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Abstract. In this paper we consider the computation of some eigenpairs with small-

est eigenvalues in modulus of large-scale polynomial eigenvalue problem. Recently,

a partially orthogonal projection method and its refinement scheme were presented

for solving the polynomial eigenvalue problem. The methods preserve the structures

and properties of the original polynomial eigenvalue problem. Implicitly updating the

starting vector and constructing better projection subspace, we develop an implicitly

restarted version of the partially orthogonal projection method. Combining the implicit

restarting strategy with the refinement scheme, we present an implicitly restarted re-

fined partially orthogonal projection method. In order to avoid the situation that the

converged eigenvalues converge repeatedly in the later iterations, we propose a novel

explicit non-equivalence low-rank deflation technique. Finally some numerical experi-

ments show that the implicitly restarted refined partially orthogonal projection method

with the explicit non-equivalence low-rank deflation technique is efficient and robust.
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Key words: Polynomial eigenvalue problem, partially orthogonal projection method, refinement,
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1. Introduction

We consider the polynomial eigenvalue problem of finding a scalar λ ∈ C and nontrivial

vectors x , y ∈ Cn such that

P(λ)x = 0, yH P(λ) = 0, (1.1)

where P(λ) = λdAd +λ
d−1Ad−1+ · · ·+λA1+A0 with the coefficient matrices Ai(0≤ i ≤ d)

being n× n large and sparse. The scalar λ and the associated nonzero vectors x and y are

called eigenvalue, right and left eigenvectors of the polynomial eigenvalue problem (1.1),

respectively. Together, (λ, x) or (λ, x , y) is called an eigenpair of the polynomial eigenvalue

problem (1.1). The problem is very general and includes the standard eigenvalue problem
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P(λ) = λI−A, the generalized eigenvalue problem P(λ) = λA−B, the quadratic eigenvalue

problem P(λ) = λ2A+ λB + C (see, e.g., [28]) and the cubic eigenvalue problem P(λ) =

λ3A3 +λ
2A2 +λA1 + A0 (see, e.g., [16]).

The polynomial eigenvalue problem arises from a remarkable variety of applications,

such as vibration analysis of viscoelastic systems [1], structural dynamic analysis [9], sta-

bility analysis of control systems [12], numerical simulation of quantum dots [17] and so

on. Considerable efforts have been devoted to the polynomial eigenvalue problem in the

literature. Gohberg et al. [8] established the mathematical theory concerning matrix poly-

nomials. Gohberg et al. [7], Higham and Tisseur et al. [5, 13], and Chu [4] developed

the perturbation theory for the polynomial eigenvalue problem. Tisseur et al. [10, 27],

Lawrence and Corless [20] analyzed backward error of the polynomial eigenvalue prob-

lem.

In this paper, we consider the computation of some eigenpairs with smallest eigenval-

ues in modulus of the polynomial eigenvalue problem (1.1). If the coefficient matrix A0 is

singular, then 0 is an eigenvalue of the polynomial eigenvalue problem (1.1), and therefore

we assume that A0 is nonsingular or, equivalently, 0 is not an eigenvalue of the polynomial

eigenvalue problem (1.1). If some largest magnitude eigenvalues of the polynomial eigen-

value problem (1.1) are desired, we need only to invert the order of the coefficient matrices

Ai(0≤ i ≤ d) in P(λ).

The classical approach for solving the polynomial eigenvalue problem is linearizing

the problem (1.1) to produce an equivalent larger generalized eigenvalue problem (see,

e.g., [8, 11, 21, 22]), solved using any appropriate eigensolver. The way of linearization is

not unique. Using the second companion form of linearization [8], we may convert the

polynomial eigenvalue problem (1.1) into the following generalized eigenvalue problem

C y = θG y, (1.2)

where θ = 1/λ,

C =











−A1 I

−A2

. . .
... I

−Ad 0











, G =









A0

I
. . .

I








,

y =









x

−λA2 x − · · · −λd−1Ad x
...

−λAd x








. (1.3)

Since A0 is nonsingular, the generalized eigenvalue problem (1.3) may be further reduced

to the following standard eigenvalue problem

�

G−1C
�

y = θ y, (1.4)
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or
�

CG−1
�

z = θz, (1.5)

where z = G y. However, the linearization technique will enlarge the size of the problem,

and matrix structures and spectral properties of the original polynomial eigenvalue prob-

lem will not be preserved, and more importantly, the linearized eigenvalue problem is more

ill-conditioned [27]. In recent 20 years, many researchers have been developing numerical

methods that work directly with the original data of the polynomial eigenvalue problem

for avoiding these disadvantages. In these methods, the polynomial eigenvalue problem

is projected onto a properly chosen low dimensional subspace to reduce directly a new

polynomial eigenvalue problem with matrix dimension of low order. The reduced polyno-

mial eigenvalue problem can then be solved by the linearization method. These methods

include Jacobi-Davidson method [18,25] and Krylov-type subspace method [2,14]. Jacobi-

Davidson method targets at one eigenvalue at one time with local convergence. However, if

the desired eigenvalues of (1.1) form a cluster of nearby eigenvalues, then Jacobi-Davidson

method has difficulties in detecting and resolving such a cluster. Bao et al. [2] proposed a

generalized Arnoldi method for solving the polynomial eigenvalue problem. However, the

generalized Arnoldi method is difficult to restart implicitly.

In the spirit of the Hessenberg-triangular decomposition of a matrix pencil, Huang et

al. [15] proposed a semiorthogonal generalized Arnoldi procedure for the matrix pencil re-

sulting from the second companion form of linearization for the quadratic eigenvalue prob-

lem, and developed a semiorthogonal generalized Arnoldi method for solving quadratic

eigenvalue problem. Inspired by the semiorthogonal generalized Arnoldi method, Wei and

Dai [29] presented a partially orthogonal projection method for solving the polynomial

eigenvalue problem and derived its refinement scheme by using the refined projection prin-

ciple [19]. In this paper, we further investigate the partially orthogonal projection method.

Based on the implicitly shifted QZ iteration [26], we develop an implicitly restarted version

of the partially orthogonal projection method. Combining the implicit restarting strategy

with the refinement scheme, we present an implicitly restarted refined partially orthogonal

projection method for solving the polynomial eigenvalue problem.

It is well known that implicit deflation technique based on Schur forms (see, e.g., [24])

combined with eigensolver performs well for the linear eigenvalue problem. However, in

the polynomial eigenvalue problem, it is not clear how to incorporate an implicit deflation

technique because a Schur form does not exist to the polynomial eigenvalue problem. Our

another contribution in this paper is that we will develop an explicit non-equivalence low-

rank deflation technique for the polynomial eigenvalue problem. Suppose that (λ1, x1, y1)

is a given eigenpair. The new deflation technique transforms the original polynomial eigen-

problem (1.1) to a new deflated polynomial eigenproblem so that it has an infinite eigen-

value transformed from λ1 and keeps the remaining eigenpairs invariant.

This paper is organized as follows. In Section 2, we give a brief description of the

partially orthogonal decomposition and the explicitly restarted refined partially orthogo-

nal projection method for the polynomial eigenvalue problem. In Section 3, we develop

an implicitly restarted partially orthogonal projection method for the polynomial eigen-

value problem, and propose the implicitly restarted refined partially orthogonal projection
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method. In Section 4, we describe the explicit non-equivalence low-rank deflation tech-

nique for the polynomial eigenvalue problem, and present an implicitly restarted refined

partially orthogonal projection method with the explicit non-equivalence low-rank defla-

tion. Numerical examples are shown in Section 5 and the concluding remarks are given in

Section 6.

Throughout this paper, we use the following notations. In denotes the n × n identity

matrix, which can be written as I for short without confusion. e j denotes the j-th column of

the identity matrix. The superscript T and H denote the transpose and conjugate transpose,

respectively, for a vector or a matrix. ‖·‖2 denotes the Euclidean vector norm or the induced

matrix norm, and ‖ · ‖F the Frobenius matrix norm. For A ∈ Cn×n, v ∈ Cn and a positive

integer m, K[A, v, m] ¬ [v,Av, · · · ,Am−1v] denotes the Krylov matrix, then span(K[A, v, m])

is the Krylov subspace spanned by A and v. We also adopt the following MATLAB notations:

A(i : j, k : l) denotes the submatrix of the matrix A that consists of the intersection of the

rows i to j and the columns k to l, A(i : j, :) and A(:, k : l) select the rows i to j and the

columns k to l of A, respectively.

2. Partially Orthogonal Projection Method and Its Refinement Scheme

In this section, we give a brief description of the partially orthogonal decomposition and

the explicitly restarted partially orthogonal projection method with refinement technique

for the polynomial eigenvalue problem, see [29] for details.

Definition 2.1 (cf. Ref. [29]). Given coefficient matrices Ai(0≤ i ≤ d) and a positive inte-

ger m≪ n, the mth order partially orthogonal decomposition of the polynomial eigenvalue

problem (1.1) is defined by the following relations











−A1 I

−A2

. . .
... I

−Ad 0





















Qm

P(1)
m

...

P(d−1)
m











=









Vm

U (1)m
...

U (d−1)
m








Hm +









gm

f (1)m
...

f (d−1)
m








eT

m, (2.1)









A0

I
. . .

I

















Qm

P(1)m
...

P(d−1)
m








=









Vm

U (1)m
...

U (d−1)
m








Rm, (2.2)

QH
mQm = V H

m Vm = Im, V H
m gm = 0, (2.3)

where Qm, Vm, P(i)
m

, U (i)
m
∈ Cn×m, gm, f (i)

m
∈ Cn(1 ≤ i ≤ d − 1), Hm ∈ Cm×m is an upper

Hessenberg matrix, and Rm ∈ Cm×m is an upper triangular matrix.
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Let

Zm =









Qm

P(1)m
...

P(d−1)
m








, Ym =









Vm

U (1)m
...

U (d−1)
m








, ηm =









gm

f (1)m
...

f (d−1)
m








, (2.4)

then the equations (2.1) and (2.2) can be written as

C Zm = YmHm +ηmeT
m, (2.5)

GZm = YmRm. (2.6)

Partially orthogonality means that Qm and Vm satisfy the requirements in (2.3), which

guarantees the linear independence of columns of Zm and Ym, respectively. Wei and Dai

[29] discussed the existence and uniqueness of the partially orthogonal decomposition and

presented the following algorithm for generating the partially orthogonal decomposition

(POD).

Algorithm 2.1. POD(m): Partially orthogonal decomposition process.

Input: Coefficient matrices Ai(0 ≤ i ≤ d), initial vectors q1, p
(i)

1
(1 ≤ i ≤ d − 1) and the

dimension m of subspace.

Output: Zm, Ym, Hm,Rm,ηm satisfying (2.5) and (2.6).

1. q1 = q1/‖q1‖2, p
(i)

1
= p

(i)

1
/‖q1‖2, R1 = ‖A0q1‖2, v1 = A0q1/R1,

u
(i)

1
= p

(i)

1
/R1, H1 = vH

1 (−A1q1 + p
(1)

1
), g1 = −A1q1 + p

(1)

1
− v1H1,

f
(i)

1
= −Ai+1q1 + p

(i+1)

1
− u

(i)

1
H1(1≤ i ≤ d − 1);

2. for j = 2 : m

if g j 6= 0 then

γ = ‖g j‖2, v = g j/γ, u(i) = f
(i)

j
/γ, ρ = ‖(I j −Q jQ

H
j
)A−1

0
v‖−1

2
,

r = −ρR jQ
H
j
A−1

0
v, q = ρ(I j −Q jQ

H
j
)A−1

0
v, p(i) = U

(i)

j
r +ρu(i),

h = V H
j
(−A1q+ p(1)), α = vH(−A1q+ p(1)),

g j+1 = −A1q+ p(1) − Vjh−αv,

f
(i)

j+1
= −Ai+1q+ p(i+1) − U

(i)

j
h−αu(i)(1 ≤ i ≤ d − 1).

else

if f
(k)

j
∈ span
n

f
(k)

i

�

�

� gi = 0, i < j
o

(1 ≤ k ≤ d − 1) then

breakdown

else

γ = 1, v = 0, u(i) = f
(i)

j
, ρ = 1, r = 0, q = 0, p(i) = u(i),

h = V H
j

p(1), α = 0, g j+1 = p(1) − Vjh, f
(i)

j+1
= p(i+1) − U

(i)

j
h

(1≤ i ≤ d − 1).

endif

endif
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Z j+1 =








Z j,









q

p(1)

...

p(d−1)
















, Yj+1 =








Yj,









v

u(1)

...

u(d−1)
















,

H j+1 =

�

H j h

γeT
j
α

�

, R j+1 =

�

R j r

0 ρ

�

, η j+1 =











g j+1

f
(1)

j+1
...

f
(d−1)

j+1











.

endfor

Remark 2.1. Computing A−1
0

v or solving a linear system A0 x = v is needed for three times

in Algorithm 2.1. To make the computation more efficient, a LU factorization of A0 should

be made available outside of the first for-loop of the algorithm. From (2.2), we know

that P(i)m can be completely determined by U (i)m , hence we can use U (i)m (:, 1 : j)Rm(1 : j, j) to

replace p
(i)

j
(1 ≤ i ≤ d−1)when they are needed. A breakdown of Algorithm 2.1 is discussed

in [29]. We can use the modified Gram-Schmidt procedure or the QR factorization to check

whether a breakdown occurs in Algorithm 2.1. The computational cost of the partially

orthogonal decomposition process is slightly more expensive than the generalized Arnoldi

procedure [2] since a partially orthogonalization is implemented at the each step.

LetQm = span{Qm}. Using the Rayleigh-Ritz projection technique on the subspaceQm,

Wei and Dai [29] developed an orthogonal projection method for solving the polynomial

eigenvalue problem (1.1). An approximation eigenpair (θ , z), where θ ∈ C and z ∈ Qm, is

seeked by imposing the following Galerkin condition

(θ dAd + θ
d−1Ad−1 + · · ·+ θA1 + A0)z⊥Qm. (2.7)

Since z ∈ Qm, z can be expressed as z = Qmξ, and then (2.7) may be rewritten equivalently

as

(θ d Âd + θ
d−1Âd−1 + · · ·+ θ Â1 + Â0)ξ = 0, (2.8)

where

Âi = QH
mAiQm, 0≤ i ≤ d . (2.9)

From (2.9), the new coefficient matrices Âi(0 ≤ i ≤ d) have the same structures and

properties as Ai(0 ≤ i ≤ d), like symmetry. For the projected polynomial eigenvalue prob-

lem (2.8), the linearization technique can be applied, and the transformed generalized

eigenvalue problem can be solved by the QZ method [23]. A difficulty with the method

is that both the computational cost and the storage become increasingly expensive as the

dimension m of the projected subspaceQm increases. To remedy the difficulty, an explicitly

restarted version (ERPOP) of the method is presented in [29] as follows.
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Algorithm 2.2. ERPOP(m): Explicitly restarted partially orthogonal projection method.

Input: Coefficient matrices Ai(0 ≤ i ≤ d), initial vectors q1, p
(i)
1
(1 ≤ i ≤ d − 1), dimension

m of the projected subspace, number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Run Algorithm 2.1 to get Qm;

2. Compute Âi(0≤ i ≤ d) by (2.9);

3. Solve projected polynomial eigenvalue problem (2.8) for (θi,ξi)(1 ≤ i ≤ dm) with

|θ1| ≤ |θ2| ≤ · · · ≤ |θdm|, and get k Ritz pairs (θi, x i) with x i = Qmξi/‖Qmξi‖2(1 ≤
i ≤ k);

4. Compute k relative residuals αi =
‖(θ d

i
Ad+···+θiA1+A0)xi‖2

|θi |d‖Ad‖F+···+|θi |‖A1‖F+‖A0‖F
(1 ≤ i ≤ k), if all k rel-

ative residuals αi are satisfied, then output (θi, x i) and αi(1 ≤ i ≤ k), and stop;

otherwise set










q1

p
(1)
1
...

p
(d−1)

1











=

k
∑

i=1

αi









x i

−θiA2 x i − · · · − θ
d−1
i

Ad x i
...

−θiAd x i









as new initial vectors and go to 1.

The Ritz vectors obtained by the Rayleigh-Ritz projection cannot be guaranteed to con-

verge even if the approximate eigenvalues or Ritz values do. In order to solve this problem,

using the refined projection principle [19], Wei and Dai [29] derived the refined partially

orthogonal projection method for solving polynomial eigenvalue problem.

Let θi(1≤ i ≤ k) be the Ritz values obtained by Algorithm 2.2. The refinement strategy

seeks k unit vectors x̂ i ∈ Qm, called refined Ritz vectors, such that

x̂ i = arg min
x∈Qm,‖x‖2=1





(θ d
i Ad + · · ·+ θiA1 + A0)x







2
. (2.10)

It was shown that x̂ i = Qmξ̂i where ξ̂i is the right singular vector corresponding to the

smallest singular value σi of the matrix Ti = θ
d
i

AdQm + · · ·+ θiA1Qm + A0Qm ∈ Cn×m. It

follows from (2.1) and (2.2) that

Ti = [Vm, gm, U (1)m , f (1)m , · · · , U (d−1)
m , f (d−1)

m ]













−θiHm + Rm

−θie
T
m

−θ2
i

Hm + θiRm
...

−θ d
i

eT
m













. (2.11)

Since Vm is orthonormal, the QR factorization of the matrix [Vm, gm, U (1)m , f (1)m , · · · , U (d−1)
m ,

f (d−1)
m

] is of the form

[Vm, gm, U (1)
m

, f (1)
m

, · · · , U (d−1)
m

, f (d−1)
m

] = [Vm, g̃m, Ũ (1)
m

, f̃ (1)
m

, · · · , Ũ (d−1)
m

, f̃ (d−1)
m

]R̃, (2.12)



8 W. Wei and H. Dai

where [Vm, g̃m, Ũ (1)m , f̃ (1)m , · · · , Ũ (d−1)
m , f̃ (d−1)

m ] is orthonormal, R̃ ∈ C(m+1)d×(m+1)d is an upper

triangular matrix. Let

T̃i = R̃













−θiHm + Rm

−θie
T
m

−θ2
i

Hm + θiRm
...

−θ d
i

eT
m













∈ C(m+1)d×m, (2.13)

thenσi is the smallest singular value of T̃i , and ξ̂i is the corresponding right singular vector.

The approximate eigenpair (θi , x̂ i), called the refined Ritz pair, is better than the Ritz pair

(θi , x i) due its minimal property. The corresponding relative residual can be expressed by

αi =
σi

|θi|d‖Ad‖F + · · ·+ |θi|‖A1‖F + ‖A0‖F
, 1≤ i ≤ k. (2.14)

Wei and Dai [29] presented the following explicitly restarted refined partially orthogonal

projection (ERRPOP) method for solving polynomial eigenvalue problem (1.1).

Algorithm 2.3. ERRPOP(m): Explicitly restarted refined partially orthogonal projection

method.

Input: Coefficient matrices Ai(0≤ i ≤ d), initial vectors q1, p
(i)

1
(1≤ i ≤ d − 1), the dimen-

sion m of the projected subspace, and the number k of the desired eigenpairs.

Output: k refined Ritz pairs and their relative residuals.

1. Implement Steps 1 and 2 in Algorithm 2.2;

2. Compute all the eigenvalues {θi}
dm
i=1

of the projected polynomial eigenvalue problem

(2.8) with |θ1| ≤ |θ2| ≤ · · · ≤ |θdm|;
3. Compute the QR factorization (2.12) of [Vm, gm, U (1)

m
, f (1)

m
, · · · , U (d−1)

m
, f (d−1)

m
];

4. for i = 1,2, · · · , k do

4.1. Compute the matrix T̃i as defined in (2.13);

4.2. Compute the smallest singular value σi of T̃i and the corresponding right singu-

lar vector ξ̂i, the refined Ritz vector x̂ i = Qmξ̂i and the corresponding relative

residual (2.14);

endfor

5. If all k relative residuals αi are satisfied, then output (θi, x̂ i) and αi(1 ≤ i ≤ k), and

stop; otherwise set










q1

p
(1)

1
...

p
(d−1)
1











=

k
∑

i=1

αi









x̂ i

−θiA2 x̂ i − · · · − θ
d−1
i

Ad x̂ i
...

−θiAd x̂ i









as new initial vectors and go to 1.
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3. Implicitly Restarted Refined Partially Orthogonal Projection Method

Similar to the implicitly restarted refined semiorthogonal generalized Arnoldi method

[15] for the quadratic eigenvalue problem, in this section we will develop the implicitly

restarted refined partially orthogonal projection method for the polynomial eigenvalue

problem by using the forward implicitly shifted QZ iteration [26].

Using Algorithm 2.1, we have computed the mth order partially orthogonal decompo-

sition (2.3)-(2.6). For given shifts µi (1 ≤ i ≤ s, s = m− k), the QR factorizations of the

upper Hessenberg matrices Hm −µiRm are computed as follows.

Hm −µiRm = EiR̂i (i = 1,2, · · · , s),

where Ei is a unitary matrix and R̂i is an upper triangular matrix. It is straightforward to

show that Ei is an upper Hessenberg matrix. Consider the triangular-orthogonal factoriza-

tion

EH
i Rm = R̃i Fi ,

where R̃i is an upper triangular matrix and Fi is a unitary matrix, and then Fi is a lower

Hessenberg matrix [26].

Let

E = E1E2 · · · Es, F = FsFs−1 · · · F1,

Q+
m
= QmF H = [Q+

k
,Q+

s
], V+

m
= VmE = [V+

k
, V+

s
],

Z+m = ZmF H = [Z+
k

, Z+s ], Y +m = YmE = [Y +
k

, Y +s ] = [y
+
1 , y+2 , · · · , y+m],

H+
m
= EH HmF H =

�

H+
k

H+
12

H+
21

H+
22

�

, R+
m
= EHRmF H =

�

R+
k

R+
12

R+
21

R+
22

�

, (3.1)

where Q+
k
, V+

k
∈ Cn×k, Z+

k
, Y +

k
∈ Cdn×k, H+

k
,R+

k
∈ Ck×k, y+

j
∈ Cdn(1 ≤ j ≤ m). It follows

from (2.5), (2.6) and (3.1) that

C Z+m = Y +m H+m +ηmeT
mF H , (3.2)

GZ+m = Y+m R+m. (3.3)

It is easy to verify that H+
m

is still an upper Hessenberg matrix, R+
m

is an upper triangular

matrix, and (Q+
m
)HQ+

m
= (V+

m
)H V+

m
= Im.

Note that Fi is a lower Hessenberg matrix, and eT
m

F H
1
= (0, · · · , 0,α,β). Then the first

k − 1 entries of eT
mF H must be zeros. Since H+m is the upper Hessenberg matrix, the entry

h+
k+1,k

in the top right corner of H+
21

may be nonzero, and the others are zero. Let

eT
mF H = (0, · · · , 0,α

(m)

k
,α
(m)

k+1
, · · · ,α(m)m ), (3.4)

η+
k
= h+

k+1,k
y+

k+1
+α

(m)

k
ηm =

�

g+m
f +m

�

, (3.5)

where g+
m
∈ Cn.
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Comparing the first k columns of (3.2) and (3.3), and using (3.1), (3.4) and (3.5), we

obtain

C Z+
k
= Y +

k
H+

k
+η+

k
eT

k
, (3.6)

GZ+
k
= Y+

k
R+

k
. (3.7)

It follows from (2.3) and (3.1) that

(Q+
k
)HQ+

k
= (V+

k
)H V+

k
= Ik, (V+

k
)H g+

m
= 0. (3.8)

Thus, (3.6), (3.7) and (3.8) constitute the kth order partially orthogonal decomposition.

A good selection of shift is a key for success of the implicit restart technique. A common

choice of the shift value is to choose unwanted Ritz values. When we solve the projected

polynomial eigenvalue problem (2.8) to get md eigenvalues {θi}
dm
i=1

with |θ1| ≤ |θ2| ≤
· · · ≤ |θdm| and select k Ritz values {θi}

k
i=1

as approximations to the desired eigenvalues,

we may directly use the reciprocal values of the remaining unwanted Ritz values as shifts

called exact shifts. We always take the reciprocal values of the s unwanted Ritz values

which are farthest from the target as shifts, namely

µi = 1/θ(d−1)m+k+i, 1≤ i ≤ s. (3.9)

The refined partially orthogonal projection method can not only improve the accuracy

of the Ritz vectors but also provide more accurate approximations to some of the unwanted

eigenvalues. Suppose that ξ+
i

is the right singular vector corresponding to the smallest sin-

gular value of the matrix T̃i(dm−s+1≤ i ≤ dm). Then x̂ i = Qmξ̂i(dm−s+1≤ i ≤ dm) are

the refined Ritz vectors corresponding to the unwanted Ritz values {θi}
dm
i=dm−s+1

. Similar

to the refined shifts suggested in [15], we can find better shifts based on the unwanted re-

fined Ritz vectors { x̂ i}
dm
i=dm−s+1

. For the refined Ritz vector x̂ i of the polynomial eigenvalue

problem (1.1), a popular method for deriving a more accurately approximate eigenvalue θ

from x̂ i is to impose the Galerkin condition

(θ dAd + θ
d−1Ad−1 + · · ·+ θA1 + A0) x̂ i⊥ x̂ i. (3.10)

(3.10) is equivalent to the following polynomial equation

adθ
d + · · ·+ a1θ + a0 = 0, (3.11)

where a j = (ξ
+
i
)H Â jξ

+
i

, and Â j is defined by (2.9). If ωi is a root of the polynomial equa-

tion (3.11), then its reciprocal value would be better candidate for the implicit restart.

Using MATLAB function roots, we can find d roots of the polynomial equation (3.11). Con-

sequently, {θi}
dm
i=dm−s+1

are s unwanted Ritz values that are farthest from our target and

{ x̂ i}
dm
i=dm−s+1

are the corresponding refined Ritz vectors, we can obtain all sd roots, written

as {ωi}
sd
i=1

with |ω1| ≤ |ω2| ≤ · · · ≤ |ωsd|, then we choose the s values from {ωi}
sd
i=1

that

are farthest from our target and take their reciprocal values as the shifts for the restarting

process, namely

µi = 1/ωsd−s+i, 1≤ i ≤ s (3.12)
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and call them the refined shifts. Now, we describe the implicitly restarted refined partially

orthogonal projection (IRRPOP) method as follows.

Algorithm 3.1. IRRPOP(m): Implicitly restarted refined partially orthogonal projection

method.

Input: Coefficient matrices Ai(0 ≤ i ≤ d), initial vectors q1, p
(i)

1
(1 ≤ i ≤ d − 1), dimension

m of the projected subspace, and number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Implement Steps 1-4 in Algorithm 2.3;

2. If all k relative residuals αi are satisfied, then output (θi, x̂ i) and αi(1 ≤ i ≤ k), and

stop; otherwise select s := m−k refined shifts µi(1≤ i ≤ s) as (3.12), and set ǫ := eT
m;

3. for i = 1,2, · · · , s do

3.1. Compute unitary matrices Ei and Fi by using the forward implicitly shifted QZ

iteration for each shift µi so that EH
i

HmF H
i

and EH
i

RmF H
i

are upper Hessenberg

and upper triangular matrices, respectively.

3.2. Update Hm := EH
i

HmF H
i

, Rm := EH
i

RmF H
i

, Zm := ZmF H
i

, Ym := YmEi and ǫ :=

ǫF H
i ;

endfor

4. Set ηk := Hm(k + 1, k)Ym(:, k + 1) + ǫ(k)ηm,

Zk := Zm(:, 1 : k), Yk := Ym(:, 1 : k),

Hk := Hm(1 : k, 1 : k), Rk := Rm(1 : k, 1 : k) and go to 1.

4. Non-Equivalence Low-Rank Deflation

In this section, we present a novel non-equivalence low-rank deflation technique for

the polynomial eigenvalue problem. Suppose that λ1,λ2, · · · ,λr(r ≥ 1) are the converged

eigenvalues of the polynomial eigenvalue problem (1.1), and x1, x2, · · · , xr and y1, y2, · · · , yr

are the associated right and left eigenvectors, respectively. Let

Λ1 = diagr(λ1,λ2, · · · ,λr), X1 = [x1, x2, · · · , xr], Y1 = [y1, y2, · · · , yr].

Here the subindex r in diagr denotes the dimension of the diagonal matrix. Then the

eigenmatrix pair (Λ1, X1, Y1) ∈ Cr×r ×Cn×r ×Cn×r satisfies

Ad X1Λ
d
1 + Ad−1X1Λ

d−1
1 + · · ·+ A1X1Λ1 + A0X1 = 0,

Λ
d
1 Y H

1 Ad +Λ
d−1
1 Y H

1 Ad−1 + · · ·+Λ1Y H
1 A1 + Y H

1 A0 = 0. (4.1)

We select the left eigenvectors y1, y2, . . . , yr such that Y H
1 X1 = Ir . We will construct a

new non-equivalence low-rank deflated matrix polynomial P̃(λ) = λd Ãd + λ
d−1Ãd−1 +

· · ·+ λÃ1 + Ã0 such that the eigenmatrix pair (Λ1, X1, Y1) of the matrix polynomial P(λ) =

λdAd+λ
d−1Ad−1+ · · ·+λA1+A0 is replaced by (diagr(∞, · · · ,∞), X1, Y1), while the other

eigenvalues and the associated eigenvectors are kept invariant.
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Let


















Ã0 = A0,

Ã1 = A1 − (A1X1Y H
1
+ A2X1Λ1Y H

1
+ · · ·+ AdX1Λ

d−1
1

Y H
1
),

Ã2 = A2 − (A2X1Y H
1 + A3X1Λ1Y H

1 + · · ·+ AdX1Λ
d−2
1

Y H
1 ),

...

Ãd−1 = Ad−1 − (Ad−1X1Y H
1 + Ad X1Λ1Y H

1 ),

Ãd = Ad − Ad X1Y H
1

.

(4.2)

We get the deflated matrix polynomial P̃(λ) = λd Ãd +λ
d−1Ãd−1+ · · ·+λÃ1+ Ã0. The rela-

tionship between the matrix polynomials P(λ) and P̃(λ)may be described in the following

result.

Theorem 4.1. Given an eigenmatrix pair (Λ1, X1, Y1) ∈ Cr×r × Cn×r × Cn×r of the matrix

polynomial P(λ) = λdAd +λ
d−1Ad−1 + · · ·+λA1 + A0 with Y H

1 X1 = Ir , let

P̃(λ) = λd Ãd +λ
d−1Ãd−1 + · · ·+λÃ1 + Ã0, (4.3)

where Ãi(0≤ i ≤ d) are defined by (4.2). Then

P̃(λ) = P(λ)
�

In −λX1(λIr −Λ1)
−1Y H

1

�

, (4.4)

and the eigenvalues of P̃(λ) are the same as those of P(λ) except that the eigenvalues of Λ1

are replaced by r infinities.

Proof. Using (4.1) and (4.2), we obtain

P̃(λ) =P(λ)−λ(A1X1Y H
1 + A2X1Λ1Y H

1 + · · ·+ AdX1Λ
d−1
1 Y H

1 )

−λ2(A2X1Y H
1 + A3X1Λ1Y H

1 + · · ·+ AdX1Λ
d−2
1 Y H

1 )− · · ·

−λd−1(Ad−1X1Y H
1
+ Ad X1Λ1Y H

1
)−λdAd X1Y H

1

=P(λ)−λ
�

Ad X1(λ
d−1Ir +λ

d−2
Λ1 + · · ·+Λ

d−1
1
)Y H

1

+ Ad−1X1(λ
d−2Ir +λ

d−3
Λ1 + · · ·+Λ

d−2
1
)Y H

1
+ · · ·

+ A2X1(λIr +Λ1)Y
H

1 + A1X1Y H
1

�

=P(λ)−λ
�

Ad X1(λ
d Ir −Λ

d
1) + Ad−1X1(λ

d−1Ir −Λ
d−1
1 ) + · · ·

+ A1X1(λIr −Λ1) + A0X1 − A0X1

�

(λIr −Λ1)
−1Y H

1

=P(λ)−λP(λ)X1(λIr −Λ1)
−1Y H

1

=P(λ)
�

In −λX1(λIr −Λ1)
−1Y H

1

�

.

By using the identity

det(In + RS) = det(Im + SR),

where R ∈ Cn×m, S ∈ Cm×n, and (4.4), we have

det[P̃(λ)] =det[P(λ)]det
�

In −λX1(λIr −Λ1)
−1Y H

1

�

=det[P(λ)]
det(−Λ1)

det(λIr −Λ1)
. (4.5)
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Since 0 is not an eigenvalue of the polynomial eigenvalue problem (1.1), then det(−Λ1) 6=
0. Therefore, P̃(λ) has the same eigenvalues as P(λ) except that r eigenvalues of Λ1 are

replaced by r infinities.

It is easy to verify that (diagr(∞, · · · ,∞), X1, Y1) is an eigenmatrix pair of the matrix

polynomial P̃(λ).

Now, we can use Theorem 4.1 to transform the converged eigenvalues to infinity so that

the next desired eigenvalues become the closest eigenvalues to the target. Suppose that

(λ1, x1, y1) ∈ C× Cn × Cn is a computed eigenpair of the polynomial eigenvalue problem

(1.1) with λ1 6= 0 and yH
1 x1 = 1. Then (4.2) reduces to

Ã0 = A0, Ãi = Ai −
d
∑

j=i

λ
j−i

1
A j x1 yH

1 (1≤ i ≤ d). (4.6)

If a non-equivalence low-rank deflation has been implemented, then the mth order partially

orthogonal decomposition (2.3)-(2.6) will not hold any more with the new coefficient ma-

trices Ãi(i = 0,1, · · · , d). How to choose new initial vectors to restart the partially orthog-

onal process is a key for success of the partially orthogonal projection method. A popular

way is to find new initial vectors q1, p
(i)

1
(i = 1,2, · · · , d−1) in the complementary subspace

of the space spanned by the vectors that are built up by the converged eigenpairs according

to (1.3). For the implicitly restarted refined partially orthogonal projection method, a good

choice is to take the first column of Z+
k

as the new initial vectors, namely,











q1

p
(1)

1
...

p
(d−1)
1











= Z+
k
(:, 1). (4.7)

We summarize the implicitly restarted refined partially orthogonal projection (DIRRPOP)

method with the non-equivalence low-rank deflation in the following algorithm.

Algorithm 4.1. DIRRPOP(m): Implicitly restarted refined partially orthogonal projection

method with the non-equivalence low-rank deflation.

Input: Coefficient matrices Ai(0 ≤ i ≤ d), initial vectors q1, p
(i)

1
(1 ≤ i ≤ d − 1), dimension

m of the projected subspace, and number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Implement Steps 1-4 in Algorithm 2.3;

2. Set Ide f = 0. If all k relative residuals αi are satisfied, output (θi , x̂ i) and αi(1 ≤
i ≤ k), and stop; if none of αi(1 ≤ i ≤ k) is satisfied, go to 3; if r(0 < r < k) rela-

tive residuals αi are satisfied, output the r eigenpairs and the corresponding relative

residuals, and set k := k − r, Ide f = 1;

3. Select s := m− k refined shifts µi(1 ≤ i ≤ s) as (3.12), and set ǫ := eT
m

;
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4. for i = 1,2, · · · , s do

4.1. Compute unitary matrices Ei and Fi by using the forward implicitly shifted QZ

iteration for each shift µi so that EH
i

HmF H
i

and EH
i

RmF H
i

are upper Hessenberg

and upper triangular matrices, respectively.

4.2. Update Hm := EH
i

HmF H
i

, Rm := EH
i

RmF H
i

, Zm := ZmF H
i

, Ym := YmEi and ǫ :=

ǫF H
i

;

endfor

5. Set ηk := Hm(k + 1, k)Ym(:, k + 1) + ǫ(k)ηm,

Zk := Zm(:, 1 : k), Yk := Ym(:, 1 : k),

Hk := Hm(1 : k, 1 : k), Rk := Rm(1 : k, 1 : k).

If Ide f = 0, go to (1); otherwise go to 6;

6. Compute r left eigenvectors of (1.1) corresponding to r converged eigenvalues;

7. Implement the non-equivalence low-rank deflation by using (4.2), update new initial

vectors as (4.7), and go to 1.

5. Numerical Experiments

In this section, we will present some numerical examples to illustrate the effectiveness

of the proposed methods. Numerical results in [29] showed that the explicitly restarted

refined partially orthogonal projection is superior to the explicitly restarted partially or-

thogonal projection. Here we compare the explicitly restarted refined partially orthogo-

nal projection (ERRPOP) method, the implicitly restarted refined partially orthogonal pro-

jection (IRRPOP) method and the implicitly restarted refined partially orthogonal projec-

tion (DIRRPOP) method with the non-equivalence low-rank deflation with the explicitly

restarted refined generalized Arnoldi (RGAR) method [2].

All numerical experiments are performed in MATLAB on an Intel Core 2.9 GHz PC with

memory 4 GB. The initial vectors are randomly chosen. m denotes the dimension of the

initially projected subspace. k denotes the number of the desired eigenpairs. I ter and

I termax denote the number and the maximum number of restarting process, respectively.

CPU denotes the CPU time (in seconds) for running an algorithm. The stopping tolerance

for relative residuals is chosen to be tol, namely, ERR¬max
i
{αi} ≤ tol.

Example 5.1. Consider the following cubic eigenvalue problem

P(λ)x = (λ3A3 +λ
2A2 +λA1 + A0)x = 0, (5.1)

where the coefficient matrices come from the “plasma − dri f t” problem in [3], and these

matrices are 512×512. Using MATLAB function pol yeig(4), we find 4 smallest magnitude
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Table 1: Numeri
al results for Example 5.1.

Methods I ter CPU αi computed eigenvalues

0.1568e-19 0.027660094023661 + 0.003726041834763i

ERRPOP(20) 4 0.38 0.1237e-19 -0.029277842413461 + 0.003704756021182i

0.9554e-12 0.052045262986852 + 0.005176026939440i

0.9930e-12 0.064135132835627 + 0.008905094382977i

0.1521e-18 0.027660094023662 + 0.003726041834763i

IRRPOP(20) 2 0.22 0.1457e-17 -0.029277842413448 + 0.003704756021198i

0.1121e-17 0.052045262881353 + 0.005176026761455i

0.2808e-13 0.064135132824675 + 0.008905094381634i

0.3882e-13 0.027660094023662 + 0.003726041834762i

RGAR(20) 100 11.01 0.5311e-13 -0.029277842413462 + 0.003704756021179i

0.3584e-12 0.052045262828213 + 0.005176026827947i

0.1610e-10 0.064135133167395 + 0.008905094387536i

eigenvalues of the cubic eigenvalue problem

λ1 = 0.027660094023645+ 0.003726041834717i,

λ2 = −0.029277842413435+ 0.003704756021168i,

λ3 = 0.052045262881366+ 0.005176026761463i,

λ4 = 0.064135132831625+ 0.008905094377921i,

its CPU time is 35.04s.

Setting m = 20, k = 4, tol = 10−12 and I termax = 100, we use the ERRPOP method, the

IRRPOP method and the RGAR method to compute 4 eigenpairs with smallest eigenvalues

in modulus of the problem. The numerical results are shown in Table 1.

Table 1 shows that both ERRPOP(20) and IRRPOP(20) converge, their CPU times are all

far less than pol yeig(4), and IRRPOP(20) is superior to ERRPOP(20) in both the number of

restarting process and the CPU time, while RGAR(20) does not converge even if the number

of restarting process reaches the maximum number I termax . It is observed that only the

relative residual α4 computed by RGAR(20) does not satisfy the stopping tolerance.

Example 5.2. Consider the following quartic eigenvalue problem

P(λ)x = (λ4A4 +λ
3A3 +λ

2A2 +λA1 + A0)x = 0, (5.2)

where A4, A3, A2, A1 are all n × n random sparse matrices with 0.1 nonzero entries and

A0 = In. Setting n = 1000 and using MATLAB function pol yeig(8), we find 8 smallest

magnitude eigenvalues of the quartic eigenvalue problem

λ1,2 = −0.074100957207546± 0.066805279567792i,

λ3,4 = −0.080134503344701± 0.059486778068479i,

λ5,6 = −0.064774671319283± 0.077153059698112i,

λ7,8 = −0.097059310067706± 0.028502193965644i,



16 W. Wei and H. Dai

Table 2: Numeri
al results for Example 5.2.

Methods I ter CPU αi computed eigenvalues

0.5083e-03 -0.080039355327533 ± 0.059255892009508i

ERRPOP(30) 200 165.87 0.3569e-03 -0.080293587858382 ± 0.059164331085948i

0.2443e-03 -0.065045653611504 ± 0.077259581446338i

0.1899e-03 -0.097118809138960 ± 0.028408120642559i

0.9241e-16 -0.074100957207546 ± 0.066805279567792i

IRRPOP(30) 44 31.72 0.1383e-15 -0.080134503344702 ± 0.059486778068480i

0.1561e-12 -0.064774671319307 ± 0.077153059698129i

0.9324e-12 -0.097059310068078 ± 0.028502193965994i

0.6916e-02 -0.009841703564664 ± 0.103320210722644i

RGAR(30) 200 234.22 0.7160e-02 0.049472898189088 ± 0.093242080954868i

0.8164e-02 -0.082592418833363 ± 0.068553742731940i

0.6758e-02 0.038083901993055 ± 0.100935234970110i

0 20 40 60 80 100 120 140 160 180 200

Interation Numbers

-14

-12

-10

-8

-6

-4

-2

0

m
ax

(lo
g
α

i)

ERRPOP
IRRPOP
RGAR

Figure 1: Convergen
e history of Algorithm 2.3, Algorithm 3.1 and RGAR for Example 5.2.

its CPU time is 928.73s.

Setting m = 30, k = 8, tol = 10−12 and I termax = 200, we use Algorithm 2.3, Al-

gorithm 3.1 and the RGAR method to compute 8 eigenpairs with smallest eigenvalues in

modulus of the problem. The numerical results are shown in Table 2 and Fig. 1.

Table 2 shows that IRRPOP(30) converges, its CPU time is much less than pol yeig(8),

but both ERRPOP(30) and RGAR(30) do not converge even if the number of restarting

process reaches the maximum number I termax .

Fig. 1 shows the maximum relative residuals of the eight desired eigenpairs computed

by ERRPOP(30), IRRPOP(30) and RGAR(30). It is observed that IRRPOP(30) converges

fast, but the maximum relative residuals computed by ERRPOP(30) and RGAR(30) oscil-
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late around 10−3 and 10−2, respectively. The numerical results show that IRRPOP(30) is

superior to both ERRPOP(30) and RGAR(30).

Example 5.3 (cf. Ref. [2]). Consider the cubic eigenvalue problem (5.1) where

A3 = 5In, A2 = 3











3 −1

−1 3
...

. . .
. . . −1

−1 3











∈ Rn×n,

and A1, A0 come from the Harwell-Boeing test matrix bwm200 [6], n= 200, these matrices

are 200×200. Using MATLAB function pol yeig(20), we find the twenty smallest magnitude

eigenvalues of the cubic eigenvalue problem

λ1,2 = 0.552030959848608± 0.500562603670607i,

λ3,4 = −0.398318834009417± 0.634872278556881i,

λ5,6 = −0.754292739026879± 0.134305722792111i,

λ7,8 = −0.771609287378186± 0.166442127572732i,

λ9,10 = −0.499000179706779± 0.638535457063888i,

λ11,12 = 0.668287604009531± 0.472106303419513i,

λ13,14 = −0.806374320768845± 0.204918559638503i,

λ15,16 = −0.857090290217150± 0.236798749787440i,

λ17,18 = −0.629735431980245± 0.644911876069556i,

λ19,20 = 0.830887675899521± 0.439968307943236i.

Setting m = 30, k = 20, tol = 10−12 and I termax = 100, we use Algorithm 2.3, Al-

gorithm 3.1, Algorithm 4.1 and the RGAR method to compute 20 eigenpairs with smallest

eigenvalues in modulus of the cubic eigenvalue problem. Fig. 2 shows the maximum rel-

ative residuals of the twenty desired eigenpairs computed by ERRPOP(30), IRRPOP(30),

DIRRPOP(30) and RGAR(30). From Fig. 2 we find that only DIRRPOP(30) converges, while

the maximum relative residuals computed by ERRPOP(30), IRRPOP(30) and RGAR(30)

oscillate around 10−6, 10−4 and 10−4, respectively. Table 3 shows the deflation history

of DIRRPOP(30). The numerical results show that the deflation process is essential and

efficient when more eigenpairs are wanted.

The numerical results of the ERRPOP, IRRPOP, DIRRPOP and RGAR methods with dif-

ferent dimensions of the projected subspace for Example 5.3 are listed in Table 4. It is

observed that the CPU time spent by DIRRPOP(m) increases as the dimension m of the

projected subspace increases.

Our numerical experiments show that the implicitly restarted refined partially orthogo-

nal projection method is superior to both the explicitly restarted refined partially orthogonal

projection method and the explicitly restarted refined generalized Arnoldi method for com-

puting a few eigenpairs of the polynomial eigenvalue problem, while the implicitly restarted
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Figure 2: Convergen
e history of Algorithm 2.3, Algorithm 3.1, Algorithm 4.1 and RGAR for Example 5.3.

Table 3: De�ation history of DIRRPOP(30) for Example 5.3.

computed eigenvalues αi deflation process

0.552030959848609 ± 0.500562603670628i 0.6345e-12 the first deflation

-0.398318833931392 ± 0.634872278543745i 0.1536e-13 the second deflation

-0.754292739050764 ± 0.134305722407414i 0.5151e-12 the third deflation

-0.499000179705161 ± 0.638535457067107i 0.4632e-12 the fourth deflation

0.668287604009838 ± 0.472106303418599i 0.5842e-12

-0.771608369633790 ± 0.166442558624956i 0.7712e-12

-0.806374407569414 ± 0.204918560954883i 0.3477e-13 the fifth deflation

0.830887670922243 ± 0.439968280335488i 0.4477e-13

-0.629738579161092 ± 0.644909212178083i 0.8892e-13 the sixth deflation

-0.857090533317283 ± 0.236798231042078i 0.3973e-15 the seventh deflation

refined partially orthogonal projection method with the non-equivalence low-rank deflation

may compute more eigenpairs of the polynomial eigenvalue problem.

6. Conclusion

In this paper, based on the implicitly shifted QZ iteration and the refinement strategy,

we present an implicitly restarted refined partially orthogonal projection method for com-

puting a few eigenpairs of the polynomial eigenvalue problem. In order to compute more

eigenpairs, we develop a novel explicit non-equivalence low-rank deflation technique for
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Table 4: Numeri
al results with di�erent subspa
es for Example 5.3.

Methods m I ter CPU ERR number of converged eigenpairs

30 100 13.37 0.3146e-05 0

ERRPOP 40 100 24.28 0.6279e-04 0

50 100 43.26 0.1075e-04 0

30 100 14.44 0.1010e-03 4

IRRPOP 40 100 28.83 0.8026e-04 10

50 100 53.99 0.2397e-08 2

30 44 2.45 0.6194e-12 20

DIRRPOP 40 25 7.93 0.8779e-12 20

50 25 14.24 0.9824e-12 20

30 100 12.97 0.2994e-04 0

RGAR 40 100 13.68 0.3007e-04 0

50 100 18.19 0.2751e-04 4

the polynomial eigenvalue problem, and provide the implicitly restarted refined partially

orthogonal projection method with the non-equivalence low-rank deflation. Our numeri-

cal results show that the implicitly restarted refined partially orthogonal projection method

with the non-equivalence low-rank deflation is efficient and robust.
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