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Abstract. There has been a lot of study on the SOR-like methods for solving the aug-
mented system of linear equations since the outstanding work of Golub, Wu and Yuan
(BIT 41(2001)71-85) was presented fifteen years ago. Based on the SOR-like methods,
we establish a class of accelerated SOR-like methods for large sparse augmented linear
systems by making use of optimization technique, which will find the optimal relaxation
parameter ω by optimization models. We demonstrate the convergence theory of the
new methods under suitable restrictions. The numerical examples show these methods
are effective.
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1. Introduction

Consider the augmented linear systems of the form
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BT O
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y
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q

�

, (1.1)

where A ∈ Rn×n is symmetric positive definite, O ∈ Rm×m is zero, B ∈ Rn×m has full col-
umn rank, x , b ∈ Rn, y,q ∈ Rm, n ≫ m, and BT is the transpose of the matrix B. These
assumptions guarantee the existence and uniqueness of the solution of the system of linear
equations (1.1). For the sake of simplicity, also we can consider the following equivalent
form of (1.1)
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A large amount of study has been devoted to the augmented linear systems of the form
(1.1) (or (1.2)). The reason for this interest is the fact that such problems appear in many
different applications of scientific computing, such as the Karush-Kuhn-Tuker (KKT) condi-
tions for linearly constrained quadratic programming problems, or saddle point problems,
or an equilibrium system ( [11,26,29]), the finite element method for solving the Navier-
Stokes equation, or elasticity problems, or second-order elliptic problems ( [17,18]), gen-
eralized least squares problems ( [20,30]) and from Lagrange multiplier methods ( [19]).
See [3] and [10] for a comprehensive summary.

Because of the ubiquitous nature of augmented linear systems, numerical methods and
results on the problems have published in a wide variety of books, journals and conference
proceedings. Very effective solvers have been developed for the important classes of prob-
lems (1.1) (or (1.2)). When the matrix blocks A and B are large and sparse, iterative meth-
ods become more attractive than direct methods for solving the augmented linear system
(1.1) (or (1.2)). For many years deriving an efficient iterative method based on a splitting
of the coefficient matrix A for solving the system of linear equations (1.1) (or (1.2)) has
been an important and active topic. Many iterative methods were proposed for solving the
system (1.1) (or (1.2)). There are two sub-approaches to the iterative methods: one is “ma-
trix splitting methods”, another is “Krylov subspace methods”. See [2, 5, 8–11, 20, 34, 35]
for more details. Among these methods, the best known and the oldest iterations are the
Uzawa and preconditioned Uzawa methods ( [1, 12, 16]), but they are special cases of
the SOR-like methods presented in [20]. The SOR-like methods, together with the inex-
act Uzawa algorithm studied in [16], are usually the methods of choice for solving the
augmented linear systems (1.1) (or (1.2)), as they are simple, efficient and require small
computer memory. Later, many researchers generalized or modified the SOR-like methods
and studied their convergence properties for solving the augmented systems from different
view in recent years, we refer to [6,7,13–15,21–23,25,31–35] and the references therein.

The idea of minimizing the norm of either the error or the residual so that the numer-
ically optimal value of the iterative parameter is determined, first introduced in [4], used
to compute a numerically optimal relaxation parameter for the successive overrelaxation
(SOR) iterative methods for solving the system of linear equations. Based on the standard
quadratic programming technique, the authors of this paper and their collaborators seem
to be the first to introduce the auto-optimal weighting matrices for parallel multisplitting
iterative method (see [27]) and be the first to come up with the quasi-Chebyshev acceler-
ated (QCA) method to a convergent splitting iteration (see [28]). The optimal weighting
matrices of this multisplitting method and the optimal parameter of the QCA method are
generated by optimization models for solving the linear systems. These motivated us to ac-
celerate the SOR-like iterative methods, resulting in a class of new SOR-like methods with
optimization model for the augmented systems (1.1) (or (1.2)).

The rest of this paper is organized as follows. In Section 2, we state and briefly summary
the existing schemes resulting from the SOR-like methods. In Section 3, we present a class
of new SOR-like methods with optimization models and provide its convergence results.
Two numerical examples further show the proposed methods are effective than the SOR-
like and the SSOR-like methods in Section 4. Finally, we end the paper with a conclusion
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in Section 5.

2. Existing Methods Resulted from SOR-like Scheme

By the introduction we had in Section 1, we know that there exist many variants of the
SOR-like methods. Let us briefly survey the several existing related methods that have been
taken to iteratively solve the augmented linear systems (1.1) (or (1.2)), which result from
the SOR-like scheme and were designed to do the job ( [8,15,20,31,33]) from the view of
the parameter.

It is known that the SOR method is a simple stationary iterative method which is popular
in engineering applications. Its alternative variant is very useful in a parallel environment.
Golub, Wu and Yuan [20] proposed several variants of the SOR method for solving the
systems (1.1) (or (1.2)), which is the following SOR-like method.

For the following splitting of the coefficient matrixA of the augmented linear systems
(1.2),

A ≡
�

A B

−BT O

�

= D −L −U ,
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�
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�
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�
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�
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�

,

and Q ∈ Rm×m is a prescribed nonsingular and symmetric matrix, the following iterative
method was proposed in 2001.

SOR-Like Method ( [20]). Let Q ∈ Rm×m be a nonsingular and symmetric matrix. Given
two initial guesses x (0) ∈ Rn and y(0) ∈ Rm, and a relaxation factor ω > 0. For k =

0,1,2, · · · until the iteration sequence {(x (k)T , y(k)
T
)T } is convergent, compute

¨

x (k+1) = (1−ω)x (k)+ωA−1(b− B y(k)),

y(k+1) = y(k) +ωQ−1(BT x (k+1)− q).

Here, Q is an approximate (preconditioning) matrix of the Schur complement matrix S =
BT A−1B.

This method can be regarded as the iteration based on the following splitting:
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�
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�
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The iteration matrix of the SOR-like iteration can be defined as

Tω =M−1
ω Nω.

Remark 2.1. The SOR-like algorithm is usually the method of choice for solving the aug-
mented linear systems (1.1) (or (1.2)), as it is simple, efficient, requires small computer
memory and less arithmetic work per iteration step relatively, but has the burden of choos-
ing a good, or an optimal relaxation parameter in order to achieve a comparable rate of
convergence.

In [20], the authors proved the convergence of the SOR-like method, and determined
its optimal relaxation parameter as well as the corresponding optimal convergence factor.
These results are summarized as the following theorem.

Let H = Q−1BT A−1B, and µ be a nonzero eigenvalue of the matrix H as well as ρ be
its spectral radius, i.e., ρ = ρ(H ).
Theorem 2.1 ( [20, Theorems 3.1-3.2]). Let A ∈ Rn×n be symmetric positive definite and

B ∈ Rn×m be of full column rank. Assume that all eigenvalues µ of the matrixH are real, and

denote the smallest and the largest nonzero eigenvalues of the matrix H by µmin and µmax,

respectively. Then,

(i) if µ > 0, the SOR-like method is convergent for all ω such that

0<ω<
4
p

4ρ + 1+ 1
;

(ii) if µmin > 1/4, it holds that

ρ(Tω) =







p
1−ω, if 0<ω≤ 2

p
ρ−1
ρ ,

1
2

�|2−ω−ω2ρ|+ωp(ωρ + 1)2 − 4ρ
�

, if
2
p
ρ−1
ρ ≤ω< 4p

4ρ+1+1
.

Moreover, the optimal parameterω⋆ and the optimal convergence factor ρ(Tω⋆) are given

respectively by

ω⋆ =
2
p
ρ − 1

ρ
≤ 1 and ρ(Tω⋆) =

|pρ − 1|p
ρ

;

(iii) if µmin ≤ 1/4, it holds that

ρ(Tω) =
( 1

2

�|2−ω−ω2µmin|+ω
p

(ωµmin + 1)2 − 4µmin

�

, if 0<ω ≤ω⋆,
1
2

�|2−ω−ω2ρ|+ωp(ωρ + 1)2 − 4ρ
�

, if ω⋆ <ω <
4p

4ρ+1+1
.

Moreover, the optimal relaxation parameter ω⋆ satisfies ω⋆ < 2 and it is the positive root

of the equation

|2−ω−ω2µmin|+ω
Æ

(ωµmin + 1)2 − 4µmin = |2−ω−ω2ρ|+ω
Æ

(ωρ + 1)2 − 4ρ.
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By introducing two parameters ω,τ (or say, a parameter matrix Ω), Bai, Parlett, Wang
[8] proposed the following generalized successive overrelaxation (GSOR) scheme for the
systems (1.1) (or (1.2)).

GSOR Method ( [8, Method 2.1]). Let Q ∈ Rm×m be a nonsingular and symmetric matrix.
Given two initial vectors x (0) ∈ Rn and y(0) ∈ Rm, and two relaxation factors ω,τ 6= 0. For

k = 0,1,2, · · · until the iteration sequence {(x (k)T , y(k)
T
)T } is convergent, compute

¨

x (k+1) = (1−ω)x (k)+ωA−1(b− B y(k)),

y(k+1) = y(k) + τQ−1(BT x (k+1)− q).

Here, Q is an approximate (preconditioning) matrix of the Schur complement matrix S =
BT A−1B.
Or equivalently, compute by the following procedure

�

x (k+1)

y(k+1)

�

= (D −ΩL )−1
�

(I −Ω)D +ΩU �
�

x (k)

y(k)

�

+ (D −ΩL )−1
Ω

�

b

−q

�

with I is the identity matrix and

Ω=

�

ωIn O

O τIm

�

,

whereω and τ are two nonzero reals, Im ∈ Rm×m and In ∈ Rn×n are the m-by-m and n-by-n
identity matrices, respectively.

Clearly, this method can be regarded as iteration based on the following splitting:

A ≡
�

A B

−BT O

�

=Mω,τ −Nω,τ,

where

Mω,τ = Ω
−1(D −ΩL ) =

�
1
ωA O

−BT 1
τQ

�

,

and

Nω,τ =Mω,τ −A = (I −Ω)D +ΩU =
�

( 1
ω − 1)A −B

O 1
τQ

�

.

The iteration matrix of the GSOR iteration can be denoted as

Tω,τ =M−1
ω,τNω,τ.

Remark 2.2. The GSOR algorithm uses a relaxation parameter matrix Ω for the SOR-like
method instead of a single relaxation parameter by introducing the following matrix

Ω=

�

ωIn O

O τIm

�
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withω and τ are two nonzero reals as well as Im ∈ Rm×m and In ∈ Rn×n are the m-by-m and
n-by-n identity matrices, respectively. Obviously, when ω = τ, the GSOR method reduces
to SOR-like method. As we known, this GSOR has the more burden of choosing two good,
or optimal relaxation parameters in order to achieve a comparable rate of convergence
than the SOR-like method. Even though it has faster asymptotic convergence rate than the
SOR-like method.

In [8], the authors proved the convergence of the GSOR method under suitable re-
strictions on the iteration parameters, and determined its optimal iteration parameters as
well as the corresponding optimal convergence factor. These results are summarized as the
following theorem.

Let

ω− =
4τµmin

(1+τµmin)
2

, ω+ =
4τµmax

(1+τµmax)
2

, and ω0 =
4

τ(µmax +µmin) + 2
.

Theorem 2.2 ( [8, Theorems 2.1 and 4.1]). Let A ∈ Rn×n and Q ∈ Rm×m be symmetric

positive definite, and B ∈ Rn×m be of full column rank. Denote the smallest and the largest

eigenvalues of the matrixH = Q−1BT A−1B by µmin and µmax, respectively. Then,

(i) the GSOR method is convergent, if ω satisfies 0 < ω < 2 and τ satisfies the following

condition:

0< τ <
2(2−ω)
ωµmax

;

(ii) when τ ≤ 1p
µminµmax

, it holds that

ρ(Tω,τ)=









p
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1
2

�
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1
2

�
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p

(τωµmax +ω− 2)2 − 4(1−ω)�, for ω0(τ) <ω< 2;

(iii) when 1p
µminµmax

< τ <
2(2−ω)
ωµmax

, it holds that

ρ(Tω,τ) =

¨p
1−ω, for 0<ω<ω+(τ),

1
2

�

τωµmax +ω− 2+
p

(τωµmax +ω− 2)2 − 4(1−ω)�, for ω+(τ)≤ω< 2.

Moreover, the optimal iteration parameters ω⋆ and τ⋆ are given by

ω⋆ =
4
p
µminµmax

(
p
µmax +

p
µmin)

2
and τ⋆ =

1p
µminµmax

,

and the corresponding optimal convergence factor of the GSOR method is

ρ(Tω,τ) =

p
µmax −pµminp
µmax +

p
µmin

.
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Remark 2.3. In fact, the formulas about the optimal parameters and the iteration param-
eters in Theorems 2.1-2.2 are of only theoretical meanings, and they are far away from
practical applications. Because the spectral radius and the extremal eigenvalues of the
matrix H = Q−1BT A−1B are required and which may greatly decrease the computing effi-
ciency of the SOR-like or GSOR methods. In addition, the computation of these is usually
a difficult task to complete.

The following SSOR-like method is obtained by combining the SOR-like scheme and its
backward one, introduced by Golub, Wu and Yuan [20], Darvishi and Hessari [15] as well
as Zheng, Wang and Wu [33].

SSOR-like Method ( [15,20,33]). Let Q ∈ Rm×m be a nonsingular and symmetric matrix.
Given two initial vectors x (0) ∈ Rn and y(0) ∈ Rm, and a relaxation factor ω > 0. For

k = 0,1,2, · · · until the iteration sequence {(x (k)T , y(k)
T
)T } converges, compute

¨

y(k+1) = y(k) +ω(2−ω)Q−1BT
�

x (k)− ω
1−ωA−1B y(k) + ω

1−ωA−1b
	− ω(2−ω)1−ω Q−1q,

x (k+1) = (1−ω)2 x (k)−ωA−1B
�

y(k+1) + (1−ω)y(k)	+ω(2−ω)A−1 b.

Also, it involved a parameter ω. It is an alternative iterative method.
In addition, based on the SOR-like and GSOR methods, resulted in some trivial mod-

ifications or generalizations from the parameters or alternation views. For example, the
GSSOR method (see [31]) is, it was proposed by involving two relaxation parameters ω
and τ or say, a parameter matrix.

GSSOR-like Method ( [31]) Let Q ∈ Rm×m be a nonsingular and symmetric matrix. Given
two initial vectors x (0) ∈ Rn and y(0) ∈ Rm, and two relaxation factors ω,τ > 0. For

k = 0,1,2, · · · until the iteration sequence {(x (k)T , y(k)
T
)T } converges, compute

¨

y(k+1) = y(k) +
τ(2−τ)

1−τ Q−1BT
�

(1−ω)x (k)−ωA−1B y(k) +ωA−1 b
	− τ(2−τ)1−τ Q−1q,

x (k+1) = (1−ω)2 x (k)−ωA−1B
�

y(k+1) + (1−ω)y(k)	+ω(2−ω)A−1 b.

However, we have noticed that the parameters ω,τ are fixed throughout the itera-
tion process in all discussed above, meanwhile their decision in advance all involve in
the determination of the spectral radius and the extremal eigenvalues of the matrix H =
Q−1BT A−1B, which reduces the effectiveness of the methods from one point of view.

3. New Methods

In this section, we propose a class of new SOR-like methods. Moreover, theoretic con-
vergence analysis to support the scheme will be presented.

Recall our discussion in the third paragraph of Section 1. Our intuitive idea is to update
ω at each iterate step by an optimization model. To implement this idea, we can compute
the relaxation parameter ω(k) by the optimization technique.



108 R.-P. Wen, S.-D. Li and G.-Y. Meng

Method 3.1. (SOR-Like Methods with Optimization Model) Let Q ∈ Rm×m be a non-
singular and symmetric matrix. Given an initial point ((x (0))T , (y(0))T )T ∈ Rn+m, and a

precision ε > 0. For k = 0,1,2, · · · until the iteration sequence {(x (k)T , y(k)
T
)T } converges,

compute by the following scheme
¨

x (k+1) =
�

1−ω(k+1)
�

x (k)+ω(k+1)A−1
�

b− B y(k)
�

,

y(k+1) = y(k) +ω(k+1)Q−1
�

BT x (k+1)− q
�

,

where ω(k+1) at each step can be obtained by the following optimal model

min
ω
‖W −1r(k+1)‖22 (3.1)

with

W =
�

A O

−BT Q

�

, r(k) =

�

A B

−BT O

��

x (k)

y(k)

�

−
�

b

−q

�

.

Remark 3.1. The way of computing

W −1r(k+1) =W −1

��

A B

−BT O

��

x (k+1)

y(k+1)

�

−
�

b

−q

��

=

�

x (k+1)+ A−1B y(k+1)

Q−1BT A−1B y(k+1)

�

−
�

A−1 b

Q−1BT A−1 b−Q−1q

�

,

thus, only two matrix-vector products A−1B y(k+1) and Q−1BT A−1B y(k+1) must to be com-
pute at each step. Similarly to the SOR-Like method, Q is an approximation (precondi-
tioner) of the Schur complement matrix S = BT A−1B. For example, we may reasonably
take Q = αI with α > 0,νBT B with ν > 0, BT A−1B, BT Â−1B with Â= tridiag(A), tridiag(BT

Â−1B) with Â= tridiag(A) and so on.

Remark 3.2. In fact, the formula of the exact solution of the optimization model (3.1) can
be given by simple computation. The experimentally found optimal point ω are obtained
according to the Nelder-Mead simplex method ( [24]) in practical computing, and letω0 =

1 be a starting value. The optimization models may be solved 2-3 steps approximately for
saving cost.

Remark 3.3. The proceeding of solving the optimization model minω ‖W −1r(k+1)‖22 is the
process of obtaining ω which is the relaxation factor of the Method 3.1. In the SOR-like
methods, the relaxation parameter ω is a fixed and positive number throughout the iter-
ation process, and further it is clear that computing the optimal value of ω requests the
expensive cost by Theorem 2.1. What’s more, in the premise of minimizing the norm of the
residual, ω(k) is chosen dynamically using optimization model in the Method 3.1. And we
need find the optimal parameterω(k) before each iteration step. There is no doubt that this
process will increase the complexity of operations. Nevertheless, the optimal parameter
ω(k) is selected once at each five iteration steps, according to the results of several numer-
ical experiments. The above approach not only ensure the optimality of parameters, but
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also to ensure that the computations will not be too large. Two birds with one stone. The
processing of selecting ω(k) is introduced in Section 4 for more details.

Now, the convergence theory is presented for Method 3.1.
As the description in last Section, the Method 3.1 also can be regarded as the iteration

based on the following splitting with a variable parameter:

A ≡
�

A B

−BT 0

�

=Mω −Nω,

where

Mω =
1

ω
(D −ωL ) =
�

1
ωA O

−BT 1
ωQ

�

, Nω =Mω −A =
�

( 1
ω − 1)A −B

O 1
ωQ

�

.

When ω= 1, the special case can be list as follows:

M1 =

�

A O

BT Q

�

, N1 =

�

O −B

O Q

�

.

Theorem 3.1. Consider the augmented linear systems (1.2). Let A∈ Rn×n be symmetric posi-

tive definite and B ∈ Rn×m have full column rank. Assume that u∗ is the unique solution of the

linear systems (1.2). Then the sequence {u(k)} = {(x (k)T , y(k)
T
)T } generated by Method 3.1

converges to u∗ if the following condition is provided:




BT A−1A−1B + (I − BT A−1BQ−1)(I −Q−1BT A−1B)






2 < 1. (3.2)

Furthermore, if Q = BT A−1B, (3.2) can be reduced

‖A−1B‖2 < 1;

if Q = αI , α > 0, (3.2) can be became




BT A−1A−1B + (I −αBT A−1B)2






2 < 1.

Proof. We known that r(k+1) =NωM−1
ω r(k) by simple computation. And then,

‖W −1r(k+1)‖2 =‖W −1NωM−1
ω r(k)‖2

=‖W −1NωM−1
ω WW −1r(k)‖2

≤




W −1N1 · W −1r(k)






2

≤‖W −1N1‖2 · ‖W −1r(k)‖2
=













�

A−1 O

Q−1BT A−1 Q−1

��

O −B

O Q

�











2

· ‖W −1r(k)‖2

=













�

O −A−1B

O I −Q−1BT A−1B

�











2

· ‖W −1r(k)‖2

=
Æ

‖BT A−1A−1B + (I − BT A−1BQ−1)(I −Q−1BT A−1B)‖2 · ‖W −1r(k)‖2.
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This theorem is proved from (3.2).
By simple substitution furthermore, when Q = BT A−1B, (3.2) can be briefly reduced

the following form
‖A−1B‖2 < 1;

when Q = αI , α > 0, (3.2) can be became

‖BT A−1A−1B + (I −αBT A−1B)2‖2 < 1.

The theorem has be proved.

4. Numerical Experiments

In this section, we provide numerical results to illustrate the effectiveness of the Method
3.1 in terms of the number of iterations (denoted by IT), the elapsed computing times in
seconds (denoted by CPU) and the norm of absolute residual vectors (denoted by RES) or
the norm of absolute error vectors (denoted by ERR). Here, the “RES” and the “ERR” are
defined as

RES:=
Æ

‖b− Ax (k)− B y(k)‖2 + ‖q− BT x (k)‖2
and

ERR: =

Æ

‖x (k)− x∗‖2 + ‖y(k) − y∗‖2
Æ

‖x (0) − x∗‖2 + ‖y(0) − y∗‖2
,

respectively.
For the sake of convenience, the SOR-Like method with optimization model, say the

Method 3.1, are termed briefly as SORopt. In our computations, all runs with respect to
the SOR-like, the SSOR-like and the SORopt iteration methods are started from the zero

vector ((x (0))T , (y(0))T )T = 0, and terminated if the current iteration satisfy ERR< 10−9.
In addition, the numerical experiments are performed in MATLAB (version R2013a) on PC
in double precision, which is 2.40GHz central processing unit [Intel(R) Core(TM)i7-4500
CPU] with 8G memory and Microsoft Windows 8 operating system. Moreover, the ωk in
SORopt methods is updated for every five iteration steps.

The details of choosing the parameter ω(k), k = 0,1,2, · · · , in SORopt methods are
described as follows.

First of all, an initial valueω(0) should be chosen. In general, letω(0) = 1. For the SOR-
like Method, the optimal parameters ω⋆ are between 0 and 2 based on the Theorem 2.1.
And then in order to making theω(k) close to the optimal value quickly in the processing of
iteration, the authors had better select 1 for the initial value ofω(k). Then after iterating five
steps, the relaxation parameter ω(5) which is minimizing the norm of W −1r(5) is selected
again. The new one is the parameter from the sixth step to the tenth step, and the next
new parameter is ω(10) which is minimizing the norm of W −1r(10), and so on, until the
algorithm converges. In throughtout iterate process, every dynamic parameter is selected
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Table 1: Choi
es of the matrix Q for Example 4.1.

Case No. Matrix Q Description
I tridiag(BT A−1B)
II tridiag(BT Â−1B) Â=tridiag(A)

at each five steps so that the overall iteration steps become more less than others. Therefore,
the Method 3.1 is more efficient.

Example 4.1 ( [7]). Consider the saddle-point problems (1.1), in which

A=

�

I
⊗

T + T
⊗

I 0
0 I
⊗

T + T
⊗

I

�

2p2×2p2

, B =

�

I
⊗

F

F
⊗

I

�

2p2×p2

and

T =
1

h2
· tridiag(−1,2,−1) ∈ Rp×p, F =

1

h
· tridiag(−1,1,0) ∈ Rp×p

with
⊗

being the Kronecker product symbol, h = 1
p+1 the discretization meshsize and

S = tridiag(a, b, c) is a tridiagonal matrix with Si,i = b, Si−1,i = a and Si,i+1 = c for appro-
priate i.

For this experiment, we set n= 2p2 and m= p2. Hence, the total number of variables is
n+m = 3p2. We choose the matrix Q, as an approximation to the matrix BT A−1B, according
to the cases listed in Table 1.

In Table 2, we list the iteration numbers, the computing times and the RES values (if
the convergence criterion is not achieved within kmax iteration steps) of the SOR-like, the
SSOR-like and the SORopt iterative methods for the Example 4.1 with respect to different
choices of the problem sizes.

From the Table 2, it can be seen that for different problem sizes the numbers of iteration
steps of the SORopt methods are less than those of the SOR-like and the SSOR-like methods
at almost the same CPU times. Clearly, the SORopt method outperforms both the SOR-like
and the SSOR-like methods.

Example 4.2. Consider the saddle-point problems (1.1), in which

A= (ai j)n×n =







i + 1, i = j,
1, |i − j|= 1,
0, otherwise,

B = (bi j)n×m =

�

j, i = j + n−m,
0, otherwise.

For this experiment, we set m = 2n. Hence, the total number of variables is m+ n = 3n.
We choose the matrix Q, as an approximation to the matrix BT A−1B, according to the cases
listed in Table 3.

In Table 4, we give the iteration numbers, the computing times and the RES values (if
the convergence criterion is not achieved within kmax iteration steps) of the SOR-like, the
SSOR-like and the SORopt iterative methods for the Example 4.2 with respect to different
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Table 2: IT, CPU, and RES of the SOR-like, the SSOR-like and the SOR

opt

methods for Example 4.1.

n 128 512 1152 2048 4608 8192 12800
m 64 256 576 1024 2304 4096 6400
n+m 192 768 1728 3072 6912 12288 19200
Case I

SOR-like ω⋆ 1.0585 1.0519 1.0476 1.0451 1.0460 1.0408 1.0506
IT 113 209 301 391 568 743 916
CPU 0.02 0.11 0.33 0.82 2.84 7.78 20.20
RES 8.37e-9 1.36e-8 1.71e-8 2.03e-8 2.58e-8 3.04e-8 3.49e-8

SSOR-like ω 0.4990 0.5444 0.5321 0.5300 0.5316 0.5200 0.5068
IT 61 130 193 254 375 494 612
CPU 0.02 0.15 0.41 1.03 3.95 11.11 26.22
RES 1.54e-8 1.62e-8 2.02e-8 2.46e-8 2.97e-8 3.49e-8 3.94e-8

SORopt IT 42 90 113 122 165 235 348
CPU 0.02 0.09 0.29 0.61 1.22 5.92 9.41
RES 7.31e-8 2.78e-7 9.28e-8 9.92e-8 4.06e-6 2.26e-7 2.85e-7

Case II

SOR-like IT 114 220 322 421 617 811 1002
CPU 0.02 0.12 0.35 0.85 3.13 8.30 21.62
RES 7.40e-9 1.13e-8 1.39e-8 1.69e-8 2.13e-8 2.47e-8 2.85e-8

SSOR-like IT 144 141 143 177 264 349 433
CPU 0.04 0.14 0.31 0.68 3.03 8.08 18.43
RES 1.31e-7 5.14e-7 1.05e-6 2.86e-8 2.91e-8 3.44e-8 3.96e-8

SORopt IT 54 77 132 161 188 278 312
CPU 0.04 0.11 0.34 0.68 2.65 6.61 14.98
RES 1.11e-7 2.23e-7 1.19e-6 1.51e-7 2.41e-6 1.39e-6 3.71e-7

Table 3: Choi
es of the matrix Q for Example 4.2.

Case No. Matrix Q Description
I tridiag(BT Ã−1B) Ã= diag(A)

II tridiag(BT Â−1B) Â=tridiag(A)

choices of the problem sizes. It is clear that both the SOR-like, the iteration steps of the
SORopt methods are much less than those of the SOR-like and the SSOR-like methods at
almost the same computing time for the Example 4.2 with respect to the different problem
sizes.
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Table 4: IT, CPU, and RES of the SOR-like, the SSOR-like and the SOR

opt

methods for Example 4.2.

n 128 512 1152 2048 4608 8192
m 64 256 576 1024 2304 4096
n+m 192 768 1728 3072 6912 12288
Case I

SOR-like ω⋆ 0.5958 0.3657 0.2619 0.2037 0.1451 0.1000
IT 64 131 205 268 339 429
CPU 0.0109 0.0149 0.0324 0.0673 0.0931 0.3702
RES 2.70e-6 7.83e-6 8.68e-6 3.84e-5 1.25e-5 6.21e-5

SSOR-like ω 0.4990 0.3000 0.2321 0.1530 0.1316 0.1200
IT 29 43 50 73 88 132
CPU 0.0215 0.2880 1.2721 5.8606 30.1528 175.7147
RES 4.47e-7 2.57e-6 4.83e-6 4.75e-5 7.11e-4 2.56e-4

SORopt IT 12 25 37 63 71 110
CPU 0.0074 0.0102 0.0199 0.0441 0.2209 0.1989
RES 6.00e-6 5.79e-6 2.97e-5 4.43e-5 6.39e-5 2.91e-4

Case II

SOR-like ω⋆ 0.4664 0.2720 0.1915 0.1476 0.1251 0.1000
IT 43 92 131 187 268 426
CPU 0.0194 0.3749 1.4338 3.5292 10.4478 26.4989
RES 4.46e-6 7.39e-6 6.06e-5 2.71e-5 1.99e-5 6.45e-5

SSOR-like ω 0.5100 0.3900 0.3321 0.2530 0.2016 0.1500
IT 30 58 81 122 142 189
CPU 0.2668 1.6957 7.9386 28.2987 103.7132 496.3327
RES 5.25e-7 8.30e-6 1.82e-5 1.76e-4 6.05e-4 1.30e-3

SORopt IT 13 23 25 37 71 74
CPU 0.0136 0.1998 0.5608 1.6763 5.2310 10.9156
RES 7.09e-6 7.71e-6 2.20e-5 7.12e-5 4.76e-5 9.17e-5

5. Conclusion

In this study, we modified the SOR-like method from the view point of the relaxation
parameter and propose a new SOR-like scheme with optimization model for solving large
sparse augmented linear systems. It is noted that the proposed Methods 3.1 (SORopt) need
to compute the updated optimal relaxation parameter, while the SOR-like and SSOR-like
methods do not require this additional computation. Even so, the Methods 3.1 (SORopt
methods) are very effective for the large sparse augmented linear systems.

The numerical experiments further show that the Methods 3.1 (SORopt methods) are
superior to the SOR-like and SSOR-like methods.
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