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Abstract. In this paper, Nodal discontinuous Galerkin method is presented to approxi-
mate Time-domain Lorentz model equations in meta-materials. The upwind flux is cho-
sen in spatial discrete scheme. Low-storage five-stage fourth-order explicit Runge-Kutta
method is employed in time discrete scheme. An error estimate of accuracy O (τ4+ hn)

is proved under the L2-norm, specially O (τ4+hn+1) can be obtained. Numerical exper-
iments for transverse electric (TE) case and transverse magnetic (TM) case are demon-
strated to verify the stability and the efficiency of the method in low and higher wave
frequency.

AMS subject classifications: 35L05, 76M10
Key words: Time-domain Lorentz model, meta-materials, Runge-Kutta method, nodal discontinu-
ous Galerkin method.

1. Introduction

The discontinuous Galerkin (DG) method [1] has gained more popularity in solving
various differential equations [2–6] in recent years for its great flexibility in mesh con-
struction and its convenience in parallel implementation. During the past years, Many DG
researches were explored for electromagnetic systems in the free space [7–14] and disper-
sive media [15–17] whose permittivity depended on the wave frequency. Very recently, the
DG method was developed to solve Maxwell’s equations in meta-materials [18,19].

The meta-materials [20, 21] are artificially structured electromagnetic nano-materials
with some exotic properties such as negative refraction index and amplification of evanes-
cent waves. The advantages of meta-materials mainly come from their potential applica-
tions in diverse areas such as building a perfect lens, sub-wavelength imaging and cloaking.
In the past decade, engineers and physicists had been engaged in many numerical simu-
lations for Maxwell’s equations in meta-materials. However, such simulations were almost
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established on either the classic finite-difference time-domain (FDTD) method or some
commercial software packages with constraints and limitations. In recent years, some ef-
fort [18, 20–22, 24] in developing and analyzing some finite element methods(FEMs) for
time-domain Maxwell’s equations involving meta-materials were established.

In [21], the author proved stability, existence and uniqueness of the solution for the
Lorentz model equations. In [31], the author provided the existence and uniqueness for
a vector wave integro-differential equation. In [32], the author provided stability for the
single pole Debye medium model equations.

In [17], A discontinuous Galerkin method for the numerical approximation of time-
dependent Maxwell equations in three different dispersive media was introduced. Both
the L2-stability and error estimate of the DG method were discussed in detail. In [18], the
author proposed a leap-frog discontinuous Galerkin method to solve the time-dependent
Maxwell’s equations in meta-materials. Conditional stability and error estimates were
proved for the scheme. In [30], the author developed a nodal discontinuous Galerkin
method for solving the time-dependent Maxwell’s equations when meta-materials were in-
volved. Both semi- and fully-discrete schemes were constructed. Numerical stability and
error estimate were proved for both schemes.

In this paper, Nodal discontinuous Galerkin method is presented to approximate time-
domain Lorentz model equations in meta-materials. The upwind flux is chosen in spatial
discrete scheme. Low-storage five-stage fourth-order explicit Runge-Kutta method is em-
ployed in time discrete scheme. The energy is decreasing in time. An error estimate of
accuracy O (τ4+hn) is proved under the L2−norm, specially O (τ4+hn+1) can be obtained.
Numerical experiments for TE and TM cases are demonstrated to verify the stability and
the efficiency of the method in low and higher wave frequency. The content of this paper
is summarized as follows. In Section 2, we present the governing equations for meta-
materials and for deformation. In Section 3, We develop a DG method and conduct theory
analysis. In Section 4, We get the semi-discrete DG method and use the classic low-storage
five-stage fourth-order explicit Runge-Kutta method [28] for time discretization. Then in
Section 5, we implement numerical results for the meta-material model and analyze large
wavenumber.

2. Time-domain Lorentz model

Time-domain Lorentz model is described by the following governing equations

ǫ0
∂ eE
∂ t̃
+
∂ eP
∂ t̃
−∇× eH= 0, (0, T]×Ω, (2.1a)

µ0
∂ eH
∂ t̃
+
∂ eM
∂ t̃
+∇× eE= 0, (0, T]×Ω, (2.1b)

1

ǫ0ω̃
2
pe

∂ 2eP
∂ t̃2

+
Γ̃e

ǫ0ω̃
2
pe

∂ eP
∂ t̃
+
ω̃2

e0

ǫ0ω̃
2
pe

eP− eE= 0, (0, T]×Ω, (2.1c)



32 S. H. Jia, C. H. Yao and S. Su

1

µ0ω̃
2
pm

∂ 2 eM
∂ t̃2 +

Γ̃m

µ0ω̃
2
pm

∂ eM
∂ t̃
+
ω̃2

m0

µ0ω̃
2
pm

eM− eH= 0, (0, T]×Ω, (2.1d)

where eE and eH are the electric and magnetic fields, respectively. eP and eM are the induced
polarization and magnetization, respectively. ω0 and µ0 are the vacuum permittivity and
permeability, respectively. ω̃pe and ω̃pm are the electric and magnetic plasma frequencies,
respectively. ω̃e0 and ω̃m0 are the electric and magnetic resonance frequencies, respective-
ly. Γ̃e and Γ̃m are the electric and magnetic damping frequencies, respectively. The induced

electric and magnetic currents are described by eJ= ∂ eP
∂ t̃

and eK= ∂ eM
∂ t̃

, respectively.
To make the problem well posed, we simply assume that the boundary of Ω is perfect

conducting:

n̂× eE= 0, on ∂Ω,

where n̂ is the unit outward normal to ∂Ω. Furthermore, we assume that the initial condi-
tions are

eE( x̃ , 0) = eE0( x̃), eJ( x̃ , 0) = eJ0( x̃), eP( x̃ , 0) = eP0( x̃),

eH( x̃ , 0) = eH0( x̃), eK( x̃ , 0) = eK0( x̃), eM( x̃ , 0) = eM0( x̃),

where eE0( x̃),eJ0( x̃),eP0( x̃), eH0( x̃), eK0( x̃) and eM0( x̃) are some given functions.
To simplify the presentation, we first non-dimensionalize the Time-domain Lorentz

model equations. Let us introduce the vacuum speed of light Cv, the vacuum impedance
Z0:

Cv =
1
p
ǫ0µ0
≈ 3× 108m/s, Z0 =

p
µ0/ǫ0 ≈ 120π ohms,

and unit-free variables

t =
Cv t̃

L
, x =

x̃

L
, Γe =

Γ̃e L

Cv

,

Γm =
Γ̃mL

Cv

, ωpe =
ω̃pe L

Cv

, ωpm =
ω̃pm L

Cv

,

ωe0 =
ω̃e0 L

Cv

, ωm0 =
ω̃m0 L

Cv

, E =
Ẽ

Z0H0
,

H =
H̃

H0
, J=

LJ̃

H0
, K=

LK̃

Z0H0
,

P =
CvP̃

H0
, M=

CvM̃

Z0H0
,

where H0 is a unit magnetic field strength, and L is a reference length (typically the wave-
length of one interested object).
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It is not difficult to check that the equations can be written by

∂ E

∂ t
+ J−∇×H= 0, (2.2a)

∂H

∂ t
+K+∇× E= 0, (2.2b)

∂ J

∂ t
+ΓeJ+ω

2
e0P−ω2

peE = 0, (2.2c)

∂ K

∂ t
+ΓmK+ω2

m0M−ω2
pmH = 0, (2.2d)

∂ P

∂ t
= J, (2.2e)

∂M

∂ t
= K. (2.2f)

In the rest of this paper, our discussion is based on the non-dimensionalized form (2.2a)-
(2.2f).

3. The semi-discrete DG method

Normally, taking the Lagrange polynomials of order N as trial functions, we approxi-
mate the solution at the p nodal points within each element as

Ak(x, t) ≈ Ak
p(x, t) =

p∑

j=1

Ak(x j , t)L j(x) =

p∑

j=1

Ak
j (t)L j(x),

where Ak
p(x, t) is the finite element approximation, and Ak(x j, t) represents the solution at

nodal point x j. But with the increasing of the order of interpolation polynomials, serious
oscillation phenomena will appear, which will increase the computational error and affect
instabilities of computations. A natural solution to this problem is to seek an orthonormal
basis a more suitable and computationally stable approach. In [22], The author choose
the Legendre polynomials of order N instead of the Lagrange polynomials and use the
Legendre-Gauss-Lobatto (LGL) points as quadrature points. The distribution of these nodes
in the standard triangle is shown in Fig. 1 for orders N = 2,3.

In order to describe the system (2.2a)-(2.2f), we consider the uniform grid subdivision
Th that partitions the domain Ω into KT disjoint triangular elements Ti such that Ω =⋃KT

i=1 Ti . Furthermore, we denote aik = Ti ∩ Tk for an interior face between two adjacent
elements Ti and Tk, and nik for the unit normal vector pointed from Ti to Tk. For any given
element Ti , we denote υi for the set of all neighboring elements of Ti.

In DG methods, we consider the discretization space given by discontinuous piecewise
polynomials of degree N on each element, i.e.,

Vh =
¦

vh ∈ (L2(Ω))s : vh|Ti
∈ (PN )

s, ∀Ti ∈ Th

©
, s = 2,3.



34 S. H. Jia, C. H. Yao and S. Su

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: quadrature points for N = 2, 3.

Let us look at the semi-discrete solution Eh,Hh,Jh,Kh,Ph,Mh ∈ C(0, T ;Vh) as a solution
of the following weak formulation: For any uh,vh,ϕh,φh,ψh,ζh ∈ Vh, and any element
Ti ∈ Th,

∫

Ti

∂ Eh

∂ t
· uh−

∫

Ti

Hh · ∇× uh−
∑

K∈νi

∫

aik

uh · nik × {{Hh}}ik +
∫

Ti

Jh · uh = 0, (3.1a)

∫

Ti

∂Hh

∂ t
· vh+

∫

Ti

Eh · ∇× vh+
∑

K∈νi

∫

aik

vh · nik × {{Eh}}ik +
∫

Ti

Kh · vh = 0, (3.1b)

∫

Ti

∂ Jh

∂ t
·ϕh+Γe

∫

Ti

Jh ·ϕh+ω
2
e0

∫

Ti

Ph ·ϕh−ω2
pe

∫

Ti

Eh ·ϕh = 0, (3.1c)

∫

Ti

∂ Kh

∂ t
·φh+Γm

∫

Ti

Kh ·φh+ω
2
m0

∫

Ti

Mh ·φh−ω2
pm

∫

Ti

Hh ·φh = 0, (3.1d)

∫

Ti

∂ Ph

∂ t
·ψh−

∫

Ti

Jh ·ψh = 0, (3.1e)

∫

Ti

∂Mh

∂ t
· ζh−

∫

Ti

Kh · ζh = 0, (3.1f)

hold true and are subject to the initial conditions:

Eh(0) = Π2E0, Jh(0) = Π2J0, Ph(0) = Π2P0,

Hh(0) = Π2H0, Kh(0) = Π2K0, Mh(0) = Π2M0.

Recall that E0,J0,M0,H0,K0 and M0 are the given initial condition functions. For any
function vh, we denote the average and jump through any internal face aik as

{vh}ik =
1

2
(vi + vk), [[vh]]ik = (vi − vk),

and the numerical flux ([18])

{{Hh}}ik = {Hh}ik −αnik ×{Eh}ik, {{Eh}}ik = αnik ×{Hh}ik + {Eh}ik.
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The parameter α in the numerical flux can be used to control dissipation; for example,
taking α = 0 yields a nondissipative central flux and α = 1 results in the classic upwind
flux. One is free, however, to take α to be any value in between.

Note that the perfectly conducting boundary condition is treated as Ek |aik
= −Ei |aik

and Hk |aik
= Hi |aik

, which lead to

{E}ik = 0, {H}ik = Hi | aik, for any aik ∈ ∂Ω.

Here and below we denote Ei = Eh|Ti
, Hi = Hh|Ti

, Ji = Jh|Ti
, Ki = Kh|Ti

, Pi = Ph|Ti
and

Mi =Mh|Ti
.

Denote the semi-discrete energy ℑh:

ℑh(t) =
1

2

 
‖ Eh(t) ‖20,Ω + ‖ Hh(t) ‖20,Ω +

1

ω2
pe

‖ Jh(t) ‖20,Ω

+
1

ω2
pm

‖ Kh(t) ‖20,Ω +
ω2

e0

ω2
pe

‖ Ph(t) ‖20,Ω +
ω2

m0

ω2
pm

‖Mh(t) ‖20,Ω

!
, (3.2)

and a bilinear form ℵi:

ℵi(E,H) = −
∫

Ti
Hi · ∇× ih−

∑
K∈νi

∫
aik

Eh · nik × {{Hh}}ik

+
∫

Ti
Ei · ∇×Hi +

∑
K∈νi

∫
aik

Hh · nik × {{Eh}}ik. (3.3)

Theorem 3.1. The energy ℑh is decreasing in time, i.e., ℑh(t) ≤ ℑh(0) for any t ∈ [0, T].

Proof. Choosing uh = Eh, vh = Hh, ϕh = Jh, φh = Kh, ψh = Ph, ζh =Mh in (3.1a)-(3.1f),
and adding the results over all elements Ti ∈ Th, we obtain

d

d t
ℑh(t) +

Γe

ω2
pe

‖Jh(t)‖20 +
Γm

ω2
pm

‖Kh(t)‖20 +
∑

i

ℵi(E,H) = 0. (3.4)

Based on the definition of ℵi, integration by parts and the identity (x× y) · z = x · (y× z),
we have

ℵi(E,H)

=
∑

K∈νi

∫

aik

Ei ·nik ×Hi +
∑

K∈νi

∫

aik

Ei · {{Hi}}ik × nik −
∑

K∈νi

∫

aik

Hi · {{Ei}}ik × nik

=
∑

K∈νi

∫

aik

�
−Ei ×Hi + Ei ×

Hi +Hk

2
−Hi ×

Ei + Ek

2

�
·nik

=
1

2

∑

K∈νi

∫

aik

(Ei ×Hk + Ek ×Hi) · nik. (3.5)
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Let (3.5) be summed up over all elements of Th, we can obtain
∑

i ℵi(E,H) = 0. Combined
with (3.4), we come to the conclusion d

d t
ℑh(t) ≤ 0, which concludes the proof. �

Lemma 3.1. ([22]) Assume that u ∈ Hp(Ω), (p > 1/2), and that uh represents a piecewise

polynomial interpolation of order N. Then

‖u− uh‖Ω,q,h ≤ C
hσ−q

N p−2q−1/2
| u |Ω,σ,q,

for 0≤ q ≤ σ, and σ = min(N + 1, p).

We have the following convergence result for the semi-discrete scheme (3.1a)-(3.1f).

Theorem 3.2. Assume that the domain Ω is parted uniformly, if E,H,J,K,P, M ∈ C0([0, T];
(Hp+1(Ω))3) for p ≥ 0, then there exists a constant C > 0 independent of h such that

max
t∈[0,T]

�
‖E−Eh‖0,Ω + ‖H−Hh‖0,Ω + ‖J− Jh‖0,Ω + ‖K−Kh‖0,Ω + ‖P− Ph‖0,Ω

+‖M−Mh‖0,Ω

�
≤ Chσ−1‖(E,H,J,K,P,M)‖C0([0,T];(Hp+1(Ω))3), (3.6)

where σ = min(N + 1, p).

Proof Let us introduce the notation Xh = Π2X − X and eXh = Π2X − Xh for X =

E,H,J,K,P,M. Subtracting (3.1a)-(3.1f) , we have the error equations:
∫

Ti

∂ eEh

∂ t
· uh−

∫

Ti

eHh · ∇× uh−
∑

K∈νi

∫

aik

uh · nik × {{eHh}}ik +
∫

Ti

eJh · uh

=

∫

Ti

∂ Eh

∂ t
· uh−

∫

Ti

Hh · ∇× uh−
∑

K∈νi

∫

aik

uh · nik × {{Hh}}ik +
∫

Ti

Jh · uh, (3.7a)

∫

Ti

∂ eHh

∂ t
· vh+

∫

Ti

eEh · ∇× vh+
∑

K∈νi

∫

aik

vh · nik × {{eEh}}ik +
∫

Ti

eKh · vh

=

∫

Ti

∂Hh

∂ t
· vh+

∫

Ti

Eh · ∇× vh+
∑

K∈νi

∫

aik

vh · nik × {{Eh}}ik +
∫

Ti

Kh · vh, (3.7b)

∫

Ti

∂eJh

∂ t
·ϕh+Γe

∫

Ti

eJh ·ϕh+ω
2
e0

∫

Ti

ePh ·ϕh−ω2
pe

∫

Ti

eEh ·ϕh

=

∫

Ti

∂ Jh

∂ t
·ϕh+Γe

∫

Ti

Jh ·ϕh+ω
2
e0

∫

Ti

Ph ·ϕh−ω2
pe

∫

Ti

Eh ·ϕh, (3.7c)

∫

Ti

∂ eKh

∂ t
·φh+Γm

∫

Ti

eKh ·φh+ω
2
m0

∫

Ti

eMh ·φh−ω2
pm

∫

Ti

eHh ·φh

=

∫

Ti

∂ Kh

∂ t
·φh+Γm

∫

Ti

Kh ·φh+ω
2
m0

∫

Ti

Mh ·φh−ω2
pm

∫

Ti

Hh ·φh, (3.7d)
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∫

Ti

∂ ePh

∂ t
·ψh−

∫

Ti

eJh ·ψh =

∫

Ti

∂ Ph

∂ t
·ψh−

∫

Ti

Jh ·ψh, (3.7e)

∫

Ti

∂ eMh

∂ t
· ζh−

∫

Ti

eKh · ζh =

∫

Ti

∂Mh

∂ t
· ζh−

∫

Ti

Kh · ζh. (3.7f)

Choosing uh = eEh, vh = eHh, ϕh = eJh, φh = eKh, ψh = ePh, ζh = eMh in (3.7a)-(3.7f), summing
up the results over all elements Ti ∈ Th, afterwards using the energy definition (3.2) and
the projection property, we have

d

d t
eℑh(t) +

Γe

ω2
pe

‖eJh(t)‖20 +
Γm

ω2
pm

‖eKh(t)‖20 +
∑

i

ℵi(eE, eH)

=
∑

i

∑

K∈νi

h∫

aik

eEh · nik × {{Hi}}ik +
∫

aik

eHh · nik × {{Ei}}ik
i

≤
∑

i

�
‖eEh‖0,∂ Ti

‖Hh‖0,∂ Ti
+ ‖eHh‖0,∂ Ti

‖Eh‖0,∂ Ti

�

≤
∑

i

�
Ch
− 1

2
Ti
‖eEh‖0,Ti

Ch
σ− 1

2
Ti
‖H‖p+1,Ti

+ Ch
− 1

2
Ti
‖eHh‖0,Ti

Ch
σ− 1

2
Ti
‖E‖p+1,Ti

�

≤
∑

i

h
Chσ−1

Ti
‖eEh‖0,Ti

‖H‖p+1,Ti
+ Chσ−1

Ti
‖eHh‖0,Ti

‖E‖p+1,Ti

i
,

where σ is min(N + 1, p), in the last step we used the trace theorem, the standard inverse
inequality and interpolation error estimate.The proof is completed by using the Gronwall
inequality and the fact

∑
i ℵi(E,H) = 0. �

4. Computational scheme

4.1. Spatial discretization

We assume that the domain Ω is decomposed into tetrahedral (or triangular in 2D)
elements Tk, and take electric field as an example, the numerical solution Ek is represented
as

Ek(x, t) =
Nn∑
j=1

Ek(x j , t)L j(x) =
Nn∑
j=1

E j(t)L j(x), (4.1)

where L j(x) is the multivariate Lagrange interpolation polynomial of degree N. Here we

know Nn =
1
6
(N + 1)(N + 2)(N + 3) in 3D and Nn =

1
2
(N + 1)(N + 2) in 2D.

Superinducing the fixed source f in (2.2a), choosing uh = Li(x) in semi-discrete solu-
tion (3.1a) and integrating over each element Tk, we obtain

∫

Tk

�
∂ Ek

∂ t
+ Jk − fk

�
Li(x)−Hk · ∇× Li(x)d x

=

∫

∂ Tk

1

2
n̂× ([Hk]− n̂× [Ek])Li(x)d x , (4.2)
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where n̂ is an outward normal unit vector of ∂Ωk, [Ek] = E+
k
+ E−

k
, and [Hk] = H+

k
+H−

k
.

Here superscripts ‘+’ and ‘−’ refer to field values from the neighbor element and the local
element itself, respectively. For this Maxwell’s equations, we usually choose the upwind
flux (α = 1) [26].

Substituting (4.1) into (4.2), we obtain the elementwise equations for the electric field
components

Nn∑

j=0

�
Mi j

dE j

d t
− Si j ×H j −Mi jSE, j

�
=

1

2

∑

l

Φil · n̂l ×
�
[Hl]− n̂l × [El]

�
, (4.3)

where
Mi j = (Li(x),L j(x))Tk

, Si j = (Li(x),∇L j(x))Tk

represent the local mass and stiffness matrices, respectively. Furthermore,

Φil = (Li(x),Ll(x))∂ Tk

represents the face-based mass matrix. Similarly, the elementwise equations for the mag-
netic field components

Nn∑

j=0

�
Mi j

dH j

d t
+ Si j × E j +Mi jSH, j

�
=

1

2

∑

l

Φil · n̂l × (−n̂l × [Hl]− [El]). (4.4)

We can rewrite (4.3) and (4.4) in a fully explicit form, while the constitutive equations
(2.2c)-(2.2f) keep the same form. In summary, we have the following semi-discrete dis-
continuous Galerkin scheme:

dEN

d t
=M−1S×HN − JN + fN +

1

2
M−1
Φ(n̂× ([HN ]− n̂× [EN ]))|∂ Tk

, (4.5a)

dHN

d t
= −M−1S× EN −KN + gN −

1

2
M−1
Φ(n̂× (n̂× [HN ] + [EN ]))|∂ Tk

, (4.5b)

dJN

d t
= −ΓeJN −ω2

e0PN +ω
2
peEN , (4.5c)

dKN

d t
= −ΓmKN −ω2

m0MN +ω
2
pmHN , (4.5d)

dPN

d t
= JN , (4.5e)

dMN

d t
= KN . (4.5f)

4.2. Time discretization

The system (4.5a)-(4.5f) can be solved by various methods developed for a system of
ordinary differential equations (ODE)

duh

d t
=ℜ(uh, t), (4.6)
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where uh is the vector of unknowns. In our realization, the classic low-storage five-stage
fourth-order explicit Runge-Kutta method [12,22] presented in [19] was adopted:

p(0) = un, k(0) = 0,

i ∈ [1, ..., 5] :

(
k(i) = aik

(i−1) +∆tℜh

�
p(i−1), tn + ci∆t

�
,

p(i) = p(i−1) + bik
(i),

un+1
h
= p(5),

where coefficients ai, bi and ci are fixed constants given in Table 3.2 of [12]. Storage can
be essential for low-storage schemes and large-scale computations need only two storage
units per ODE variable by this method. The time-step restriction then can generally be
taken as

∆t ≤∆tmax = C F L
hk

ck

, (4.7)

where hk is the minimum edge length of all elements and ck is the maximum wave speed in
the domain (see [26,29]). The scheme gives (N+1)st-order convergence with the stability
bound

C F L = C
1

2N + 1

with C = 1, as long as for a given spatial discretisation of polynomial order N, the method
has order N + 1.

5. Numerical results

The implementation of our results is based on the information provided by [22]. For
the sake of simplicity, here we only consider the implementation of 2D situation which
is similar to the 3D situation. The following numerical experiment results were acquired
using MATLAB 7.1 running on Lenovo Z485 laptop with 4 GB of RAM and 1.90 GHz CPU
for Time-domain Lorentz model equations in transverse electric (TE) format and transverse
magnetic (TM) format.

5.1. 2D TE case

We define variables as E = (Ex , Ey , 0), H = (0,0, Hz), J= (Jx , Jy , 0), K= (0,0, Kz), P=

(Px , Py , 0), M = (0,0, Mz) in 2D TE case where the subscripts ‘x’, ‘y’ and ‘z’ denote the cor-
responding components.

To check the convergence rate obtained by our implementation, the following exact
solutions are constructed with Γe = Γm = 2, ωe0 = ωm0 = ωpe = ωpm = 1 on domain
Ω = (0,1)2. The exact solution to (2.2a)-(2.2f) is
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E =

�
Ex

Ey

�
= e−t

�
− cos(πx) sin(πy)

sin(πx) cos(πy)

�
,

Hz = e−t cos(πx) cos(πy),

J=

�
Jx

Jy

�
=

�
−1

2
t2 + t

�
e−t

�
− cos(πx) sin(πy)

sin(πx) cos(πy)

�
,

Kz =

�
−1

2
t2 + t

�
e−t cos(πx) cos(πy),

P =

�
Px

Py

�
=

1

2
t2e−t

�
− cos(πx) sin(πy)

sin(πx) cos(πy)

�
,

Mz =
1

2
t2e−t cos(πx) cos(πy).

It is obvious that E satisfies the boundary condition n̂× E= 0 on ∂Ω.
The corresponding source term f and g is given by:

f=

�
fx

f y

�
=

�
−1

2
t2 + t −π− 1

��− cos(πx) sin(πy)

sin(πx) cos(πy)

�
,

gz =

�
−1

2
t2 + t + 2π− 1

�
cos(πx) cos(πy).

Table 1: L2 and L∞ errors for electric field Ex with linear basis function and τ = 10−5 after 1 time step.

Meshes L2 errors order L∞ errors order
4 7.3057e-002 — 2.2213e-005 —
8 1.8930e-002 1.9484 1.2020e-005 0.8860
16 4.7749e-003 1.9871 6.1259e-006 0.9724
32 1.1964e-003 1.9968 3.0760e-006 0.9939
64 2.9927e-004 1.9992 1.5380e-006 0.9999

Table 2: L2 and L∞ errors for electric field Ex with quadratic basis function and τ = 10−5 after 1 time
step.

Meshes L2 errors order L∞ errors order
4 1.2031e-003 — 6.0683e-006 —
8 1.2484e-004 3.2687 1.5893e-006 1.9329
16 1.4651e-005 3.0910 4.0161e-007 1.9845
32 1.8000e-006 3.0249 1.0043e-007 1.9996
64 2.2405e-007 3.0061 2.4896e-008 2.0122

Results in Table 1-3 are obtained on the uniform triangular mesh with different basis
functions after 1 time step with τ = 10−5 for 2D-TE model. It demonstrates that the degree
of error convergence is N+1(N is the order of basis functions) for L2 errors which coincide
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Table 3: L2 and L∞ errors for electric field Ex with cubic basis function and τ = 10−5 after 1 time step.

Meshes L2 errors order L∞ errors order
4 4.0258e-004 — 9.6908e-007 —
8 2.5626e-005 3.9736 1.2522e-007 2.9521
16 1.6090e-006 3.9934 1.5755e-008 2.9905
32 1.0072e-007 3.9978 2.0198e-009 2.9636
64 6.3365e-009 3.9905 3.8863e-010 2.3778

Table 4: L2 and L∞ errors for electric field Ex with cubic basis function and τ = 10−8 after 1000 time
step.

Meshes L2 errors order L∞ errors order
4 4.0258e-004 — 9.6926e-007 —
8 2.5626e-005 3.9736 1.2532e-007 2.9513
16 1.6090e-006 3.9934 1.5786e-008 2.9889
32 1.0068e-007 3.9983 1.9744e-009 2.9992
64 6.2942e-009 3.9996 2.4616e-010 3.0037

with our theoretical analysis. The degradation of the order is produced in pace with the
subdivision of the encryption in Table 3. Table 4 comes from the experiment with smaller
time step τ = 10−8 for 1000 time steps so that we can compare the results acquired in
Table 3 at the same ending time. Comparing Table 4 with Table 3, we see that the results
obtained with the smaller time step τ = 10−8 shows O (h4) convergence rate for L2 errors
and O (h3) convergence rate for L∞ errors very well, and the errors are more accurate than
those obtained with τ = 10−5. We consider that when N = 3, τ = 10−5 is not satisfied
(4.6) with the decrease of h.

Now the following numerical examples are carried out in order to discuss the low
and higher wave frequency in different h and N . We suppose that Γe = Γm = 2ωπ,
ωe0 =ωm0 =ωpe =ωpm =ωπ on domain Ω = (0,1)2, the exact solution is:

E=

�
Ex

Ey

�
= e−ωπt

�
− cos(ωπx) sin(ωπy)

sin(ωπx) cos(ωπy)

�
,

Hz = e−ωπt cos(ωπx) cos(ωπy),

J=

�
Jx

Jy

�
=

�
−1

2
ω3π3t2 +ω2π2t

�
e−ωπt

�
− cos(ωπx) sin(ωπy)

sin(ωπx) cos(ωπy)

�
,

Kz =

�
−1

2
ω3π3t2 +ω2π2 t

�
e−ωπt cos(ωπx) cos(ωπy),

P=

�
Px

Py

�
=

1

2
ω2π2t2e−ωπt

�
− cos(ωπx) sin(ωπy)

sin(ωπx) cos(ωπy)

�
,

Mz =
1

2
ω2π2 t2e−ωπt cos(ωπx) cos(ωπy).
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Figure 2: Errors of ‖ Ex − Ex ,h ‖∞,Ω and ‖ Hz−Hz,h ‖∞,Ω, ‖ Jx − Jx ,h ‖∞,Ω and ‖ Kz−Kz,h ‖∞,Ω, ‖ Px − Px ,h ‖∞,Ω

and ‖ Mz −Mz,h ‖∞,Ω for N= 2, w = 50, τ = 10−8 at 10 time steps.

It is obvious that E satisfies the boundary condition n̂× E= 0 on ∂Ω.
The corresponding source term f and g is given by:

f=

�
fx

f y

�
=

�
−1

2
ω3π3 t2 +ω2π2 t − 2ωπ

�
e−ωπt

�
− cos(ωπx) sin(ωπy)

sin(ωπx) cos(ωπy)

�
,

gz =

�
−1

2
ω3π3t2 +ω2π2 t +ωπ

�
e−ωπt cos(ωπx) cos(ωπy).

In the numerical results, we first show the dependence of the convergence of ‖ Ex −
Ex ,h ‖∞,Ω and ‖ Hz − Hz,h ‖∞,Ω ‖ Jx − Jx ,h ‖∞,Ω, ‖ Kz − Kz,h ‖∞,Ω, ‖ Px − Px ,h ‖∞,Ω and
‖ Mz −Mz,h ‖∞,Ω on polynomial order N and mesh size h. On one hand, Fig. 1 display the
above six of these errors for w = 50, N = 2 τ = 10−8 after 10 time steps. We find that the
errors and mesh size h have a linear relationship as the mesh of encryption. Fig. 3 shows
the error comparison by different polynomial approximations (N=1,2,3). Fig. 4 displays
the L2 errors and L∞ errors for Ex by fixed polynomial approximations for different wave
frequency w = 10, 20, 30, 40, 50. Now the total Dofs can be 1310720 for solving Eh when
N = 3, w = 50, KT = 131072 in Fig 3. The results support the theoretical analysis.

5.2. 2D TM case

The following exact solutions are constructed for the 2D TM case which means E =

(0,0, Ez), H = (Hx , H y , 0), J = (0,0, Jz), K = (Kx , Ky , 0), P = (0,0, Pz), M = (Mx , My , 0).



Nodal Discontinuous Galerkin Method in Meta-Materials 43

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

1/h

T
he

 m
ax

im
um

 n
or

m
 e

rr
or

 o
f E

x

w=50

 

 
N=1
N=2
N=3

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

1/h

T
he

 m
ax

im
um

 n
or

m
 e

rr
or

 o
f H

z

w=50

 

 
N = 1
N = 2
N = 3

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

1/h

T
he

 L
2 

no
rm

 e
rr

or
 o

f E
x

w=50

 

 
N=1
N=2
N=3

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

1/h

T
he

 L
2 

no
rm

 e
rr

or
 o

f H
z

w=50

 

 
N=1
N=2
N=3

Figure 3: L∞ errors of Ex and Hz for w = 50 by different polynomial approximations(N=1,2,3)(top two);
L2 errors of Ex and Hz for w = 50 by different polynomial approximations(N=1,2,3)(bottom two).
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Figure 4: L∞ errors for Ex by fixed polynomial approximations for w = 10, 20, 30, 40, 50 (top); L2

errors for Ex by fixed polynomial approximations for w = 10, 20, 30, 40, 50 (bottom).

More specifically, we assume that

Γe = Γm = 2, ωe0 =ωm0 =ωpe =ωpm = 1.
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Table 5: L2 errors for electric field Ez and magnetic field Hx with linear basis function and h = 2500τ2.

τ h errors for Ez order errors for Hx order
0.01 0.25 7.0183e-002 — 7.3487e-002 —
0.005 0.0625 4.6981e-003 3.9010 4.8168e-003 3.9313

Table 6: L2 errors for electric field Ez and magnetic field Hx with cubic basis function and h = 2500τ.

τ h errors for Ez order errors for Hx order
0.0001 0.25 4.0232e-004 — 4.0268e-004 —
0.00005 0.0625 2.5613e-005 3.9734 2.5633e-005 3.9736

on domain Ω = (0,1)2. The exact solution to (2.2a)-(2.2f) is

H =

�
Hx

H y

�
= e−t

�
sin(πx) cos(πy)

− cos(πx) sin(πy)

�
,

Ez = e−t sin(πx) sin(πy),

K=

�
Kx

Ky

�
=

�
−1

2
t2 + t

�
e−t

�
sin(πx) cos(πy)

− cos(πx) sin(πy)

�
,

Jz =

�
−1

2
t2 + t

�
e−t sin(πx) sin(πy),

M =

�
Mx

My

�
=

1

2
t2e−t

�
sin(πx) cos(πy)

− cos(πx) sin(πy)

�
,

Pz =
1

2
t2e−t sin(πx) sin(πy).

It is obvious that E satisfies the boundary condition n̂× E= 0 on ∂Ω.

The corresponding source term f and g is given by:

g =

�
gx

g y

�
=

�
−1

2
t2 + t +π− 1

��
sin(πx) cos(πy)

− cos(πx) sin(πy)

�
,

fz =

�
−1

2
t2 + t − 2π− 1

�
sin(πx) sin(πy).

Numerical solutions for Ez (Hx ) and the corresponding pointwise errors obtained with cu-
bic basis function and τ = 10−8(τ = 10−10) at the end of 10,000 time steps are presented
in Fig. 5 (Fig. 6). Table 5-6 shows the results about the time step convergence. It vali-
dates the convergence O (τ4) which coincides with our theoretical analysis. Table 7 lists
the results with cubic basis function and τ = 10−10 after 10000 steps. It shows that the
algorithm is quite efficient by considering that the CPU time. The long time stability and
the rapidity of NDG operation is validated.
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Table 7: L∞ errors with cubic basis function and τ = 10−10 after 10000 steps.

meshes 4 8 16 32 64
Hx 9.6954e-008 1.2540e-008 1.5811e-009 1.9795e-010 2.5067e-011
Ez 1.0816e-007 1.4078e-008 1.7773e-009 2.2268e-010 2.8056e-011
Kx 4.8477e-014 6.2701e-015 7.9056e-016 9.8976e-017 1.2649e-017
Jz 5.4081e-014 7.0393e-015 8.8869e-016 1.1134e-016 1.4029e-017
Mx 1.6159e-020 2.0901e-021 2.6353e-022 3.2994e-023 4.2580e-024
Pz 1.8027e-020 2.3465e-021 2.9624e-022 3.7111e-023 4.6727e-024

CPU(s) 115.7140 299.0448 354.5498 1033.0154 4521.4125
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Figure 5: Results obtained with cubic basis function and τ = 10−8 after 10000 time steps. Top row
(with h = 1

8
): contour plot of Ez (left) and its pointwise error (right); middle row (with h = 1

16
): contour

plot of Ez (left) and its pointwise error (right); bottom row (with h = 1
32

): contour plot of Ez (left) and

its pointwise error (right).
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Figure 6: Results obtained with cubic basis function and τ = 10−10 after 10000 time steps. Top row
(with h = 1

8
): contour plot of Hx (left) and its pointwise error (right); middle row (with h = 1

16
):

contour plot of Hx (left) and its pointwise error (right); bottom row (with h = 1
32

): contour plot of Hx

(left) and its pointwise error (right).

6. Conclusions

In this paper, we provide NDG method to approximate Time-domain Lorentz model e-
quations in meta-materials, where the upwind flux and Low-storage five-stage fourth-order
explicit Runge-Kutta method are employed in spatial and time discrete scheme, respective-
ly. We give the numerical stability and error estimate. Numerical experiments for TE case
and TM case in low and higher wave frequency support the theoretical analysis.
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