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Abstract. Based on the relaxed factorization techniques studied recently and the idea
of the simple-like preconditioner, a modified relaxed positive-semidefinite and skew-
Hermitian splitting (MRPSS) preconditioner is proposed for generalized saddle point
problems. Some properties, including the eigenvalue distribution, the eigenvector dis-
tribution and the minimal polynomial of the preconditioned matrix are studied. Numer-
ical examples arising from the mixed finite element discretization of the Oseen equation
are illustrated to show the efficiency of the new preconditioner.
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1. Introduction

Recently, a large amount of work has been devoted to the problem of solving large linear
systems in saddle point form. Such systems arise in a wide variety of scientific computing
and engineering applications, such as geomechanics [15], mixed finite element approxima-
tion of elliptic partial differential equations [16], piezoelectric structures [17], meshfree
approximation of elastic mechanics [21], computational fluid dynamics [22], optimization
problems [25] and so on. For more background information on the applications of saddle
point problems, please see [1,13,29] and references therein.

This work is concerned with the iterative solution of the following large sparse gener-
alized saddle point linear system

A x≡

�

A B∗

−B C

��

x

y

�

=

�

f

g

�

≡ b, (1.1)
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where A ∈ Cn×n is non-Hermitian positive-definite (i.e., its Hermitian part 1
2(A + A∗) is

positive-definite), B ∈ Cm×n (m ≤ n) is a rectangular matrix of full row rank, B∗ is the
conjugate transpose of B, C ∈ Cm×m is Hermitian positive-semidefinite, f ∈ Cn and g ∈ Cm

are two given vectors. In particular, when A ∈ Cn×n is Hermitian positive-definite and
C = 0, the linear system (1.1) is often called the standard saddle point problem [13]. The
above assumptions ensure that the block two-by-two matrixA is nonsingular [13, Theorem
3.4]. For the nonsingularity of a general block two-by-two matrix, please see [4, Lemma
2.1]. Thus, the solution of (1.1) exists and is unique.

In many cases, the matrices A, B and C are large sparse and iterative techniques are
preferable for solving (1.1). Since the generalized saddle point matrixA is non-Hermitian
positive-semidefinite and often ill-conditioned, preconditioning is in most cases indispens-
able for iterative solution of (1.1) [29]. Let

A =

�

A B∗

−B C

�

=

�

H 0
0 C

�

+

�

S B∗

−B 0

�

= Ĥ + Ŝ

be the splitting of A into its Hermitian and skew-Hermitian parts, where H = 1
2(A+ A∗)

and S = 1
2(A− A∗) are the Hermitian part and the skew-Hermitian part of the (1,1) block

matrix A, respectively. Applying the Hermitian and skew-Hermitian splitting (HSS) iteration
method

¨

(αI + Ĥ )xk+ 1
2 = (αI − Ŝ )xk + b,

(αI + Ŝ )xk+1 = (αI − Ĥ )xk+ 1
2 + b,

(k = 0,1,2, · · · .) (1.2)

proposed by Bai, Golub and Ng in [8], Benzi and Golub constructed a class of HSS precon-
ditioners

P̂HSS =
1

2α

�

αI +H 0
0 αI + C

��

αI + S B∗

−B αI

�

(1.3)

for generalized saddle point problems (1.1), where α is a given positive parameter and I is
the identity matrix with suitable dimensions. The HSS iteration method is a very promising
method since it is convergent unconditionally for solving non-Hermitian positive-definite
linear systems [8]. In addition, the unconditional convergence property can be extended
to the generalized saddle point problems [12] and the general non-Hermitian positive-
semidefinite linear systems [6]. As a preconditioner, the pre-factor has no effect on the
preconditioned system. So, in many cases, we can use the following one

PHSS =
1

α

�

αI +H 0
0 αI + C

��

αI + S B∗

−B αI

�

=

�

αI + A+ 1
αHS B∗ + 1

αHB∗

−B − 1
αCB αI + C

�

(1.4)

to replace the original HSS preconditioner (1.3). Although PHSS no longer relates to an
alternating direction iteration method (1.2), but it is of no consequence whenPHSS is used
as a preconditioner for the Krylov subspace method like GMRES [18, 21]. To improve the
preconditioning effects of the HSS preconditioner and accelerate the convergence rate of
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the preconditioned iteration methods, several variants of the HSS preconditioner as well
as the optimal parameters discussion can be found in [2,3,5,31].

From (1.3) or (1.4), we can see that the HSS preconditioner is a product of a block
diagonal Hermitian positive-definite matrix and a normal matrix. Since the (1,1) block
matrix A is non-Hermitian, it is often difficult to implement the HSS preconditioner. To
remedy this, Pan, Ng and Bai [30] proposed a class of deteriorated positive-definite and
skew-Hermitian splitting (DPSS) preconditioners

P̂DPSS =
1

2α

�

αI + A 0
0 αI + C

��

αI B∗

−B αI

�

(1.5)

for the case C = 0. Then it was extended by Shen [33] when C is Hermitian positive-
semidefinite. In fact, the DPSS preconditioner can be induced by a matrix splitting iteration
method [7, 30]. If A is Hermitian, the DPSS preconditioner P̂DPSS reduces to the HSS
preconditioner P̂HSS . Similarly, we can also use the following one

PDPSS =
1

α

�

αI + A 0
0 αI + C

��

αI B∗

−B αI

�

=

�

αI + A B∗ + 1
αAB∗

−B − 1
αCB αI + C

�

(1.6)

to replace P̂DPSS (1.5) since the pre-factor has on effect on the preconditioned linear sys-
tem. Numerical results indicated that the DPSS preconditioner presented better precondi-
tioning effects than the HSS preconditioner if the experimental optimal parameters were
used [30, 33]. To further improve the DPSS preconditioner, based on the relaxed tech-
niques studied in [14, 18, 19], Fan et al. presented a class of relaxed positive-semidefinite
and skew-Hermitian splitting (RPSS) preconditioners

PRPSS =
1

α

�

A 0
0 αI

��

αI B∗

−B C

�

=

�

A 1
αAB∗

−B C

�

(1.7)

for the generalized saddle point problems (1.1) and studied spectrum properties of the
RPSS preconditioned matrix. It directly follows from (1.4), (1.6) and (1.7) that the RPSS
preconditioner is a better approximation to the generalized saddle point matrix than the
HSS and the DPSS preconditioners. It is shown in [24] that the RPSS preconditioner is
more efficient than the HSS and the DPSS preconditioners. In fact, if A is Hermitian, the
RPSS preconditioner PRPSS (1.7) is the simplified HSS (SHSS) preconditioner studied by
Cao, Ren and Shi [20]. If C = 0, the RPSS preconditioner is a special case of the simple-like
preconditioners studied in [27,28].

In this paper, based on the idea of the simple-like preconditioners, by introducing a
preconditioning matrix Q we propose a new modified RPSS (MRPSS) preconditioner for
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generalized saddle point problems (1.1). Theoretical analyses show that the MRPSS pre-
conditioned matrix has a clustered eigenvalue distribution and the corresponding precon-
ditioned GMRES method converges within finite iteration steps. Compared with the RPSS
preconditioner, the MRPSS preconditioner can result in more rapid convergence rate with
suitable choices of the preconditioning matrix Q.

The remainder of this paper is as follows. The MRPSS preconditioner and the imple-
mentation aspects are presented in Section 2. In Section 3, some properties, including the
eigenvalue distribution, the eigenvector distribution and the minimal polynomial of the pre-
conditioned matrix are studied. In Section 4, numerical examples arising from the mixed
finite element discretization of the Oseen equation are illustrated to show the effectiveness
of the new preconditioner. Finally, our brief concluding remarks are made in Section 5.

2. The MRPSS Preconditioner

Based on the idea of the simple-like preconditioners, we propose an improved variant
of the RPSS preconditioner. Let Q ∈ Cn×n be a nonsingular matrix. The new preconditioner
is defined as follows

PMRPSS =

�

A 1
αAQ−1B∗

−B C

�

(2.1)

and is called the modified RPSS (MRPSS) preconditioner. By comparing the MRPSS pre-
conditioner PMRPSS (2.1) with the HSS preconditioner PHSS (1.4) and the DPSS precondi-
tioner PDPSS (1.6), we can see that the MRPSS preconditioner is a better approximation to
the generalized saddle point matrix A. By comparing the MRPSS preconditioner with the
RPSS preconditioner, we can find that an additional preconditioning matrix Q is presented.
Obviously, the MRPSS preconditioner reduces to the RPSS preconditioner when Q = I , and
reduces to the generalized saddle point matrix when Q = 1

αA. Thus, we can choose a suit-
able preconditioning matrix Q for the MRPSS preconditioner to get faster convergence than
the RPSS preconditioner.

In fact, the MRPSS preconditioner can be decomposed into

PMRPSS =

�

A 0
−B I

��

I 0
0 C + 1

αBQ−1B∗

��

I 1
αQ−1B∗

0 I

�

. (2.2)

From (2.2), we can see that the MRPSS preconditioner is nonsingular if and only if C +
1
αBQ−1B∗ is nonsingular. Since C is Hermitian positive-semidefinite and B has full rank, in
the following we always assume that Q is a positive-definite matrix, which can guarantee
the nonsingularity of the MRPSS preconditioner.

Now, we consider the implementation aspects of the MRPSS preconditioner. At each
iteration step of the MRPSS preconditioned Krylov subspace method, it is necessary to solve
a generalized residual equation of the form

PMRPSS

�

z1

z2

�

=

�

A 0
−B I

��

I 0
0 C + 1

αBQ−1B∗

��

I 1
αQ−1B∗

0 I

��

z1

z2

�

=

�

r1

r2

�

,

(2.3)
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where [z∗1, z∗2]
∗ (z1 ∈ Cn, z2 ∈ Cm) and [r∗1 , r∗2]

∗ (r1 ∈ Cn, r2 ∈ Cm) are the current and
the generalized residual vectors, respectively. Analogous to the algorithms presented in
[18,20,24], we can solve the residual equation (2.3) according to the following algorithm.

Algorithm 2.1. For a given vector [r∗1 , r∗2]
∗, we can compute the vector [z∗1, z∗2]

∗ in (2.3)
from the following steps:

(1) Solve At1 = r1;

(2) Solve (C + 1
αBQ−1B∗)z2 = Bt1 + r2;

(3) Solve Qt2 =
1
αB∗z2;

(4) Compute z1 = t1 − t2.

Compared with [24, Algorithm 1], an additional linear sub-system with the coefficient
matrix Q need to be solved in implementing the MRPSS preconditioner. However, this is
not an issue. In practical computation, we can choose some simple preconditioning matrix
Q. For example, Q can be chosen as the diagonal or the tridiagonal approximations of A.
On one hand, the third step in Algorithm 2.1 can be solved easily. On the other hand, the
convergence rate of the MRPSS preconditioned iteration method may be faster than that
of the RPSS preconditioned iteration method.

3. Properties of the MRPSS Preconditioned Matrices

In this section, we study the spectral properties of the preconditioned matrixP −1
MRPSS

A .
Bounds on the eigenvalues are further studied provided that both the matrices A and Q are
Hermitian positive-definite. Besides, the eigenvector distribution and the minimal polyno-
mial of the preconditioned matrix are discussed, which are instructive for the implementa-
tion of the Krylov subspace acceleration. These theoretical results extend those in [20].

Theorem 3.1. Let A ∈ Cn×n and Q ∈ Cn×n be positive-definite matrices, B ∈ Cm×n have full

row rank, C ∈ Cm×m be Hermitian positive-semidefinite and α be a positive constant. Let

the MRPSS preconditioner PMRPSS be defined as in (2.1). Then the preconditioned matrix

P −1
MRPSSA has an eigenvalue 1 with multiplicity n, and the remaining m eigenvalues are the

eigenvalues of the matrix (C + 1
αBQ−1B∗)−1(C + BA−1B∗). Furthermore, if Q = 1

αA, then all

eigenvalues of the preconditioned matrix P −1
MRPSSA are 1.

Proof. Let

QMRPSS =PMRPSS −A =

�

0 ( 1
αAQ−1 − I)B∗

0 0

�

. (3.1)
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Then from (2.2) and (3.1), we have

P −1
MRPSSA

=P −1
MRPSS(PMRPSS −QMRPSS)

=I −P −1
MRPSSQMRPSS

=I −

�

I 1
αQ−1B∗

0 I

�−1 �
I 0
0 C + 1

αBQ−1B∗

�−1 �
A 0
−B I

�−1 �
0 ( 1

αAQ−1 − I)B∗

0 0

�

=

�

I A−1B∗ − 1
αQ−1B∗(C + 1

αBQ−1B∗)−1(C + BA−1B∗)

0 (C + 1
αBQ−1B∗)−1(C + BA−1B∗)

�

. (3.2)

From (3.2), we immediately obtain that the preconditioned matrixP −1
MRPSSA has an eigen-

value 1 with multiplicity n, and the remaining m eigenvalues are the eigenvalues of the
matrix (C + 1

αBQ−1B∗)−1(C + BA−1B∗). Furthermore, if Q = 1
αA, then the preconditioned

matrix P −1
MRPSSA is an (n+m) by (n+m) identity matrix. Thus, its eigenvalues are 1.

Theorem 3.2. Assume that the conditions in Theorem 3.1 are satisfied. Further assume that

the matrices A and Q are Hermitian. Let the smallest and the largest singular values of the

matrix B be σ1 and σm, respectively. Let the smallest eigenvalues of the A and Q be θ1 and

τ1, respectively, and let the largest eigenvalues of A, Q, and C be θn, τn and µm, respectively.

Then the nonunit eigenvalues of preconditioned matrix P −1
MRPSS

A are real and located in a

positive interval
�

ατ1σ
2
1

(ατ1µm +σ
2
m
)θn

,
ατn(µmθ1 +σ

2
m
)

θ1σ
2
1

�

. (3.3)

Proof. From (3.2), we know that the nonunit eigenvalues of preconditioned matrix
P −1

MRPSS
A are the eigenvalues of the matrix (C + 1

αBQ−1B∗)−1(C + BA−1B∗). Since all the
matrices A, Q and C are Hermitian, the eigenvalues of the matrix (C + 1

αBQ−1B∗)−1(C +

BA−1B∗) are real.
Now, we study the bounds of the eigenvalues of the matrix (C + 1

αBQ−1B∗)−1(C +

BA−1B∗). Assume that θ be an eigenvalue of (C + 1
αBQ−1B∗)−1(C + BA−1B∗) and x be

the normalized eigenvector, i.e. ‖x‖2 = 1. Then we have

θ =
x∗C x + x∗BA−1B∗ x

x∗C x + 1
α x∗BQ−1B∗x

.

From [32, Theorem 1.22], we have

x∗C x + x∗BA−1B∗ x ≤ x∗C x +
1

θ1
x∗BB∗ x ≤ µm +

σ2
m

θ1

and

x∗C x + x∗BA−1B∗ x ≥
1

θn

x∗BB∗ x ≥
σ2

1

θn

.
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Similarly,
σ2

1

ατn

≤ x∗C x +
1

α
x∗BQ−1B∗x ≤ µm +

σ2
m

ατ1
.

Thus, the remaining m eigenvalues are located in the positive interval (3.3).

The termination of a preconditioned Krylov subspace method is not only related to the
location of the eigenvalues, but also the number of the corresponding linearly independent
eigenvectors. Let null(W ) and range(W ) denote the null space and the range space of the
matrix W , respectively. Let dim(·) denote the dimension of the corresponding space. We
present the eigenvector distribution of the MRPSS preconditioned matrix in the following
theorem.

Theorem 3.3. Let the MRPSS preconditioner PMRPSS be defined as in (2.1), then the precon-

ditioned matrix P −1
MRPSS

A has n+ i + j (i + j ≤ m) linearly independent eigenvectors. There

are

(1) n eigenvectors of the form
� u1

p

0

�

that correspond to the eigenvalue 1, where u1
p ∈ C

n

(p = 1, · · · , n) are arbitrary linearly independent vectors.

(2) i (0 ≤ i ≤ m) eigenvectors of the form
� u2

p

v2
P

�

that correspond to the eigenvalue 1,

where u2
p are arbitrary vectors, the vectors v2

p 6= 0 satisfy ( 1
αAQ−1 − I)B∗v2

p = 0 and

i = dim{null( 1
αAQ−1 − I)
⋂

range(B∗)}.

(3) j (0 ≤ j ≤ m) eigenvectors of the form
� u3

p

v3
p

�

that correspond to eigenvalues λ 6= 1,

where the vectors v3
p 6= 0 satisfy the generalized eigenvalue problem (C + BA−1B∗)v3

p =

λ(C + 1
αBQ−1B∗)v3

p and u3
p =

1
1−λ (

λ
αQ−1−A−1)B∗v3

p . In addition, if v3
P ∈ null(C), then

u3
p ∈ null(B), and vice versa.

Proof. The eigenvector distribution of the MRPSS preconditioned matrix can be derived
by considering the following generalized eigenvalue problem

�

A B∗

−B C

��

u

v

�

= λ

�

A 1
αAQ−1B∗

−B C

��

u

v

�

, (3.4)

where λ is an eigenvalue of the MRPSS preconditioned matrix P −1
MRPSS

A and
� u

v

�

is the

corresponding eigenvector. Expanding (3.4) out, we have

(1−λ)Au=

�

λ

α
AQ−1 − I

�

B∗v, (3.5)

and

(1−λ)Bu = (1−λ)C v. (3.6)
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According to the eigenvalue distribution of the preconditioned matrix, we first consider
the case λ= 1. Thus, (3.6) holds naturally and (3.5) becomes

�

1

α
AQ−1 − I

�

B∗v = 0. (3.7)

If v = 0, then the equation (3.7) satisfies naturally. Thus, there are n eigenvectors of the

form
� u1

p

0

�

that correspond to the eigenvalue 1, where u1
p ∈ C

n (p = 1, · · · , n) are arbitrary

linearly independent vectors. If there exists any v 6= 0 which satisfies (3.7), then there

will be i (0 ≤ i ≤ m) eigenvectors of the form
� u2

p

v2
P

�

that correspond to the eigenvalue

1, where u2
p

are arbitrary vectors, the vectors v2
p
6= 0 satisfy ( 1

αAQ−1 − I)B∗v2
p
= 0 and

i = dim{null( 1
αAQ−1 − I)
⋂

range(B∗)}.
Next, we consider the case λ 6= 1. From (3.5) we have

u =
1

1−λ

�

λ

α
Q−1 − A−1
�

B∗v. (3.8)

Substituting the above equation into (3.6), we obtain that the vectors v satisfy

(C + BA−1B∗)v = λ

�

C +
1

α
BQ−1B∗
�

v. (3.9)

Equation (3.9) is trivially satisfied by v = 0. However, this can not happen. Otherwise,
from (3.8) we have u = 0, which contradicts with [u∗ v∗]∗ being an eigenvector. If there
exists any v 6= 0 satisfies (3.9), then there will be j (0 ≤ j ≤ m) linearly independent

eigenvectors of the form
� u3

p

v3
p

�

that correspond to eigenvalues λ 6= 1, where the vectors

v3
p 6= 0 satisfy the generalized eigenvalue problem (3.9) and u3

p =
1

1−λ (
λ
αQ−1−A−1)B∗v3

p . For

such case, if v3
p ∈ null(C), then from (3.6) we have Bu3

p = 0, i.e. u3
p ∈ null(B). Conversely,

if u3
p ∈ null(B), then from (3.6) we have C v3

p = 0, i.e. v3
p ∈ null(C).

The linearly independence of n+ i + j eigenvectors can be proved by the same method
studied in [20, Theorem 3.2] with only technical modifications. Hence, we omit the rest of
the proof here.

Based on the block structure (3.2), an upper bound of degree of the minimal polyno-
mial of the preconditioned matrix P −1

MRPSS
A can be obtained. We show this result in the

following theorem.

Theorem 3.4. Let the MRPSS preconditioner PMRPSS be defined as in (2.1). Then, both the

degree of the minimal polynomial of the preconditioned matrix P −1
MRPSS

A and the dimension

of the Krylov subspace K (P −1
MRPSS

A , b) are at most m+ 1.

Proof. The MRPSS preconditioned matrix P −1
MRPSS

A has the same block structure with
the SHSS preconditioned matrix studied in [20, Theorem 3.3]. So, the proof of the theorem
is essentially analogous to the proof of Theorem 3.3 in [20], with only technical modifica-
tions.
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Remark 3.1. The theoretical results presented in Theorem 3.4 is very important, since it
determines the convergence behavior of a Krylov subspace method, such as GMRES [32].
From Theorem 3.4, we know that any Krylov subspace iterative method with an optimality
or Galerkin property (for example GMRES) will terminate in at most m+ 1 iterations with
the solution to a linear system of the form (1.1) if the MRPSS preconditioner is used.

4. Numerical Results

In this section, our goal is to compare the performance of the MRPSS preconditioner
with the HSS, the DPSS and the RPSS preconditioners. To do this, we provide numerical
experiments on generalized saddle point linear systems from the Oseen equation

�

−ν∆u+w · ▽u+▽p = f ,
▽ · u= 0,

in Ω (4.1)

which is obtained when the steady-state Navier-Stokes equation is linearized by the Picard
iteration. In (4.1), Ω ⊂ R2 is a bounded domain, ν > 0 is the viscosity parameter, u

and p stand for the unknown velocity and the unknown pressure, respectively, and w is
the known velocity from the previous Picard iteration. To generate the test problems, the
leaky-lid driven cavity problem in a square domain (0 ≤ x ≤ 1,0 ≤ y ≤ 1) is considered
and the IFISS software [23]written by Elman, Ramage and Silvester is used. To discrete the
Oseen equation (4.1), the stabilized Q1-P0 mixed finite element methods on both uniform
and stretched grids are adopted and the stabilization parameter is taken as 0.25. For the
case of stretched grids, the stretching is done in both the horizontal and vertical directions,
resulting in rather fine grids near the boundaries. In actual computations, we take three
viscosity values ν = 1,0.1,0.01. For each viscosity value, four increasing grids, i.e, 8× 8,
16× 16, 32× 32 and 64× 64 grids are considered.

In actual implementations, we solve the discretized generalized saddle point linear sys-
tems by the left-preconditioned GMRES methods incorporated with the discussed four pre-
conditioners and compare the performance of different preconditioners from aspects of the
number of iteration steps (denoted by ‘IT’) and the elapsed CPU times in seconds (denoted
by ‘CPU’). The preconditioned GMRES methods are started from the zero initial guess and
terminated once the current residual satisfies

RES=
‖b−A xk‖2
‖b‖2

≤ 10−6

or if the iteration step exceeds the largest prescribed iteration step kmax = 1500. The sub-
systems of linear equations arising in the applications of the discussed preconditioners are
solved by the sparse Cholesky factorization when the coefficient matrix is symmetric and
by the sparse LU factorization when the coefficient matrix is nonsymmetric. All codes are
run in MATLAB (version R2010b) in double precision and all experiments are performed
on an Intel Core (i5-4288u CPU, 8G RAM) Windows 7 system.

To implement these preconditioners efficiently and obtain fast convergence rate of the
corresponding preconditioned GMRES methods, the parameters and the preconditioning
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Table 1: The parameters used in di�erent pre
onditioners (uniform grids).

ν α
Grids

8× 8 16× 16 32× 32 64× 64

ν = 1

αHSS 1.3898 1.4964 1.5607 1.5958
αDPSS 1.8916 2.0155 2.0866 2.1248
αRPSS 2.2639 2.5263 2.6720 2.7488
αMRPSS1 1.0446 1.0528 1.0568 1.0587
αMRPSS2 1.0320 1.0384 1.0415 1.0430

ν = 0.1

αHSS 0.4568 0.3359 0.2612 0.2166
αDPSS 1.0737 0.9421 0.8456 0.7792
αRPSS 0.6653 0.5322 0.4334 0.3682
αMRPSS1 1.0052 1.0115 1.0206 1.0316
αMRPSS2 1.0036 1.0084 1.0152 1.0233

ν = 0.01

αHSS 0.4232 0.2943 0.2068 0.1460
αDPSS 1.0477 0.8892 0.7548 0.6398
αRPSS 0.6290 0.4713 0.3439 0.2477
αMRPSS1 1.0002 1.0003 1.0005 1.0008
αMRPSS2 1.0001 1.0002 1.0003 1.0005

matrices involved in these preconditioners should be chosen appropriately. The experi-
mental optimal parameters, which lead to the least iteration number of the corresponding
preconditioned iteration methods, are often used to check the efficiency of the discussed
preconditioners. However, this is not practical in actual computation. In this paper, the
practical formula proposed by Huang [26] for computing the optimal parameters of the HSS
iteration method is used for computing the quasi-optimal parameters of the HSS precondi-
tioner. For other three preconditioners, by making use the techniques studied in [11, 31],
the following estimates

αDPSS =

√

√ ‖A||F · ‖B‖F
‖In‖F · ‖Im‖F

, αRPSS =
‖A‖F
‖In‖F

, αMRPSS =
‖A‖F
‖Q‖F

(4.2)

are used for the DPSS preconditioner, the RPSS preconditioner and the MRPSS precon-
ditioner, respectively. In the above expressions, ‖A‖F denotes the Frobenius norm of the
matrix A, and In and Im denote the n× n and m×m identity matrices, respectively. As for
the preconditioning matrix Q, we take the following two choices

Case I: Q=diag(A),
Case II: Q=tridiag(A).

The corresponding MRPSS preconditioners are denoted by the MRPSS1 preconditioner and
the MRPSS2 preconditioner, respectively.

We first present the numerical results of different preconditioned GMRES methods for
solving the Oseen equation discretized by uniform grids. Specifically, in Table 1, the param-
eters used in the discussed preconditioners are listed. In Table 2, we present the numerical
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Table 2: Numeri
al results for the Oseen equation with ν = 1 (uniform grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 77 171 368 404

CPU 0.0380 0.2376 3.1823 10.7807
RES 7.9934e-7 9.8576e-7 9.4717e-7 9.9803e-7

HSS
IT 45 96 202 219

CPU 0.0252 0.0895 0.9615 4.6796
RES 9.5089e-7 9.6949e-7 8.7427e-7 9.8694e-7

DPSS
IT 50 107 222 241

CPU 0.0275 0.0856 0.9959 4.6410
RES 9.6937e-7 9.7116e-7 8.6706e-7 9.8520e-7

RPSS
IT 11 17 26 39

CPU 0.0055 0.0088 0.0395 0.2944
RES 7.2096e-7 6.6169e-7 6.4856e-7 8.8749e-7

MRPSS1
IT 11 18 26 39

CPU 0.0086 0.0076 0.0462 0.2926
RES 8.7736e-7 3.6183e-7 8.7005e-7 9.2790e-7

MRPSS2
IT 12 17 25 38

CPU 0.0069 0.0228 0.0894 0.6298
RES 3.5822e-7 8.7911e-7 8.7209e-7 7.3029e-7

results of different preconditioned GMRES methods for the discretized Oseen equation with
the viscosity parameter ν = 1. In Table 3 and Table 4, the same items are listed for ν = 0.1
and ν = 0.01, respectively. From numerical results listed in Tables 2-4, we can find that

• Both the iteration counts and the elapsed CPU times show that the GMRES method
converges slowly if no preconditioner is used. All the discussed preconditioners can
accelerate the convergence rate of the GMRES method efficiently.

• With the practical formulas studied in [11, 31], the DPSS preconditioner is less effi-
cient than the HSS preconditioner. This means that the parameter estimate method
presented in [11,31]may not be a good choice for the DPSS preconditioner. It should
be noted that the quasi-optimal parameters of the PSS iteration method (precondi-
tioner) have been studied in [9, 10] when the coefficient matrix is non-Hermitian
positive-definite. However, there is no discussion on the quasi-optimal parameters of
the DPSS preconditioners when the coefficient matrix has the saddle point structure.

• The RPSS preconditioner and the MRPSS preconditioners are more efficient than the
HSS preconditioner and the DPSS preconditioner. When ν= 1 and 0.1, the iteration
counts of the RPSS preconditioned GMRES method are almost the same as those
of the MRPSS preconditioned GMRES methods. But when ν = 0.01, the iteration
counts of the MRPSS preconditioned GMRES methods are less than those of the RPSS
preconditioned GMRES method.
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Table 3: Numeri
al results for the Oseen equation with ν = 0.1 (uniform grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 84 157 275 539

CPU 0.0736 0.2097 1.8744 18.3102
RES 8.9902e-7 9.0207e-7 9.5096e-7 9.7511e-7

HSS
IT 36 78 155 300

CPU 0.0178 0.0752 0.6436 7.8936
RES 8.6606e-7 7.7381e-7 8.9792e-7 9.6708e-7

DPSS
IT 56 115 213 416

CPU 0.0287 0.1066 0.9422 12.3943
RES 7.1115e-7 8.7010e-7 8.6323e-7 9.4510e-7

RPSS
IT 16 23 33 46

CPU 0.0086 0.0132 0.0611 0.3728
RES 6.4401e-7 7.2706e-7 8.7081e-7 9.0767e-7

MRPSS1
IT 14 22 32 46

CPU 0.0140 0.0188 0.0506 0.3765
RES 5.9803e-7 4.9164e-7 6.84172e-7 8.2645e-7

MRPSS2
IT 14 21 31 45

CPU 0.0058 0.0208 0.0960 0.7310
RES 7.3469e-7 8.1662e-7 9.8837e-7 9.7574e-7

In Tables 5-8, we list the numerical results for the Oseen equation discretized by stretched
grids. More specifically, the parameters used in different preconditioners are listed in Ta-
ble 5. The computational results of different preconditioend GMRES methods for solving
discretized Oseen equation with ν = 1, 0.1 and 0.01 are listed in Table 6, Table 7 and Ta-
ble 8, respectively. In Table 8, ‘-’ means that the corresponding iteration method does not
converge to the solution within the prescribed maximal iteration number kmax .

From these tables, we can also find that all the discussed preconditioners can accelerate
the convergence rate of the GMRES method efficiently. The RPSS preconditioner studied
in [24] and the MRPSS preconditioner proposed in this paper are much efficient than the
HSS preconditioner and the DPSS preconditioner, too. No matter whether the viscosity pa-
rameter is large or small, the iteration counts of the MRPSS preconditioned GMRES method
are less than those of the RPSS preconditioned GMRES method. But the elapsed CPU times
show that the MRPSS1 preconditioner is more efficient than the MRPSS2 preconditioner
although the iteration steps of the MRPSS2 preconditioned GMRES method are less than
those of the MRPSS1 preconditioned GMRES method. This is because an additional sub-
system of linear equations with the tridiagonal coefficient matrix Q need to be solved.

To further show the convergence behavior of the preconditioned GMRES methods, we
plot the residual curves of the preconditioned GMRES methods for solving the Oseen equa-
tion discretized by uniform 32× 32 grids in Fig. 1. The residual curves for stretched grid
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Table 4: Numeri
al results for the Oseen equation with ν = 0.01 (uniform grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 141 343 725 1336

CPU 0.1349 0.9135 12.1683 108.5875
RES 7.7991e-7 9.4375e-7 9.9915e-7 9.9270e-7

HSS
IT 79 162 382 803

CPU 0.0347 0.1754 2.9168 47.0472
RES 8.9961e-7 8.8868e-7 9.6785e-7 9.9664e-7

DPSS
IT 118 256 573 1116

CPU 0.0577 0.3683 6.3451 85.3692
RES 7.7519e-7 9.8584e-7 9.9255e-7 9.9576e-7

RPSS
IT 35 51 69 90

CPU 0.0116 0.0450 0.1460 1.0214
RES 7.9899e-7 8.8142e-7 9.8534e-7 9.2677e-7

MRPSS1
IT 23 36 50 70

CPU 0.0098 0.0328 0.0976 0.6739
RES 8.8716e-7 9.0631e-7 8.7477e-7 9.9234e-7

MRPSS2
IT 17 27 45 66

CPU 0.0092 0.0287 0.1219 1.1477
RES 3.8672e-7 9.9900e-7 7.8674e-7 8.8298e-7
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Figure 1: Residual 
urves for uniform 32× 32 grids with ν = 0.1 (left) and ν = 0.01 (right).

cases are plotted in Fig. 2. These figures clearly show that the RPSS preconditioner and
the MRPSS preconditioners are better than the HSS preconditioner and the DPSS precon-
ditioner. And the proposed MRPSS preconditioners are slightly better than the RPSS pre-
conditioner.

In order to investigate the dependence of the MRPSS and the RPSS preconditioned GM-
RES methods on the iteration parameter α, we illustrate the changing of their iteration steps
with respect to α from 0.1 to 1.5 for uniform 32× 32 grid cases in Fig. 3. The stretched
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Table 5: The parameters used in di�erent pre
onditioners (stret
hed grids).

ν α
Grids

8× 8 16× 16 32× 32 64× 64

ν = 1
αHSS 1.5527 2.1519 3.0683 4.4122
αDPSS 2.1080 2.6126 3.2416 4.0196
αRPSS 2.5287 3.6391 5.2573 7.6021
αMRPSS1 1.0593 1.1317 1.1965 1.2410
αMRPSS2 1.0381 1.0712 1.0973 1.1138

ν = 0.1
αHSS 0.4778 0.3817 0.3766 0.4661
αDPSS 1.1468 1.0782 1.1267 1.3049
αRPSS 0.6748 0.5931 0.6267 0.7987
αMRPSS1 1.0080 1.0442 1.1267 1.2106
αMRPSS2 1.0052 1.0252 1.0656 1.1014

ν = 0.01
αHSS 0.4350 0.3016 0.2123 0.1538
αDPSS 1.1127 0.9683 0.8432 0.7438
αRPSS 0.6291 0.4721 0.3469 0.2576
αMRPSS1 1.0003 1.0008 1.0036 1.0157
αMRPSS2 1.0010 1.0005 1.0020 1.0086
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Figure 2: Residual 
urves for stret
hed 32× 32 grids with ν = 0.1 (left) and ν = 0.01 (right).

32 × 32 grid cases are illustrated in Fig. 4. From Figs. 3 and 4, we see that the MRPSS
preconditioned GMRES methods need less iteration counts than the RPSS preconditioned
GMRES method. What’s more, the MRPSS preconditioner is not sensitive to the parame-
ter α, in the sense that the iteration count does not change dramatically, while the RPSS
preconditioner is very sensitive to the parameter α. So, another advantage of the MRPSS
preconditioner is that a fairly wide range of values of the parameter α can produce similar
fast convergence results.
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Table 6: Numeri
al results for the Oseen equation with ν = 1 (stret
hed grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 100 358 469 807

CPU 0.0759 0.9725 5.1236 40.1721
RES 8.9481e-7 9.3131e-7 9.7681e-7 9.9628e-7

HSS
IT 62 211 218 315

CPU 0.0394 0.2715 1.0842 8.4585
RES 5.3165e-7 9.6384e-7 9.9268e-7 9.9557e-7

DPSS
IT 68 226 222 301

CPU 0.0413 0.2760 0.9993 6.8542
RES 5.1337e-7 9.1037e-7 9.9807e-7 9.9581e-7

RPSS
IT 11 13 20 31

CPU 0.0079 0.0140 0.0334 0.2103
RES 2.9117e-7 7.8714e-7 9.4336e-7 9.7330e-7

MRPSS1
IT 11 15 20 27

CPU 0.0074 0.0102 0.0346 0.1881
RES 4.6847e-7 4.4218e-7 6.8368e-7 8.6749e-7

MRPSS2
IT 10 14 19 22

CPU 0.0065 0.0265 0.0767 0.4916
RES 8.6903e-7 4.7249e-7 5.9542e-7 8.0976e-7
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Figure 3: Iteration 
ounts VS α for uniform 32× 32 grids with ν= 0.1 (left) and ν = 0.01 (right).

5. Conclusion

In this paper, based on the idea of the simple-like preconditioners, by introducing a
preconditioning matrix we proposed a modified relaxed positive-semidefinite and skew-
Hermitian splitting (MRPSS) preconditioner for generalized saddle point problems. The
new preconditioner can include the simple-like preconditioners [27,28], the SHSS precon-
ditioner [20] and the RPSS preconditioner [24] as special cases. The eigenvalue distribu-
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Table 7: Numeri
al results for the Oseen equation with ν = 0.1 (stret
hed grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 91 230 632 961

CPU 0.0708 0.4189 9.2485 56.6934
RES 9.0230e-7 9.7764e-7 9.6484e-7 9.9282e-7

HSS
IT 37 103 292 381

CPU 0.0330 0.0934 1.8062 11.8118
RES 6.3465e-7 9.2779e-7 9.3226e-7 9.8711e-7

DPSS
IT 59 164 454 581

CPU 0.0307 0.1620 3.8916 23.4390
RES 9.5384e-7 9.7319e-7 9.8890e-7 9.9610e-7

RPSS
IT 15 19 27 40

CPU 0.0092 0.0171 0.0379 0.3002
RES 5.6414e-7 8.6680e-7 8.6545e-7 8.8590e-7

MRPSS1
IT 14 19 26 34

CPU 0.0101 0.0168 0.0449 0.2406
RES 5.8934e-7 9.9800e-7 7.6689e-7 9.4299e-7

MRPSS2
IT 13 18 24 34

CPU 0.0075 0.0227 0.0875 0.5891
RES 6.5247e-7 6.3295e-7 8.6466e-7 8.2642e-7
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Figure 4: Iteration 
ounts VS α for stret
hed 32× 32 grids with ν= 0.1 (left) and ν = 0.01 (right).

tion, the eigenvector distribution and the minimal polynomial of the MRPSS preconditioned
matrix are studied. In particular, we presented eigenvalue bounds of the MRPSS precon-
ditioned matrix when both the (1,1) block matrix A and the preconditioning matrix Q are
Hermitian. Numerical examples arising from the mixed finite element discretization of
the Oseen equation show that the new MRPSS preconditioner is better than some existing
preconditioners.
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Table 8: Numeri
al results for the Oseen equation with ν = 0.01 (stret
hed grids).

Preconditioner
Grids

8× 8 16× 16 32× 32 64× 64

I
IT 139 407 1017 -

CPU 0.1166 1.2805 23.9332 -
RES 9.6873e-7 9.8399e-7 9.9704e-7 -

HSS
IT 81 193 461 1118

CPU 0.0525 0.2316 4.1700 87.1386
RES 8.9100e-7 9.5386e-7 9.6618e-7 9.9921e-7

DPSS
IT 123 321 806 -

CPU 0.0701 0.5661 12.3913 -
RES 6.9132e-7 9.9705e-7 9.9739e-7 -

RPSS
IT 34 41 45 56

CPU 0.0197 0.0297 0.0739 0.4833
RES 5.4886e-7 8.0892e-7 8.8264e-7 9.7544e-7

MRPSS1
IT 22 29 34 47

CPU 0.0132 0.0133 0.0637 0.3879
RES 7.9839e-7 7.9382e-7 9.3305e-7 8.9379e-7

MRPSS2
IT 16 25 32 45

CPU 0.0054 0.0251 0.0860 0.6890
RES 5.8207e-7 9.0554e-7 8.5690e-7 8.1981e-7
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