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Abstract. In this paper, we present a preconditioned positive-definite and skew-Hermitian

splitting (PPSS) iteration method for continuous Sylvester equations AX + X B = C with

positive definite/semi-definite matrices. The analysis shows that the PPSS iteration

method will converge under certain assumptions. An inexact variant of the PPSS itera-

tion method (IPPSS) has been presented and the analysis of its convergence property in

detail has been discussed. Numerical results show that this new method is more efficient

and robust than the existing ones.
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1. Introduction

In this paper, we consider the iteration solution of the following continuous Sylvester

equation of the form

AX + X B = C , (1.1)

where A∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Assume that

(A1) A, B, C are large and sparse matrices;

(A2) at least one of A and B is non-Hermitian;

(A3) both A and B are positive semi-definite, and at least one of them is positive definite.

It is well known that the continuous Sylvester equation (1.1) has a unique solution

if and only if there is no common eigenvalue between A and −B. Note that a Lyapunov

equation is a special case of the continuous Sylvester equation with B = A∗ and C being
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Hermitian. Here and in the sequel, A∗ represents the conjugate transpose of the matrix A.

Both Lyapunov and Sylvester equations have numerous applications. We can obtain the

history of this class of equations and many interesting and important theoretical results

in [2]. The continuous Sylvester equation (1.1) has numerous applications in control and

system theory [32], signal processing [1], model order reduction [31], image restoration

[19], stability of linear systems [26], analysis of bilinear systems [29], power systems [27],

linear algebra [23], numerical methods for differential equations [2, 9, 10, 12, 13, 16, 17],

matrix nearness problem [30], finite element model updating [22], block-diagonalization

of matrices [23] and so on. Many of these applications lead to stable Sylvester equations,

i.e., Assumption (A3) made in the above is satisfied. Therefore, how to effectively solve this

kind of equations involving literally hundreds or thousands of variables is under research.

The continuous Sylvester equation (1.1) is mathematically equivalent to the system of

linear equations

A x = c, (1.2)

whereA = I⊗A+BT ⊗ I , and the vectors x and c contain the concatenated columns of the

matrices X and C respectively, with ⊗ being the Kronecker product symbol. Of course, this

is a numerically poor way to determine the solution X of the continuous Sylvester equation

(1.1), as the system of linear equations (1.2) is costly to solve and could be ill-conditioned.

Standard direct methods for numerical solution of the continuous Sylvester equation

(1.1) are the Bartels-Stewart and the Hessenberg-Schur methods [24], which consist in

transforming A and B into triangular or Hessenberg-Schur form by an orthogonal similar-

ity transformation and then solving the resulting system of linear equations directly by a

back-substitution process. However, they are not applicable and too expensive for large-

scale problems. For large-scale continuous Sylvester equations, iterative methods have

been developed by taking advantage of the sparsity and the low-rank structure of C . The

Alternating Direction Implicit (ADI) method [3, 35, 36] and the Krylov subspace based al-

gorithms [6,21,25,28,33] are the most common iterative methods. Advantages of Krylov

subspace based algorithms over ADI iterations are that no knowledge about the spectra of

A and B is needed and (except for [33]) no linear systems of equations with (shifted) A

and B have to be solved, and but ADI iterations often enable faster convergence if optimal

shifts to A and B can be effectively estimated [4].

The HSS iteration method for system of linear equations was firstly proposed by Bai,

Golub and Ng in [7], and then it was extended to other equations and conditions in [7–

18, 34, 37–40]. Recently, Bai in [5] proposed a Hermitian and skew-Hermitian splitting

(HSS) iteration method for solving large sparse continuous Sylvester equations with non-

Hermitian and positive definite/semidefinite matrices. In [37], Wang et al. applied the idea

of PSS iteration method in [6] to solve the continuous Sylvester equations and in [41].

Zheng and Ma applied the NSS iteration method [4] to solve the continuous Sylvester

equations. Recently, Dong and Gu presented a PMHSS iteration method [20] for Sylvester

equations. Motivated by this, we further present and analyze a preconditioned positive def-

inite and skew-Hermitian iteration method for solving the continuous Sylvester equations,

which is called PPSS iteration method.
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The rest of the paper is organized as follows. In Section 2, after a brief introduction

of the PSS iteration method [37], we present a PPSS iteration method for the continu-

ous Sylvester equation (1.1) and derive some convergence properties of the PPSS iteration

method. In Section 3, we establish an inexact preconditioned positive definite and skew-

Hermitian iteration method (IPPSS) for (1.1). In Section 4, some numerical examples are

presented to show the efficiency of the proposed method.

In the remainder of this paper, a matrix sequence {Y (k)}∞
k=0
⊆ Cn×n is said to be con-

vergent to a matrix Y ∈ Cn×n if the corresponding vector sequence {y(k)}∞
k=0
⊆ Cn2

is

convergent to the corresponding vector y ∈ Cn2

, where the vectors y(k) and y contain the

concatenated columns of the matrices Y (k) and Y , respectively.

2. PPSS Iteration Method

In this section, we consider the scheme of PPSS iteration method and its convergence

property. This iteration method is with inner and outer iterations while each step of the

inner iteration is exactly computed by direct methods.

Firstly, we split A and B into positive definite and skew-Hermitian parts

A=P (A) +S (A), B =P (B) +S (B).

Then A and B can be rewritten as

A= (αI +P (A)) + (S (A)−αI) = (αI +S (A)) + (P (A)−αI),

B = (αI +P (B)) + (S (B)− αI) = (αI +S (B)) + (P (B)−αI).

It follows that the continuous Sylvester equation (1.1) can be equivalently written as fol-

lows:
�

(αI +P (A))X + X (αI +P (B)) = (αI −S (A))X + X (αI −S (B)) + C ,

(αI +S (A))X + X (αI +S (B)) = (αI −P (A))X + X (αI −P (B)) + C .
(2.1)

Then we can easily establish the following positive-definite and skew-Hermitian splitting

iteration method:

PSS iteration method

Given an initial guess X (0) ∈ Cm×n, compute X (k+1) ∈ Cm×n for k = 0,1,2, · · · , using the

following iteration procedure until {X (k)}∞
k=0

satisfies the stopping criterion:

¨

(αI +P (A))X (k+
1
2 ) + X (k+

1
2 )(αI +P (B))=(αI −S (A))X (k)+ X (k)(αI −S (B)) + C ,

(αI +S (A))X (k+1) + X (k+1)(αI +S (B))=(αI −P (A))X (k+
1
2 ) + X (k+

1
2 )(αI −P (B)) + C .

(2.2)

Now, based on the above observations, we can establish the following preconditioned

positive definite and skew-Hermitian splitting iteration for solving the continuous Sylvester

equation (1.1).
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PPSS iteration method

Given an initial guess X (0) ∈ Cm×n, compute X (k+1) ∈ Cm×n for k = 0,1,2, · · · , using the

following iteration procedure until {X (k)}∞
k=0

satisfies the stopping criterion:











(αV1 +P (A))X
(k+ 1

2 ) + X (k+
1
2 )(αV2 +P (B))

= (αV1 −S (A))X
(k)+ X (k)(αV2 −S (B)) + C ,

(αV1 +S (A))X
(k+1) + X (k+1)(αV2 +S (B))

= (αV1 −P (A))X
(k+ 1

2 ) + X (k+
1
2 )(αV2 −P (B)) + C ,

(2.3)

where α is positive real number and V1, V2 are prescribed symmetric positive definite ma-

trices.

Under the assumptions (A1)-(A3), we can easily know that there is no common eigen-

value between the matrices αV1+P (A) and−(αV2+P (B)), as well as between the matrices

αV1+S (A) and−(αV2+S (B)), so that these two fixed-point matrix equations have unique

solution for all given right-hand side matrices. Naturally, the two half-steps involved in each

step of the PPSS iteration method can be solved effectively using mostly real arithmetic. It is

clear that the PPSS iteration method reduces to PSS iteration method with V1 = Im, V2 = In,

where Im, In are the identity matrices of order m and n, respectively. By making use of the

Kronecker product, we can rewrite the above described PPSS iteration method in the fol-

lowing matrix-vector form,











�

I ⊗ (αV1 +P (A)) + (αV2 +P (B))
T ⊗ I
�

vec(X (k+
1
2 ))

=
�

I ⊗ (αV1 −S (A)) + (αV2 −S (B))
T ⊗ I
�

vec(X (k)) + vec(C),
�

I ⊗ (αV1 +S (A)) + (αV2 +S (B))
T ⊗ I
�

vec(X (k+1))

=
�

I ⊗ (αV1 −P (A)) + (αV2 −P (B))
T ⊗ I
�

vec(X (k+
1
2 )) + vec(C).

(2.4)

Denote byA =P +S , with

P = I ⊗P (A) +P (B)T ⊗ I , S = I ⊗S (A) +S (B)T ⊗ I

and

K = I ⊗ V1 + V T
2 ⊗ I ,

so

K (α) = I ⊗ (αV1) + (αV2)
T ⊗ I = αK .

Then we obtain
¨

(αK +P )vec(X (k+
1
2 )) = (αK −S )vec(X (k)) + vec(C),

(αK +S )vec(X (k+1)) = (αK −P )vec(X (k+
1
2 )) + vec(C).

(2.5)

Evidently, the iteration scheme (2.5) is the PPSS iteration method for solving the system

of linear equation (1.2). After concrete operations, the PPSS iteration (2.5) can be neatly

expressed as a stationary fixed-point iteration as follows:

vec(X (k+1)) =M (α)vec(X (k)) +G (α)vec(C),
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where

M (α) = (αK +S )−1(αK −P )(αK +P )−1(αK −S ), (2.6)

and

G (α) = (αK +S )−1
�

I + (αK −P )(αK +P )−1
�

. (2.7)

In addition, if we introduce matrices

F1(α) =
1

2α
(αK +P )K −1(αK +S )

and

G1(α) =
1

2α
(αK −P )K −1(αK −S ),

then it holds that

A=F1(α)−G1(α), M (α) =F1(α)
−1G1(α).

In the following, we study the convergence of the PPSS method. Since the iteration

method can be regarded as a combination of two two-step splitting iterations, we firstly

give the general convergence criterion for the two-step splitting iterative method (2.5).

Lemma 2.1 ( [5]). Let A, B, C ∈ Cn×n, A= Mi − Ni (i = 1,2) be two splittings of matrix A,

and let X (0) be a given initial matrix. If {X (k)} is a two-step iteration sequence defined by

¨

M1X (k+
1
2 )B = N1X (k)B + C ,

M2X (k+1)B = N2X (k+
1
2 )B + C ,

k = 1,2, · · · , then

X (k+1) = M−1
2 N2M−1

1 N1X (k)+M−1
2 (I + N2M−1

1 )CB−1.

This iterative process can be rewritten in vector form

x (k+1) = I ⊗ (M−1
2 N2M−1

1 N1)x
(k)+
�

B−T ⊗M−1
2 (I + N2M−1

1 )
�

vec(C). (2.8)

Moreover, if the spectral radius ρ(I ⊗ (M−1
2 N2M−1

1 N1)) is less than 1, the {X (k)} converges to

X ∗ ∈ Cn×n for all X (0) ∈ Cn×n.

Lemma 2.2 ( [6]). Let

σ(α) =‖ (αI − P̂)(αI + P̂)−1 ‖2 . (2.9)

If P̂ ∈ Cm×m is a positive semi-definite matrix, then it holds that

σ(α) ≤ 1, ∀α > 0.

If P̂ ∈ Cm×m is a positive definite matrix, then it holds that

σ(α) < 1, ∀α > 0.
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Lemma 2.3 ( [6]). Let Ŝ ∈ Cm×m be a skew-Hermitian matrix. Then for any α > 0,

(a) αI + Ŝ is a non-Hermitian positive definite matrix;

(b) the Cayley transform Q(α)≡ (αI − Ŝ)(αI + Ŝ)−1 of Ŝ is a unitary matrix.

We can know from Lemma 2.3 that ‖ Q(α) ‖2= 1. Similar to Theorem 2.1 in [6], we

have the following theorem.

Theorem 2.1. Let A = P (A) + S (A) and B = P (B) + S (B), where P (A), P (B) are the

positive definite parts and S (A), S (B) are the skew-Hermitian parts. Denote by A=P +S
with

A= I ⊗ A+ BT ⊗ I ,

P = I ⊗P (A) +P (B)T ⊗ I , S = I ⊗S (A) +S (B)T ⊗ I ,

K (α) = I ⊗ (αV1) + (αV2)
T ⊗ I = αK ,

where V1 ∈ R
m×m, V2 ∈ R

n×n are prescribed symmetric positive definite matrices and α is a

positive constant, and M (α) defined in (2.6) is the iteration matrix in (2.5), and σ(α) is

defined in (2.9). Then the spectral radius ρ(M (α)) is bounded by σ(α). Therefore, it holds

that

ρ(M (α)) ≤ σ(α) < 1, ∀α > 0.

So the PPSS iteration method is convergent to the exact solution X∗ ∈ C
m×n of Sylvester equa-

tions (1.1).

Proof. We can easily verify that K is symmetric positive definite matrix. Noting that

P̂ = K −1/2PK −1/2, Ŝ = K −1/2S K −1/2, then we can know that P̃ is positive definite

and S̃ is skew-Hermitian. So we have

ρ(M (α))

=ρ
�

(αK +S )−1(αK −P )(αK +P )−1(αK −S )
�

=ρ
�

(αK −P )(αK +P )−1(αK −S )(αK +S )−1
�

≤ ‖ (αK −P )(αK +P )−1(αK −S )(αK +S )−1) ‖2

= ‖ K −
1
2 (αK −P )K−

1
2K

1
2 (αK +P )−1K

1
2K −

1
2 (αK −S )K −

1
2K

1
2 (αK +S )−1)K

1
2 ‖2

= ‖ (αI − P̂ )(αI + P̂ )−1(αI − Ŝ )(αI + Ŝ )−1 ‖2

≤ ‖ (αI − P̂ )(αI + P̂ )−1 ‖2‖ (αI − Ŝ )(αI + Ŝ )−1 ‖2

= ‖ (αI − P̂ )(αI + P̂ )−1 ‖2
=σ(α) < 1, ∀α > 0. (2.10)

Therefore the PPSS iteration method converges unconditionally to the exact solution X∗ ∈
C

m×n.
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3. IPPSS Iteration Method

The two-half steps at each step of the PPSS iteration method for solving the continuous

Sylvester equation (1.1) require finding solutions of two continuous Sylvester equations

(αV1 +P (A))X + X (αV2 +P (B)) = CS (3.1)

and

(αV1 +S (A))X + X (αV2 +S (B)) = CH (3.2)

where CS and CH are prescribed m by n complex matrices. However, this may be very

costly and impractical in actual implementations, particularly when the sizes of the matri-

ces involved are very large. To further improve the computational efficiency of the PPSS

iteration, we can solve the two subproblems inexactly by utilizing certain effective itera-

tion methods such as Gauss-Seidel, SOR, ADI method or Krylov subspace based methods,

which results in the following inexact preconditioned positive definite and skew-Hermitian

splitting iteration for solving the continuous Sylvester equation (1.1).

IPPSS iteration method

Given an initial guess X (0) ∈ Cm×n, for k = 0,1,2, · · · until {X (k+1)}∞
k=0
∈ Cm×n satisfies the

stopping criterion, solve X (k+
1
2 ) ∈ Cm×n approximately from

(αV1 +P (A))X
(k+ 1

2 ) + X (k+
1
2 )(αV2 +P (B)) ≈ (αV1 −S (A))X

(k) + X (k)(αV2 −S (B)) + C

by employing an inner iteration with X (k) being the initial guess, and then solve {X (k+1)}∞
k=0
∈

C
m×n approximately from

(αV1+S (A))X
(k+1)+X (k+1)(αV2+S (B)) ≈ (αV1−P (A))X

(k+ 1
2 )+X (k+

1
2 )(αV2−P (B))+C

by employing an inner iteration with X (k+
1
2 ) being the initial guess, where α is a given

positive constant.

To simplify numerical implementation and convergence analysis, we may rewrite the

above iteration method as the following scheme.

IPPSS iteration method

Given an initial guess X (0) ∈ Cm×n, for k = 0,1,2, · · · until {X (k+1)}∞
k=0
∈ Cm×n converges:

Step 1. Approximate the solution of

(αV1 +P (A))Z
(k)+ Z (k)(αV2 +P (B)) = R(k),

with R(k) = C − AX (k)− X (k)B, by iterating until Z (k) is such that the residual

Pk = R(k)−
�

(αV1 +P (A))Z
(k) + Z (k)(αV2 +P (B))

�

,

satisfies

‖P(k)‖F ≤ ǫk‖R
(k)‖F .
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Then compute

X (k+
1
2 )) = X (k)+ Z (k);

Step 2. Approximate the solution of

(αV1 +S (A))Z
(k+ 1

2 ) + Z (k+
1
2 )(αV2 +S (B)) = R(k+

1
2 ),

with R(k+
1
2 ) = C − AX (k+

1
2 ) − X (k+

1
2 )B, by iterating until Z (k+

1
2 ) is such that the residual

Q(k+
1
2 ) = R(k+

1
2 ) −
�

(αV1 +S (A))Z
(k+ 1

2 ) + Z (k+
1
2 )(αV2 +S (B))

�

,

satisfies

‖Q(k+
1
2 )‖F ≤ ηk‖R

(k+ 1
2 )‖F .

Then compute

X (k+1) = X (k+
1
2 ) + Z (k+

1
2 ).

Here, ǫk and ηk are prescribed tolerances which are used to control the accuracies of the

inner iterations.

Theorem 3.1. Assume that the assumptions of Theorem 2.1 hold. If {X (k+1)}∞
k=0
∈ Cm×n is

the iteration sequence generated by the IPPSS iteration method and if X∗ ∈ C
m×n is the exact

solution of the continuous Sylvester equation (1.1), then we have

‖ X (k+1)− X∗ ‖≤ (σ(α) + θ̺ηk)(1+ θǫk) ‖ X (k)− X∗ ‖S , (3.3)

where ‖ · ‖S is defined as ‖ Y ‖S =‖ (αV1 + S (A))Y + Y (αV1 + S (B)) ‖F , for any matrix

Y ∈ Cm×n, and the constants ̺ and θ are given by

̺ =‖ (αK +S )(αK +P )−1 ‖2,

θ =‖ A (αK +S )−1 ‖2,

σ(α) =‖ (αI − P̂)(αI + P̂)−1 ‖2 .

In particular, if

(σ(α) + θ̺ηmax)(1+ θǫmax)< 1,

then the iteration sequence {X (k+1)}∞
k=0
∈ Cm×n converges to X ∗ ∈ Cm×n, where ǫmax =

maxk ǫk, and ηmax =maxk ηk.

Proof. The conclusion is straightforward according to Theorem 3.1 in [5].

Theorem 3.2. Assume that the conditions of Theorem 2.1 hold. Suppose that both r1(k)

and r2(k) are nondecreasing and positive sequence satisfying r1(k) ≥ 1 and r2(k) ≥ 1, and

limk→∞ sup r1(k) = limk→∞ sup r2(k) = +∞, and that both δ1 and δ2 are real constants

in the interval (0,1) satisfying

ǫk ≤ c1δ
r1(k)

1
and ηk ≤ c2δ

r2(k)

2
, k = 0,1,2, · · ·
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where c1 and c2 are nonnegative constants. Then it holds that

‖X (k+1)− X ∗‖S ≤
�Æ

σ(α) +ϕθδr(k)
�2
‖X (k) − X ∗‖S ,

where ρ and θ are defined in the above theorem and r(k) and δ are defined as

r(k) =min{r1(k), r2(k)}, δ =max{δ1,δ2},

and

ϕ =max

�

p

c1c2̺,
1

2
p

σ(α)
(c1σ(α) + c2̺)

�

.

Proof. The conclusion is straightforward according to Theorem 3.2 in [5].

4. PTSS Iteration Method and It’s Convergence Rate

In this part, we will give two typical practical choices of the PS-splitting, which is called

TSS (triangular and skew-Hermitian splitting) iteration method. It has the form as follows:

A= T (A) +S (A), B = T (B) +S (B),

with
�

T (A) = D(A) +L (A) +U ∗(A) and S (A) =U (A)−U ∗(A)
T (B) = D(B) +L (B) +U ∗(B) and S (B) =U (B)−U ∗(B)

(4.1)

or
�

T (A) = D(A) +L ∗(A) +U (A) and S (A) =L (A)−L ∗(A)
T (B) = D(B) +L ∗(B) +U (B) and S (B) =L (B)−L ∗(B)

(4.2)

where D(A) and D(B) are the diagonal matrices, L (A) and L (B) are the strictly lower

triangular matrices of the matrices A and B, andU (A) and U (B) are are the strictly upper

triangular matrices of the matrices A and B, respectively.

PTSS iteration method

Give an initial guess X (0) ∈ Cm×n, compute X (k+1) ∈ Cm×n for k = 0,1,2, · · · , using the

following iteration procedure until {X (k)}∞
k=0

satisfies the stopping criterion:











(αV1 +T (A))X
(k+ 1

2 ) + X (k+
1
2 )(αV2 +T (B))

= (αV1 −S (A))X
(k)+ X (k)(αV2 −S (B)) + C ,

(αV1 +S (A))X
(k+1) + X (k+1)(αV2 +S (B))

= (αV1 −T (A))X
(k+ 1

2 ) + X (k+
1
2 )(αV2 −T (B)) + C ,

(4.3)

where α is positive real number and V1, V2 are prescribed symmetric positive definite ma-

trices.

Now we can give the following theorem.
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Theorem 4.1. Let Â∈ Cmn×mn be a positive definite matrix, and Â= T +S ,with

T = I ⊗T (A) +T (B)T ⊗ I and S = I ⊗S (A) +S (B)T ⊗ I

T (A), T (B), S (A) and S (B) are defined in above described PTSS iteration, and α is a pos-

itive constant. Then the spectral radius ρ(M (α)) of the iteration matrixM (α) of the PPSS

iteration is bounded by

σ(α) =‖ (αI − T̂ )(αI + T̂ )−1 ‖2=
α− 1

α+ 1

where T̂ =K −1/2T K −1/2, and the eigenvalues of matrix T̂ are 1.

Therefore, it holds that

ρ(M (α)) ≤ σ(α) < 1, ∀α > 0.

Proof. According to Theorem 2.1, we know that

ρ(M (α)) ≤ σ(α) < 1, ∀α > 0,

where σ(α) =‖ (αI − T̂ )(αI + T̂ )−1 ‖2. We note that when T (A) = D(A) +L (A) +U ∗(A)
and T (B) = D(B) +L ∗(B) +U (B) or T (A) = D(A) +L ∗(A) +U (A) and T (B) = D(B) +
L (B) +U ∗(B), the positive definite parts of A and B, i.e., T (A) and T (B) are triangular

matrices, so T = I ⊗T (A) +T (A)T ⊗ I is also a triangular matrix, and we can easily know

the diagonal elements of T are

T(k−1)×m+l ,(k−1)×m+l = al ,l + bk,k,

where al ,l , bk,k are the diagonal elements of T (A) and T (B), with 1≤ k ≤ n, 1≤ l ≤ n.

We set the preconditioning matrices V1 = diag(T (A)) = D(A), V2 = diag(T (B)) =
D(B), so the diagonal elements of K also are

T(k−1)×m+l ,(k−1)×m+l = al ,l + bk,k.

So the eigenvalues of matrix T̂ are 1. Then from [5] we can obtain :

V (α) ≡(αI − T̂ )(αI + T̂ )−1

≈(αI −D(T̂ ))(αI +D(T̂ ))−1

and

σ(α) =‖V (α)‖2 ≈




(αI −D(T̂ ))(αI +D(T̂ ))−1






2

=

�

�

�

�

α− 1

α+ 1

�

�

�

�
.
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5. Numerical Examples

In this section, we present some examples to illustrate the performance of the PPSS

iteration method and its invariant version for solving the continuous Sylvester equation

(1.1). The numerical experiments are performed in Matlab on an Inter dual core processor

(1.83GHz, 2GB RAM). All iterations of this section are started from zero matrix and stopped

once the current residual norm satisfying

‖R(k)‖F/‖R
(0)‖F ≤ 10−6,

where R(k) = C − AX (k) − X (k)B. The number of iteration steps (denoted as "IT") and the

computing time in seconds (denoted as "CPU") are recorded. We set the preconditioning

matrices V1 = diag(P (A)), V2 = diag(P (B)). For PPSS method, we use the Bartels-

Stewart method to solve these two Sylvester equations in inner iterations.

Example 5.1. We consider the continuous Sylvester equation (1.1) with m = n and the

matrices

A= B = M + 2rN +
100

(n+ 1)2
I ,

where M , N ∈ Cn×n are the tridiagonal matrices given by

M =













2.6 −1

−1 2.6 −1
...

. . .
. . .

−1 2.6 −1

−1 2.6













,

N =













0 0.5

−0.5 0 0.5
.. .

. . .
. . .

−0.5 0 0.5

−0.5 0













.

We solve this continuous Sylvester equation by the PPSS and the PSS iteration methods.

The computing results of PPSS iteration method and the PSS iteration method are listed in

Table 1, respectively. We compare the iteration steps and the computing time in seconds

of both methods. We also present the spectral radius of PPSS iteration matrix and the PSS

iteration matrix in Table 2. From the results in Table 1, we observe that the PPSS is much

better than the PSS both in terms of the number of iteration steps and computing time, and

the spectral radius of PPSS iteration matrix (denoted as "ρpp") is much smaller than the

spectral radius PSS iteration matrix (denoted as "ρp").
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Table 1: IT and CPU for PPSS and PSS.

PPSS PSS

r=0.01 r=0.1 r=1 r=0.01 r=0.1 r=1

n IT CPU IT CPU IT CPU IT CPU IT CPU IT CPU

8 14 0.022 14 0.024 13 0.024 87 0.127 87 0.121 95 0.125

16 25 0.123 25 0.124 22 0.094 76 0.386 77 0.371 76 0.363

32 35 0.703 35 0.698 33 0.601 77 1.577 77 1.559 69 1.359

64 41 3.790 41 3.925 40 3.141 74 8.942 74 6.985 64 5.829

128 44 18.527 44 18.213 43 15.261 74 30.913 73 30.501 61 25.141

256 46 93.821 46 94.260 45 68.992 74 148.790 73 156.470 57 109.471

Table 2: The spe
tral radius of the PPSS iteration matrix and the PSS iteration matrix.

PPSS PSS

n r=0.01 r=0.1 r=1 r=0.01 r=0.1 r=1

8 0.643 0.642 0.538 0.847 0.847 0.861

16 0.633 0.632 0.428 0.843 0.842 0.785

32 0.624 0.623 0.538 0.838 0.838 0.837

64 0.605 0.606 0.470 0.829 0.828 0.821

Example 5.2. To generate large sparse matrices A and B , we build them in the following

structures:

A=













10 1 1

2 10 1
.. .

. . .
. . .

2 10 1

1 2 10













,

B =













8 1 1

3 8 1
...

. . .
. . .

3 8 1

1 3 8













.

The computing results of the PPSS and the PSS are listed in Table 3. The spectral radius

of PPSS iteration matrix and the PSS iteration matrix are presented in Table 4.

Example 5.3. The continuous Sylvester (1.1) with m = n and the matrices

�

A= diag(1,2, · · · , n) + r LT ,

B = 2−t I + diag(1,2, · · · , n) + r LT + 2−t L,
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Table 3: IT and CPU for PPSS and PSS.

PPSS PSS

n IT CPU IT CPU

8 8 0.011 45 0.075

16 8 0.037 69 0.324

32 10 0.194 40 0.788

64 12 1.310 33 3.651

128 14 6.715 30 13.433

256 17 29.328 29 61.583

Table 4: The spe
tral radius of the PPSS iteration matrix and the PSS iteration matrix.

PPSS PSS

n ρpp ρp

8 0.393 0.737

16 0.212 0.818

32 0.434 0.726

64 0.485 0.706

Table 5: IT and CPU for IPPSS and PPSS.

IPPSS PPSS

n IT CPU IT CPU

8 9 0.017 26 0.032

16 22 0.154 57 0.314

32 32 0.889 73 1.518

64 67 5.904 91 10.132

128 127 47.316 307 140.309

with L the strictly lower triangular matrix having ones in the lower triangle part and t being

a problem parameter to be specified in actual computations.

This continuous Sylvester equation is solved by the PPSS and IPPSS iteration methods,

and the results are listed in Table 5. Here, we set ǫk = εk = 0.01, k = 0,1,2, · · · and use

the ADI method as the inner iteration scheme. From the results in Table 5, we observe that

the IPPSS is much better than the PPSS in both iteration step and CPU time.

From the results we can observe that the number of iteration steps (IT) of PPSS is

smaller than that of PSS, and the PPSS has much less computational workload than PSS at

each of the iteration steps, and the actual computing time (CPU) of PPSS may be less than

that of PSS. So when the matrices A and B are large enough, the PPSS iteration methods

considerably outperform the PSS iteration methods in both iteration step and CPU time.
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