)

According to (2.21) Var = O (∆t). Substituting this into (2.9a), (2.9b) or (2.10a), (2.10b)
using the inequality si < so = si < s+ and using definitions of ∆i−s,∆i+s, we get

∆i+s = O (p∆t +∆s), ∆i−s = O (p∆t +∆s). (3.11)

As ∆ios = 0 for so = si , by using formulas (2.9a), (2.9b) we get

R3 =−µ∆ j t∆i−s∆i+s+ Var∆i+s+ Var∆i−s

+µ2(∆ j t)
2∆i+s+µ2(∆ j t)

2∆i−s = O
�

∆t
�p
∆t +∆s

��

, (3.12)

where we used (2.21), (3.11). By using formulas (2.10a), (2.10b) on an equidistant, it
holds ∆i−s = −∆i+s and therefore

R3 =−µ∆ j t∆i−s∆i+s = µ∆ j t(∆i+s)2 = O
�

∆t
�

∆t + (∆s)2
��

. (3.13)

Let us define
R4 := p−(∆i−s)4 + po(∆ios)4 + p+(∆i+s)4.

Now by using either (2.9a), (2.9b) or (2.10a), (2.10b) we can prove that R4 = O (∆t (∆t

+(∆s)2
��

in the same manner as in the case of R3. Now it holds

O
�

∆t
�

∆t + (∆s)2
��

=min(b−, bo, b+)R4 ≤ Rb
4

≤max(b−, bo, b+)R4 = O
�

∆t
�

∆t + (∆s)2
��

,

and therefore also Rb
4 = O

�

∆t
�

∆t + (∆s)2
��

. Finally, following (3.6c), (2.21) it holds

O (∆t) =min(b−, bo, b+)
�

Var + (µ∆ j t)
2
�

≤ Rb
2

≤max(b−, bo, b+)
�

Var + (µ∆ j t)
2
�

= O (∆t) ,

and therefore Rb
2 = O (∆t). �

The lemma establishing the consistency of our scheme follows.

Lemma 3.2 (Consistency). If the parameters p−, po, p+ in the scheme (3.3) satisfy the

conditions (2.3b)-(2.3d), so = si and s−, s+ are computed according to (2.9a), (2.9b) then

the scheme (3.3) is consistent with the PDE (3.4).
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Proof. Let φ : R× [0, T]→ R be a C∞-smooth function. Let us define

φ
j

i
= φ(si , t j), φ

j
− = φ(s−, t j),

φ j
o = φ(so, t j), φ

j
+ = φ(s+, t j).

Now it holds

φ
j+1
∗ = φ

j

i
+
∂ φ

j

i

∂ s
∆i∗s+

∂ φ
j

i

∂ t
∆ j t +

1

2

∂ 2φ
j

i

∂ s2 (∆i∗s)2 +
∂ 2φ

j

i

∂ s∂ t
∆i∗s∆ j t

+
1

6

∂ 3φ
j

i

∂ s3 (∆i∗s)3 +
1

2

∂ 3φ
j

i

∂ s2∂ t
(∆i∗s)2∆ j t

+
1

24

∂ 4φ
j+ε∗
i+δ∗
∂ s4 (∆i∗s)4 +

1

6

∂ 4φ
j+ε∗
i+δ∗

∂ s3∂ t
(∆i∗s)3∆ j t + O

�
�

∆ j t
�2
�

, (3.14)

where the index ∗ should be substituted by either − or o or +, and φ j+ε∗
i+δ∗ = φ(si +

δ∗∆i∗s, t j + ε∗∆ j t), and δ∗,ε∗ ∈ [0,1]. Now, using (3.6a)-(3.6c) and the definitions from
Lemma 3.1 we get:

p−φ
j+1
− + poφ

j+1
o + p+φ

j+1
+

=φ
j

i
+
∂ φ

j

i

∂ s
µ∆ j t +

∂ φ
j

i

∂ t
∆ j t +

1

2

∂ 2φ
j

i

∂ s2

�

Var + (µ∆ j t)
2
�

+
∂ 2φ

j

i

∂ s∂ t
µ(∆ j t)

2 +
1

6

∂ 3φ
j

i

∂ s3
R3

+
1

2

∂ 3φ
j

i

∂ s2∂ t

�

Var + (µ∆ j t)
2
�

∆ j t + Rb
4 + Rb′

2 ∆ j t + O
�
�

∆ j t
�2
�

, (3.15)

where

b∗ =
1

24

∂ 4φ
j+ε∗
i+δ∗
∂ s4 , b′∗ =

1

6

∂ 4φ
j+ε∗
i+δ∗

∂ s3∂ t
∆i∗s, for ∗ = −, o,+. (3.16)

Now, using Lemma 3.1, and definition of Var (2.15) we can rewrite (3.15) as

p−φ
j+1
− + poφ

j+1
o + p+φ

j+1
+

=φ
j

i
+
∂ φ
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i

∂ s
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+
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∂ s∂ t
µ(∆ j t)
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∂ 3φ
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∂ 3φ
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i

∂ s2∂ t

·
�

σ2∆ j t + (a
2 +µ2)(∆ j t)

2
�

∆ j t + O
�

∆t
�

∆t + (∆s)2
��

=φ
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i
+
∂ φ

j

i

∂ s
µ∆ j t +

∂ φ
j

i

∂ t
∆ j t +

1

2

∂ 2φ
j
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∂ s2 σ
2∆ j t

+
1

6

∂ 3φ
j

i

∂ s3
R3+ Ra + O

�

∆t
�

∆t + (∆s)2
��

, (3.17)
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where

Ra =
1

2

∂ 2φ
j

i

∂ s2 a2(∆ j t)
2 +

1

2

∂ 3φ
j

i

∂ s2∂ t
a2(∆ j t)

2, (3.18)

and according to (2.20) Ra = O (∆t (∆t +∆s)) if a > 0 and Ra = 0 if a = 0 (artificial
diffusion not needed). Now, substituting (3.17) to Gφ(si , t j) (defined according to (3.3))
we get

Gφ(si , t j) =
1

∆ j t

�

φ
j

i
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j

i
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���
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+ R, (3.19)

where, according to the estimation of R3 in Lemma 3.1 and according to estimation of

Ra R = O
�
p

(∆t) +∆s
�

if formulas (2.9a), (2.9b) were used and R = O (∆t +∆s)

if formulas (2.10a), (2.10b) were used, and artificial diffusion is present (a > 0) and
R = O

�

∆t + (∆s)2
�

if formulas (2.10a), (2.10b) were used, and artificial diffusion is not
present (a = 0).

According to (3.4), we have

Fφ(si , t j) = −
∂ φ

j

i

∂ t
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θ∈Θ

 

σ2

2

∂ 2φ
j

i

∂ s2 +µ
∂φ

j

i

∂ s
+ r

j

i
(θ)φ

j

i
+ f

j

i
(θ)

!

. (3.20)

Comparing (3.19) and (3.20) we see that |Fφ(si , t j)− Gφ(si , t j)| is of order O
�
p

(∆t)

+ ∆s) resp. O (∆t +∆s) resp. O
�

∆t + (∆s)2
�

and therefore vanishing with h=min(∆s,
∆t)→ 0. �

Remark 3.1 (Order of consistency). The original paper of Barles and Souganidis [3] does
not define the order of convergence to the viscosity solution, it just presents a theory for
convergence. Therefore, the impact of the order of the scheme (or “consistency order”)
on the convergence rate is not clear. Moreover, as shown in [13] the maximal order of a
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monotone scheme is 2. However, in the work of Wang and Forsyth [19] it is experimen-
tally shown that a higher order of the scheme leads to faster convergence for a particular
problem. Therefore following the proof of the previous Lemma it may be advantageous
to use formulas (2.10a), (2.10b) leading to an order of the scheme O (∆t +∆s) or even
O
�

∆t + (∆s)2
�

(if artificial diffusion is not needed) rather than formulas (2.9a), (2.9b)

leading to an order of the scheme O
�
p

(∆t) +∆s
�

. On the other hand, formulas (2.9a),

(2.9b) may lead to smaller space-steps ∆i−, ∆i+ which may theoretically also lead to a
higher convergence rate. Therefore, the optimal choice between formulas (2.9a), (2.9b)
and (2.10a), (2.10b) needs deeper examination.

3.3. Monotonicity, stability, convergence

Next, we will prove the monotonicity and stability of the method. Together with the
already proven consistency we get the convergence result for the method. The lemma
establishing the monotonicity property of our method follows.

Lemma 3.3 (Monotonicity). If the parameters p−, po, p+ in the scheme (3.3) satisfy the

condition (2.3a) and if 1+ r
j

i
(θ)∆ j t ≥ 0 for all θ ∈Θ then this scheme is monotone.

Proof. In our case, monotonicity means that (3.3) is non-increasing in v
j+1
− , v

j+1
o , v

j+1
+ .

This follows directly from the non-negativity of the p−, po, p+ -condition (2.3a). �

Remark 3.2. Even if 1+ r
j

i
(θ)∆ j t < 0 for some θ , we can get a monotone scheme if we

substitute 1+ r
j

i
(θ)∆ j t by 1/(1− r

j

i
(θ)∆ j t) in (3.3) for these parameters θ . Note that

this change does not harm consistency, nor stability of the scheme.

The next step is to prove the stability of the method. At first we will pose some condi-
tions on the problem that will be needed for the stability proof.

Condition 3.1 (Stability condition on the problem). We suppose that:

1. There exist constants C f , Cr , ∀s, t,θ : | f (s, t,θ)| < C f , |r(s, t,θ)| < Cr .

2. There exist constant CL, |BCL(s, t)| < CL, ∀t and for all possible values s < s1 of the

variables s−, so, s+ for any grid.

3. There exist constant CR, |BCR(s, t)| < CR, ∀t and for all possible values s > sN of the

variables s−, so, s+ for any grid.

The first condition simply establish boundedness of functions r(·), f (·), and the second
and third condition establish boundedness of the values that can flow into the model from
behind the boundary. Checking if this condition is fulfilled is in most cases trivial. Now we
state an inequality that will be used for the stability proof.
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Lemma 3.4 (Inequality recurrence).

x j ≤ a j x j+1 + b j, j < M ⇒ x j ≤






M−1
∏

k= j

ak






xM +

M−1
∑

k= j













k−1
∏

l= j

al






bk






.

Proof. Proof can be done by induction, we let the details as exercise for the reader. �

Lemma about the stability of the method follows.

Lemma 3.5 (Stability). If the parameters p−, po, p+ in the scheme (3.3) satisfy the conditions

(2.3a), (2.3b), and the problem satisfies condition 3.1 then this scheme is stable.

Proof. Let us define

C j =max

�

CL, CR, max
i∈{1,2,··· ,N}

�

v
j

i

�

�

.

Then, it holds:
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���
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=C f∆ j t + (1+ Cr∆ j t)C j+1

≤C f∆ j t + exp(Cr∆ j t)C j+1.

Using Lemma 3.4 we get

C j =
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exp(Cr∆k t)
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≤exp
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�

C f∆k t
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=exp
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Let v be the vector of all values v
j

i
. Now it holds

‖v‖∞ = max
j∈{1,2,··· ,M}

max
i∈{1,2,··· ,N}

|v j

i
| ≤ max

j∈{1,2,··· ,M}
C j ≤ C .

As this estimation is independent of the grid spacing, the scheme is stable. �
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Theorem 3.2 (Convergence of Tree-Grid Method). The approximation computed by the

implicit Tree-Grid Method defined by Algorithm 2.5 for solving the SCP (1.1a), (1.1b) and the

corresponding HJB equation (1.3a), (1.3b) satisfying the strong uniqueness property (see [3])
and stability conditions defined in Condition 3.1 converges to the viscosity solution solution of

this SCP (and HJB equation).

Proof. The proof follows from Property 3.1 and Lemmas 3.2, 3.3, 3.5. �

Remark 3.3. Actually the approximation converges to solution of the HJB equation re-
stricted to the domain [sL, sR] × [0, T] with boundary conditions defined by functions
BCL(s, t), BCR(s, t). We silently assumed that these boundary functions are chosen consis-
tently with the viscosity solution – an assumption that is frequently done in literature, as
choosing boundary conditions is problem specific.

4. Numerical examples

In this section we will compare the performance of the Tree-Grid Method with the
classic implicit finite difference method for the HJB equation presented in [8] on two
examples from finance. In the first example no artificial diffusion is needed in contrast
to the second example. We should note, that in order to validate the Tree-Grid method,
we tested it also with uncontrolled Black-Scholes equation, which posses explicit solution.
The method was convergent, however standard FDMs provided better results in this case.
The numerical methods were implemented in Matlab and tested on Intel Core i7-4770 CPU
3.40GHz computer with 8 GB RAM.

4.1. The uncertain volatility model

Our first example of the usefulness of Tree-Grid Method is the problem of option pricing
under the uncertain volatility model. This setting is similar to the famous Black-Scholes
model, the only difference is that the volatility is uncertain, only known to lie in some
interval. Using this model, we can compute maximal (best case) and minimal (worst case)
option prices. Here we present the results for the best case option price V that can be,
according to [9], computed using the HJB equation

∂ V

∂ t
+max
θ∈Θ

�

θ2S2

2

∂ 2V

∂ S2 + S
∂ V

∂ S
− rV

�

= 0. (4.1)

Here, t represents time, S is asset price, θ (control variable) is volatility, Θ = {σmin,σmax}
are the minimal and maximal values of volatility and r is the risk-free interest rate. For
comparison reasons we used parameters from [9]: r = 0.04 and Θ = {0.3,0.45}.

Computational domain: The maturity of the option will be six months (T = 0.5),
the space domain will be restricted to S ∈ [0,500]. The grid will be uniformly spaced in
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time, and non-uniformly in space (nodes will be more dense near to “edges” of terminal
condition and less dense near to boundaries of the computational domain)

Terminal and boundary conditions: Terminal and boundary conditions will be also
set as in [9]. We will use a butterfly-spread payoff around 100 as the terminal condition:

V (T,S) = VT (S) =







S − 95, if 95< x ≤ 100,

105− S, if 100< S ≤ 105,

0, else.

and the Dirichlet boundary conditions:

V (Smin, t) = BCL(S) = 0, V (Smax , t) = BCR(S) = 0,

[Smin,Smax] = [0,500].

Numerical results: Now we will present results of numerical solutions of the option
pricing problem in uncertain volatility model computed on grids with different levels of
refinement. With Ak, let us denote the approximation computed on the k-th refinement
level. N k

t will denote number of time-nodes on the k − th refinement level, and N k
s will

denote number of space-nodes on the k− th refinement level. The error of the approxima-
tion on the k-th space- and time-refinement level is denoted as Err Ak and estimated by
the formula

Err Ak = ‖Ak −Are f ‖1, (4.2)

where Are f denotes a reference solution. The experimental order of convergence on the
k-th space- and time-refinement level is denoted denoted as EOC Ak and computed using
the formula

EOC Ak =
log(ErrAk−1)− log(ErrAk)

log(hk−1)− log(hk)
. (4.3)

As reference solution we will use an approximation computed on a grid with 25601 time-
nodes and 50689 space nodes using the classic implicit method with maximal use of central
differences [19]. The Tables 1 and 2 present the results for approximations computed with
fixed ratio between time-step size and space-step size (∆t = c ·∆s) and with fixed ratio
between time-step size and square of space-step size (∆t = c · (∆s)2). Fig. 2 illustrates the
results.

From Tables 1 and 2 and Fig. 2, it is clear that the Tree-Grid Method was not only
significantly faster than the classic implicit FDM, but also its error was slightly smaller.
Therefore the Tree-Grid method is clearly superior for this model. We should note, that in
this example the condition (2.14) was always met and therefore no artificial diffusion was
needed.
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Table 1: Uncertain volatility model, ∆t = c ·∆s. Error, experimental order of convergence and compu-
tational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different
numbers of nodes.

k N k
t N k

s

Classic Implicit Tree-Grid
Err EOC Time Err EOC Time

1 51 100 6.03E-005 - 0.0398 4.29E-005 - 0.0031
2 101 199 1.50E-005 2.01 0.0854 2.09E-006 4.36 0.0033
3 201 397 4.07E-006 1.88 0.1990 2.19E-006 -0.07 0.0068
4 401 793 1.10E-006 1.88 0.5138 4.56E-007 2.26 0.0157
5 801 1585 2.89E-007 1.93 1.4758 1.77E-007 1.36 0.0386
6 1601 3169 7.11E-008 2.02 5.3508 2.43E-008 2.87 0.1057
7 3201 6337 1.60E-008 2.15 19.7059 1.32E-008 0.87 0.3350
8 6401 12673 2.99E-009 2.42 78.0347 2.30E-009 2.53 1.1445
9 12801 25345 3.36E-010 3.16 312.6208 2.88E-010 3.00 4.3767

Table 2: Uncertain volatility model, ∆t = c · (∆s)2. Error, experimental order of convergence and
computational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for
different numbers of nodes.

k N k
t N k

s

Classic Implicit Tree-Grid
Err EOC Time Err EOC Time

1 51 1585 3.43E-005 - 0.1406 1.16E-005 - 0.0204
2 201 3169 3.63E-006 3.24 0.7650 4.95E-007 4.55 0.0515
3 801 6337 2.82E-007 3.69 5.0952 4.84E-008 3.35 0.1524
4 3201 12673 1.59E-008 4.15 40.3774 7.27E-009 2.74 0.6655
5 12801 25345 3.36E-010 5.57 312.6208 2.88E-010 4.66 4.3767

4.2. The passport option pricing problem

In this second example we will test the Tree-Grid Method and the classic implicit
method on the HJB equation for passport option pricing. Passport options are contracts
that allow the buyer to run trading account for a certain amount of time. After the maturi-
ty, the buyer of this contract can keep the profit, however the potential loss will be covered
by the seller. Here we will examine the case in which the buyer is allowed to invest in one
particular asset only. The price depends on buyer’s wealth W , current asset price S and
time to maturity t. According to [19], [18], the HJB equation for the current price of the
contract can be simplified to the form

∂ V

∂ t
+max
|θ |≤1

�

σ2

2
(x − θ)2 ∂

2V

∂ x2 +
�

(r − rc − γ)θ − (r − rt − γ)x
�∂ V

∂ x
− γV

�

= 0. (4.4)

Here, t is time, x = W/S and V is the option price divided by S. By r, we denote the
risk-free interest rate, γ is the dividend rate, rc is the cost of carry rate, rt is the interest
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Figure 2: Uncertain volatility model. Comparison of natural logarithm of estimated absolute error of the
approximation of solution against natural logarithm of computational time (in seconds) for the classic
implicit, and Tree-Grid Method. (Illustration of results from Tables 1, 2).

rate for the trading account and σ is the volatility. The number of shares that the investor
holds (control variable) is denoted by θ , and it does not have to be an integer. In this case
the seller of the option requires the constraint |θ | ≤ 1. For comparison reasons we used
the same parameter values as in [19]: r = 0.08,γ= 0.03, rc = 0.12, rt = 0.05,σ = 0.2.

Computational domain: The maturity of the option will be one year (T = 1), the
space domain will be restricted to [−3,4]. The grid will be uniformly spaced in time, and
non-uniformly in space (nodes will be more dense near to zero and less dense near to the
boundaries of the computational domain)

Terminal and boundary conditions: As terminal condition we will use the “capped”
payoff:

V (T, x) = VT (x) =







0, if x ≤ 0,

x , if 0< x ≤ 1,

1, if x > 1,

and the Dirichlet boundary conditions:

V (xmin, t) = BCL(x) = 0, V (xmax , t) = BCR(x) = 1,

[xmin, xmax] = [−3,4].

Numerical results: In this part we use the same definitions of Ak, Err, EOC and as in
previous numerical model.

As reference solution we will use the approximation computed on a grid with 102401
time-nodes and 47105 space nodes using again the classic implicit method with maximal
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Table 3: Passport option pricing, ∆t = c ·∆s. Error, experimental order of convergence and computa-
tional time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different
numbers of nodes.

k N k
t N k

s

Classic Implicit Tree-Grid
Err EOC Time Err EOC Time

1 51 24 3.42E-007 - 0.0301 1.65E-005 - 0.0037
2 101 47 1.03E-006 -1.59 0.0569 1.64E-006 3.33 0.0051
3 201 93 3.41E-007 1.59 0.1205 1.00E-006 0.71 0.0089
4 401 185 6.26E-007 -0.88 0.2825 2.73E-006 -1.45 0.0177
5 801 369 4.32E-007 0.53 0.8047 2.04E-006 0.42 0.0393
6 1601 737 1.89E-007 1.19 2.0047 9.29E-007 1.13 0.0983
7 3201 1473 8.75E-008 1.11 5.8793 3.99E-007 1.22 0.2735
8 6401 2945 3.76E-008 1.22 21.2013 1.62E-007 1.30 0.8108
9 12801 5889 1.44E-008 1.38 77.8576 6.23E-008 1.38 2.8490

10 25601 11777 4.48E-009 1.68 312.0041 2.15E-008 1.53 11.2965
11 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.84 38.0828

Table 4: Passport option pricing, ∆t = c · (∆s)2. Error, experimental order of convergence and compu-
tational time of the approximation Ak,k for the classic implicit and the Tree-Grid methods, for different
numbers of nodes.

k N k
t N k

s

Classic Implicit Tree-Grid
Err EOC Time Err EOC Time

1 51 737 2.01E-007 - 0.0759 1.50E-006 - 0.0073
2 201 1473 9.01E-008 1.16 0.3969 5.00E-007 1.59 0.0239
3 801 2945 3.81E-008 1.24 2.6518 1.83E-007 1.45 0.1148
4 3201 5889 1.45E-008 1.39 19.4999 6.65E-008 1.46 0.7204
5 12801 11777 4.50E-009 1.69 157.2967 2.22E-008 1.58 5.0818
6 51201 23553 7.83E-010 2.52 1080.4906 6.01E-009 1.89 38.0828

use of central differences. As in the previous numerical example, the Tables 3 and 4 and
Fig. 3 illustrate the results. However, as the diffusion is vanishing in this case, artificial
diffusion was needed in Tree-Grid Method in contrast to the uncertain volatility model.
The error was smaller in the case of classic implicit FDM, however, taking into account the
low computational time of the Tree-Grid Method, the Tree-Grid Method was still superior
on some grids. Moreover one should note that both examples were done with a reference
solution computed with implicit FDM, so the implicit method was favored. This larger
error of Tree-Grid can be probably explained by the additional artificial diffusion term
needed to stabilize the scheme. The growth of experimental order of convergence with
grid refinement results from using solution computed on finest grid as reference solution.
For solutions computed on fine grid, the error computed using such reference solution
is smaller than in case of using the exact solution as a reference solution. However this
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Figure 3: Passport option pricing, “capped” payoff. Comparison of natural logarithm of estimated
absolute error of the approximation of solution against natural logarithm of computational time (in
seconds) for the classic implicit, and Tree-Grid Method. (Illustration of results from Tables 3, 4).

difference is not so huge in case of the coarse grid solution for which the finest grid solution
is a good approximation of exact solution.

5. Conclusions

In this paper we introduced a new unconditionally convergent explicit Tree-Grid Method
for solving SCP or the related HJB equation with one space and one time dimension. The
main idea of this method is to approximate the controlled SDE with an discrete controlled
process attaining only values from the grid. However we demand that the moments of the
increment of the SDE and of the discrete process are matching. As examined, this condition
might be hard to fulfill on general grids if the diffusion in the SDE is vanishing. Therefore
we introduced an artificial diffusion term and made the necessary estimations to ensure
the consistency with the original problem. Using theory from Barles and Souganidis [3],
we have proven unconditional convergence of the method for problems satisfying a set of
natural conditions. The method posses many features that are specific to other numeri-
cal approaches: Tree methods (especially the trinomial tree method), FSG methods, FDM,
Markov chain approximation methods. We discussed these similarities, as well as the most
important differences of the method.

One of the most important advantages of the Tree-Grid Method (in contrast to Markov
chain approximation methods, explicit FDM or Tree methods) is the freedom by grid con-
struction. Therefore, one may easily construct the grid with respect to terminal condition
and change the steps-sizes arbitrarily. The explicitness of the method is a clear advantage
over the standardly used implicit FDM for HJB equation. It makes this method faster and
also suitable for parallelization. However, unlike explicit FDM or FSG methods, the Tree-
Grid Method still remains convergent. We verified these advantages also with numerical
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simulation of the models from finance.
Taking into account analytical as well as numerical results, it is easy to see that the

Tree-Grid Method may be the method of choice for a large range of SCPs with one space
dimension. An interesting question is, what is an optimal ratio between time-step and
space-step. Another important questions for future research are, how the Tree-Grid Method
can be generalized to more space dimensions and how to set boundary conditions in case
of more complex problems.
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