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Abstract. We propose the two-step modulus-based matrix splitting iteration methods

for a class of nonlinear complementarity problems. The corresponding convergence the-

ory is established when the system matrix is an H+-matrix. Theoretical analysis gives

the choice of parameter matrix involved based on the H-compatible splitting of the sys-

tem matrix. Moreover, in actual implementation, the choices of iterative parameters

for two-step modulus-based accelerated overrelaxation methods are studied. Numeri-

cal experiments show that the method is efficient and further verify the convergence

theorems.
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1. Introduction

Given a matrix A ∈ Rn×n, a vector q ∈ Rn and a nonlinear mapping f : Rn → Rn,

the following nonlinear complementarity problem which aims to find n-dimensional real

vectors z and w such that

z ≥ 0, w := Az+ q+ f (z) ≥ 0, zT w = 0, (1.1)

arises widely from many scientific computing and engineering applications, such as the

network equilibrium problem, the contact problem and the free boundary problem with

nonlinear source terms [1, 2]. In the free boundary problem, the function f is usually
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referred to the nonlinear source term. Moreover, f in problem (1.1) is assumed to be a di-

agonal differentiable mapping [3,4], which means the ith component of f is differentiable

and only in terms of zi , i.e.,

fi = fi(zi), i = 1,2, · · · , n.

In problem (1.1), ‘≥ 0’ is componentwise and the superscript ‘T ’ means the transpose of a

vector.

If f is a linear function, the nonlinear complementarity problem (1.1) reduces to the

linear complementarity problem. In the past decades, a number of efficient iteration meth-

ods have been proposed for solving linear complementarity problems, especially when the

coefficient matrix is a real positive definite matrix or an H+-matrix. An excellent sur-

vey of the existing methods and the classification of matrices for linear complementarity

problems can be found in [2]. By combining the modulus method [5–7] and the matrix

splitting technique, Bai [8] presented the modulus-based matrix splitting iteration method

for linear complementarity problems and obtained the convergence theorems when A is

positive definite or an H+-matrix. Further, Zhang and Ren improved the convergence con-

dition by weakening the H-compatible splitting of an H+-matrix to the H-splitting of it

in [9]. Inspired by the work in [8], a series of modulus-based matrix splitting iteration

methods were developed. For instance, the two-step modulus-based matrix splitting iter-

ation method was proposed by Zhang and its convergence theory was proved when the

system matrix is an H+-matrix [10, 11]. By putting another parameter diagonal matrix

to the fixed-point formula, Li constructed a general modulus-based matrix splitting iter-

ation scheme in [12]. Further, Xu and Liu [13] gave a modified general modulus-based

matrix splitting method by replacing a positive diagonal matrix with a nonnegative one.

See [14–21] for more variants of modulus-based matrix splitting iteration methods.

For the solution of large and sparse nonlinear complementarity problem, iteration

methods also attract much attention of researchers. The parallel nonlinear multisplitting

relaxation method and the Newton-type method were studied in [22, 23], respectively,

and only local convergence theory for them was established. The Broyden-like method

was proposed and its global and local superlinear convergence conditions were explored

in [24]. Recently, Xia and Li firstly extended the modulus-based matrix splitting method

to solve nonlinear complementarity problems (1.1) and also discussed the global conver-

gence when A is positive definite or an H+-matrix [25]. The authors of this paper proposed

the accelerated modulus-based matrix splitting iteration method for solving problem (1.1)

and established the corresponding convergence theory both for positive definite system

matrix and H+-matrix in [26]. Two-step modulus-based matrix splitting iteration methods

were presented in [27], the convergence was only studied when A is positive definite. In

this paper, we further study the two-step modulus-based matrix splitting iteration method

and analyze the corresponding convergence conditions when A is an H+-matrix in detail.

Numerical experiments verify the convergence theory and illustrate the efficiency of the

method.

The rest of this paper is organized as follows. The two-step modulus-based matrix split-

ting iteration method for solving nonlinear complementarity problems (1.1) is proposed in
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Section 2, while the convergence theory of this proposed method when A is an H+-matrix

is established in Section 3. In Section 4, a number of numerical experiments are given and

finally we derive some conclusions in Section 5.

2. Two-step modulus-based matrix splitting iteration methods

Let Ω denote a positive diagonal matrix with suitable dimension and γ be a positive

constant in the rest of this paper. For the nonlinear complementarity problem (1.1), by

setting

z =
1

γ
(|x |+ x), w =

1

γ
Ω(|x | − x).

Xia and Li reformulated it as an equivalent implicit fixed-point equation in [25]

(Ω+M)x = N x + (Ω− A)|x | − γ(q+ f (z)), (2.1)

where A= M − N is a splitting of A. The modulus-based matrix splitting iteration method

is described as follows:

Algorithm 2.1 ([25])The modulus-based matrix splitting iteration method.

Let A= M − N be a splitting of matrix A∈ Rn×n.

1. Given an initial vector x (0) ∈ Rn, set z(0) = 1

γ

�

|x (0)|+ x (0)
�

;

2. For k = 0,1, · · · , until the nonnegative iteration sequence {z(k)}+∞
k=0
⊂ Rn converges,

compute x (k+1) ∈ Rn by solving the following system

(Ω+M)x (k+1) = N x (k)+ (Ω− A)
�

�x (k)
�

�− γ
�

q+ f (z(k))
�

,

and set z(k+1) = 1

γ

�

|x (k+1)|+ x (k+1)
�

.

Different choices of matrix splitting can result in different modulus-based matrix split-

ting iteration methods. For example, set A= D− L−U , where D,−L,−U are the diagonal,

the strictly lower-triangular and the strictly upper-triangular matrices of A, respectively.

When

M =
1

ω
(D− β L), N =

1

ω
[(1−ω)D+ (ω− β)L +ωU],

Algorithm 2.1 becomes the modulus-based accelerated overrelaxation iteration method

(MAOR), where ω > 0,β > 0 are iterative parameters. The modulus-based successive

overrelaxation iteration method (MSOR) and the modulus-based Gauss-Seidel iteration

method (MGS) are the special cases when ω = β and ω = β = 1, respectively.

By making full use of the information contained in matrix A, the following two-step

modulus-based matrix splitting iteration method was set up in [27].
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Algorithm 2.2 Two-step modulus-based matrix splitting iteration method.

Let A= M1 − N1 = M2 − N2 be two splittings of matrix A∈ Rn×n.

1 Given an initial vector x (0) ∈ Rn, set k := 0 and z(0) = 1

γ

�

|x (0)|+ x (0)
�

;

2 Compute x (k+1) ∈ Rn by solving the system







(Ω+M1)x
(k+ 1

2
) = N1 x (k)+ (Ω− A)

�

�x (k)
�

�− γ
�

q+ f (z(k))
�

,

(Ω+M2)x
(k+1) = N2 x (k+

1

2
)+ (Ω− A)
�

�x (k+
1

2
)
�

�− γ
�

q+ f (z(k+
1

2
))
�

,
(2.2)

and set z(k+1) = 1

γ

�

|x (k+1)|+ x (k+1)
�

;

3 If z(k+1) satisfies the stopping rule, then stop; otherwise, set k := k+ 1, go back to

Step 1.

The corresponding implicit fixed-point equations of (2.2) are

(

(Ω+M1)x = N1 x + (Ω− A)|x | − γ(q+ f (z)),

(Ω+M2)x = N2 x + (Ω− A)|x | − γ(q+ f (z)).
(2.3)

Algorithm 2.2 sets up a general framework of two-step modulus-based matrix splitting it-

eration methods for solving nonlinear complementarity problems (1.1). It is observed that

the two-step modulus-based matrix splitting iteration method for linear complementarity

problems [10] is a special case of Algorithm 2.2 when f (z) ≡ 0. New iteration meth-

ods can also be generated with suitable choices of matrix splittings, such as the two-step

modulus-based Gauss-Seidel iteration method (TMGS) when

M1 = D− L, N1 = U , M2 = D− U , N2 = L; (2.4)

the two-step modulus-based successive overrelaxation iteration method (TMSOR) when

M1 =
1

ω
D− L, N1 =

1

ω
[(1−ω)D+ωU], (2.5a)

M2 =
1

ω
D− U , N2 =

1

ω
[(1−ω)D+ωL]; (2.5b)

and the two-step modulus-based accelerated overrelaxation iteration method (TMAOR)

when

M1 =
1

ω
(D− β L), N1 =

1

ω
[(1−ω)D+ (ω−β)L +ωU], (2.6a)

M2 =
1

ω
(D− βU), N2 =

1

ω
[(1−ω)D+ (ω− β)U +ωL]. (2.6b)
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3. Convergence theorems with an H+-matrix

First, necessary notations and terminology used throughout this paper are reviewed

and most of them can be found in [2,29,30].

For two matrices A = (ai j) and B = (bi j) ∈ R
n×m, we denote A ≥ B (A > B) to mean

ai j ≥ bi j (ai j > bi j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Specially, when B is a zero matrix, A is

said to be nonnegative (positive). Denote |A|= (|ai j|) ∈ R
n×m as the absolute value matrix

of A. These notations can be easily specified to vectors in Rn.

A Z -matrix is a matrix with nonpositive off-diagonal entries, an M -matrix is a non-

singular Z -matrix with nonnegative inverse. It is known that if A ≤ B with A being an

M -matrix and B being a Z -matrix, then B is also an M -matrix [2].

An H-matrix is a matrix whose comparison matrix 〈A〉 is an M -matrix, where 〈A〉 =
(〈a〉i j) is defined by 〈a〉ii = |aii| for i = 1, · · · , n, and 〈a〉i j = −|ai j| for i 6= j, i, j = 1, · · · , n.

In particular, an H-matrix with positive diagonal entries is called an H+-matrix [28]. For

an H-matrix A, it is nonsingular and |A−1| ≤ 〈A〉−1; meanwhile, D is nonsingular and

ρ(|D|−1|B|) < 1, where D,−B are the diagonal and off-diagonal parts of A, respectively,

ρ(·) is the spectral radius of a matrix [29].

Now, we are ready to establish the convergence theory for Algorithm 2.2 when A is an

H+-matrix and A= M1−N1 = M2−N2 are two H-compatible splittings of A, which means

that 〈A〉= 〈M1〉 − |N1| = 〈M2〉 − |N2|.
Since f (z) in problem (1.1) is supposed to be a diagonal differentiable function, its

Jacobian J is a diagonal matrix, more specifically,

J := diag

�

d f1

dz1

, · · · ,
d fn

dzn

�

.

Further, as assumed in [27], J satisfies 0≤ d fi/dzi ≤ j̄i, 1≤ i ≤ n, where j̄i, i = 1,2, · · · , n,

are all constants, thus

0≤ J ≤ diag( j̄1, . . . , j̄n) := J̄ . (3.1)

Suppose x∗ is the fixed point of (2.3), i.e.,

(

(Ω+M1)x
∗ = N1 x∗+ (Ω− A)|x∗| − γ(q+ f (z∗)),

(Ω+M2)x
∗ = N2 x∗+ (Ω− A)|x∗| − γ(q+ f (z∗)),

(3.2)

subtracting (3.2) from (2.2) yields























(Ω+M1)
�

x (k+
1

2
) − x∗
�

= N1(x
(k)− x∗) + (Ω− A)

�

|x (k)| − |x∗|
�

− γ
�

f (z(k))− f (z∗)
�

,

(Ω+M2)
�

x (k+1)− x∗
�

= N2

�

x (k+
1

2
) − x∗
�

+ (Ω− A)
�

|x (k+
1

2
)| − |x∗|
�

− γ
�

f (z(k+
1

2
))− f (z∗)
�

.

(3.3)
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As f is diagonal differentiable, by mean value theorem it is easy to get

f
�

z(k)
�

− f
�

z∗
�

= f

�

1

γ

�

|x (k)|+ x (k)
�

�

− f

�

1

γ

�

|x∗|+ x∗
�

�

=
1

γ
J (k) ·
�

|x (k)| − |x∗|+ x (k)− x∗
�

,

f
�

z(k+
1

2
)
�

− f (z∗) = f

�

1

γ

�

|x (k+
1

2
)|+ x (k+

1

2

�

)

�

− f

�

1

γ
(|x∗|+ x∗)

�

=
1

γ
J
�

k+ 1

2

�

·
�
�

�x (k+
1

2
)
�

�− |x∗|+ x (k+
1

2
) − x∗
�

,

where J (k) := J(ξ(k)) and J (k+
1

2
) := J
�

ξ(k+
1

2
)� are the Jacobian of f (z) at point ξ(k) and

ξ(k+
1

2
), respectively. Here, ξ(k) is a vector between z(k) and z∗, ξ(k+

1

2
) is a vector between

z(k+
1

2
) and z∗. Then (3.3) becomes














(Ω+M1)(x
(k+ 1

2
) − x∗)

= (N1 − J (k))(x (k)− x∗) + (Ω− A− J (k))(|x (k)| − |x∗|),

(Ω+M2)(x
(k+1)− x∗)

= (N2 − J (k+
1

2
))(x (k+

1

2
)− x∗) + (Ω− A− J (k+

1

2
))(|x (k+

1

2
)| − |x∗|).

(3.4)

Since A is an H+-matrix and A= M1 − N1 = M2 − N2 are two H-compatible splittings of A,

it follows that

〈A〉 ≤ 〈M1〉 ≤ diag(M1), 〈A〉 ≤ 〈M2〉 ≤ diag(M2),

from which Ω+M1 and Ω+M2 are H+-matrices; meanwhile,

|(Ω+M1)
−1| ≤ (Ω+ 〈M1〉)

−1, |(Ω+M2)
−1| ≤ (Ω+ 〈M2〉)

−1.

Multiplying (Ω+M1)
−1 from the left on both sides of the first equation in (3.4) and then

taking absolute values on both sides, we get
�

�

�x
(k+ 1

2
) − x∗
�

�

� ≤
�

�(Ω+M1)
−1
�

�

��

�N1 − J (k)
�

�+
�

�Ω−A− J (k)
�

�

� �

�x (k)− x∗
�

�

≤ (Ω+ 〈M1〉)
−1
�

|N1|+ J (k)+
�

�Ω−A− J (k)
�

�

� �

�x (k)− x∗
�

�

=L1

�

�x (k)− x∗
�

�,

where L1 := (Ω + 〈M1〉)
−1(|N1|+ J1 + |Ω− A− J1|), J1 := J (k). Similarly, it is obtained

from the second equation in (3.4) that

�

�x (k+1)− x∗
�

� ≤ (Ω+ 〈M2〉)
−1
�

|N2|+ J (k+
1

2
)+
�

�Ω− A− J (k+
1

2
)
�

�

�
�

�x (k+
1

2
) − x∗
�

�

=L2

�

�x (k+
1

2
) − x∗
�

�,

where L2 := (Ω+ 〈M2〉)
−1(|N2|+ J2 + |Ω− A− J2|), J2 := J (k+

1

2
). Therefore,

�

�x (k+1)− x∗
�

� ≤L2L1

�

�x (k)− x∗
�

�.
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Evidently, Algorithm 2.2 converges if ρ(L2L1) < 1. A sufficient condition for the conver-

gence of Algorithm 2.2 can be given in the following theorem.

Theorem 3.1. Let A∈ Rn×n be an H+-matrix, A= M1−N1 = M2−N2 be two H-compatible

splittings of A, the Jacobian of f (z) satisfies (3.1). Assume the positive diagonal matrix

Ω satisfies Ω ≥ D + J̄ . Then, the iteration sequence {z(k)}+∞
k=0

generated by Algorithm 2.2

converges to the solution z∗ of problem (1.1) for any initial vector x (0) ∈ Rn.

Proof. To prove that {z(k)}+∞
k=0

converges to the solution z∗ of nonlinear complementar-

ity problems (1.1), it is only needed to prove that {x (k)}+∞
k=0

converges to x∗.

Since A is an H+-matrix, which means 〈A〉 is an M -matrix, from the property of an

M -matrix, we know that there exists a positive vector u > 0 such that 〈A〉u > 0; see [29].

Thus
L1u = (Ω+ 〈M1〉)

−1(|N1|+ J1 + |Ω− A− J1|)u

= (Ω+ 〈M1〉)
−1(|N1|+ J1 +Ω− J1 − 〈A〉)u

= (Ω+ 〈M1〉)
−1(Ω+ 〈M1〉 − 〈M1〉+ |N1| − 〈A〉)u

= (Ω+ 〈M1〉)
−1(Ω+ 〈M1〉 − 2〈A〉)u

= u− 2(Ω+ 〈M1〉)
−1〈A〉u,

where we use the facts that Ω ≥ D+ J̄ ≥ D+ J1 and 〈A〉= 〈M1〉−|N1|. Combining 〈A〉u> 0

and (Ω+ 〈M1〉)
−1 is a nonnegative matrix without zero rows, it follows that

L1u < u.

Note that the positive vector u is only dependent on the matrix A but not on the splittings

A= M1 − N1 = M2 − N2, a similar argument applied to matrix L2 can lead to

L2L1u<L2u < u,

which concludes that ρ(L2L1)< 1; see [30]. This completes the proof. �

Remark 3.1. When f (z) ≡ 0, the above theorem is just the special case with l = 1 in [21]

where the convergence property of the two-step modulus-based synchronous multisplitting

iteration method for linear complementarity problems was studied.

From the above analysis, it is found that the convergence result of two-step modulus-

based matrix splitting iteration methods for nonlinear complementarity problems (1.1) is

similar to that for linear complementarity problems after dealing with the Jacobian ma-

trix of the nonlinear term f (z) properly. With analysis similar to Theorem 4.4 in [21]

when l = 1, the following convergence theorem for two-step modulus-based accelerated

overrelaxation methods can be obtained.

Theorem 3.2. Let A∈ Rn×n be an H+-matrix with A= D− L−U := D−B, where D,−L and

−U are the diagonal, the strictly lower-triangular and the strictly upper-triangular matrices of

A, respectively, the Jacobian of f (z) satisfies (3.1). Assume thatΩ is a positive diagonal matrix
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satisfying Ω ≥ D + J̄ . Then, for any initial vector, the two-step modulus-based accelerated

overrelaxation iteration method for nonlinear complementarity problems (1.1) will converge

when

0< β ≤ω<
1

ρ(D−1|B|)
.

Remark 3.2. Notice that when A is an H+-matrix, ρ(D−1|B|) < 1 always holds true, thus

the upper bound for ω in Theorem 3.2 is larger than 1. Therefore, the two-step modulus-

based successive overrelaxation method and the two-step modulus-based Gauss-Seidel

method for nonlinear complementarity problems (1.1) are both convergent for arbitrary

initial vectors.

4. Numerical experiments

Numerical experiments are given in this section to illustrate the efficiency of the pro-

posed method and to verify the convergence theory established above. In all the following

numerical experiments, the initial vector is chosen to be zero and γ= 1. Since the comple-

mentarity condition zT (Az+q+ f (z)) = 0 is equivalent to




min(Az(k)+q+ f (z(k)), z(k))






2
=

0, iterations are terminated when the norm of the residual vector (denoted by ‘RES’)

RES(z(k)) :=




min
�

Az(k) + q+ f (z(k)), z(k)
�





2

satisfies RES ≤ 10−5, or k reaches the maximal number of iteration steps, which is 1000 in

our paper. All the computations are performed in MATLAB with double machine precision

where the CPU is 2.40 GHz and the memory is 4.00 GB.

Example 4.1. Let m be a given positive integer, n = m2. Choose A in (1.1) to be a block

upper tridiagonal matrix as follows:

A=



















S −I −I

S −I
. . .

S
. . . −I
. . . −I

S



















∈ Rn×n,

where S = tridiag(−1, 4, −1) ∈ Rm×m is a tridiagonal matrix. Let q = (1, −1, · · · , 1,

(−1)n−1)T ∈ Rn and

f (z) =

�
Æ

z2
1 + 0.25,
Æ

z2
2 + 0.25, · · · ,
Æ

z2
n + 0.25

�T

∈ Rn.

The matrix A in Example 4.1 is an H+-matrix. In actual implementation, the parameter

matrix Ω is chosen to be D + I in Example 4.1 for both the modulus-based successive

overrelaxation method and the two-step modulus-based successive overrelaxation method,

where D is the diagonal matrix of A, I is the identity matrix.
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Table 1: The optimal parameters ω∗ for MSOR and TMSOR in Example 4.1.

m ω 0.8 0.9 1.0 1.1∗ 1.2 1.3 1.4

MSOR
IT 23 21 20 19∗ 19 20 21

CPU 0.234 0.203 0.203 0.187∗ 0.188 0.203 0.219256

TMSOR
IT 10 9 8 8∗ 8 8 9

CPU 0.188 0.172 0.156 0.141∗ 0.156 0.156 0.172

Table 2: Numerical results for Example 4.1.

m MGS TMGS MSOR TMSOR

IT 20 8 19 8

256 CPU 0.203 0.156 0.187 0.141

RES 4.62e-06 4.87e-06 5.02e-06 3.30e-06

IT 20 8 19 8

512 CPU 0.890 0.719 0.860 0.688

RES 9.26e-06 7.36e-06 8.51e-06 4.78e-06

IT 21 9 20 8

1024 CPU 3.798 3.078 3.625 2.782

RES 7.76e-06 1.80e-06 6.36e-06 6.84e-06

IT 22 9 21 8

2048 CPU 19.096 14.767 18.096 14.064

RES 6.49e-06 2.69e-06 4.78e-06 9.76e-06

In Table 1, the number of iteration steps (denoted by ‘IT’) and the elapsed CPU time in

seconds (denoted by ‘CPU’) are listed for the modulus-based successive overrelaxation iter-

ation method and the two-step modulus-based successive overrelaxation iteration method

when parameter ω varies from 0.8 to 1.4 with m = 256. The optimal parameters ω∗ is

chosen firstly to minimize the number of iteration steps. When the number of iteration

steps are the same, then we choose ω∗ to minimize the elapsed CPU time.

From Table 1, it is seen that for Example 4.1, the optimal parameter ω∗ = 1.1 for both

the modulus-based successive overrelaxation iteration method and the two-step modulus-

based successive overrelaxation iteration method when m = 256. From experiments, it

is found that this phenomenon also happens when m is increasing. In the following, we

choose ω∗ = 1.1 for both the modulus-based successive overrelaxation iteration method

and the two-step modulus-based successive overrelaxation iteration method.

In Table 2, the number of iteration steps, the elapsed CPU time in seconds and the

residual for four methods are listed respectively when m is varying.

From Table 2, it is observed that with the same dimension, the number of iteration steps

for two-step modulus-based matrix splitting method is less than half of that for modulus-

based matrix splitting method, and the two-step modulus-based matrix splitting method

costs less CPU time. Meanwhile, the CPU time increases when the problem size n = m2

increases for all methods, while the number of the iteration steps changes few.
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Table 3: The optimal parameters ω∗ for MSOR and TMSOR in Example 4.2.

m ω 0.8 0.9 1.0 1.1 1.2∗ 1.3 1.4

MSOR
IT 24 22 20 19 17∗ 18 20

CPU 0.312 0.281 0.235 0.235 0.218∗ 0.235 0.235256

TMSOR
IT 11 10 9 8 8∗ 8 9

CPU 0.265 0.234 0.203 0.203 0.188∗ 0.203 0.219

Table 4: Numerical results for Example 4.2.

m MGS TMGS MSOR TMSOR

IT 20 9 17 8

256 CPU 0.235 0.203 0.218 0.188

RES 7.63e-06 5.48e-06 9.76e-06 1.94e-06

IT 21 10 18 8

512 CPU 1.109 1.015 0.969 0.812

RES 6.73e-06 1.66e-06 7.44e-06 7.13e-06

IT 22 10 19 8

1024 CPU 4.735 4.094 4.141 3.484

RES 5.86e-06 3.37e-06 5.62e-06 7.47e-06

IT 23 10 20 9

2048 CPU 22.206 18.830 19.502 16.533

RES 5.07e-06 6.79e-06 4.23e-06 1.54e-06

Example 4.2. Let m be a given positive integer, n= m2. Choose A= Â+4I in (1.1), where

Â is the same as the matrix A defined in Example 4.1. Let q = (1,−1, · · · , (−1)n−1)T ∈ Rn

and

f (z) = (−arccot(z1+ 1),−arccot(z2 + 1), · · · ,−arccot(zn + 1))T ∈ Rn.

The matrix A in Example 4.2 is also an H+-matrix. We choose Ω = D + 1

2
I for the

modulus-based successive overrelaxation method and the two-step modulus-based succes-

sive overrelaxation method in Example 4.2.

In Table 3, the number of iteration steps and the elapsed CPU time in seconds are

listed for the modulus-based successive overrelaxation iteration method and the two-step

modulus-based successive overrelaxation iteration method when parameter ω varies from

0.8 to 1.4 with m = 256.

From Table 3, it is seen that for the successive overrelaxation iteration methods both

the number of iteration steps and the elapsed CPU time are minimized when ω∗ = 1.2

with m = 256. Note that the optimal parameters ω∗ may change a little when m is in-

creasing. In the following, we choose the optimal parameters ω∗ experimentally for both

the modulus-based successive overrelaxation iteration method and the two-step modulus-

based successive overrelaxation iteration method.

In Table 4, the number of iteration steps, the elapsed CPU time in seconds and the

residual for four methods are listed respectively when m is varying.
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From Table 4, it is clear that the CPU time increases when the problem size n = m2

increases for all methods, while the number of the iteration steps changes few. Further, the

number of iteration steps for all two-step modulus-based matrix splitting methods is less

than half of that for modulus-based matrix splitting methods, and also two-step modulus-

based matrix splitting methods cost less CPU time.

5. Conclusions

Two-step modulus-based matrix splitting iteration methods for a class of nonlinear

complementarity problems were proposed and their convergence theories were studied

when the system matrix is an H+-matrix. Numerical experiments further verified the con-

vergence properties of the proposed method.
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