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Abstract. A feature-dependent variational level set formulation is proposed for image

segmentation. Two second order directional derivatives act as the external constraint in

the level set evolution, with the directional derivative across the image features direc-

tion playing a key role in contour extraction and another only slightly contributes. To

overcome the local gradient limit, we integrate the information from the maximal (in

magnitude) second-order directional derivative into a common variational framework.

It naturally encourages the level set function to deform (up or down) in opposite direc-

tions on either side of the image edges, and thus automatically generates object contours.

An additional benefit of this proposed model is that it does not require manual initial

contours, and our method can capture weak objects in noisy or intensity-inhomogeneous

images. Experiments on infrared and medical images demonstrate its advantages.
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1. Introduction

In most computer vision applications, image segmentation is a key initial step before

performing high-level tasks such as object recognition and tracking [1, 2]. For a given im-

age, the segmentation problem is to find optimally a set of curves that partition the image

domain into different regions such that each region is uniform and homogeneous in one or

more characteristics (e.g., intensity, colour or texture). However, many images are charac-

terised by intensity inhomogeneity, noise, texture and weak object, etc., which could cause
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errors in the process of image segmentation. Various different purpose methods, including

for example the thresholding algorithm [3], wavelet transformation [4], stochastic algo-

rithm [5], graph cut [6] and variational level set models [7-10], have been proposed for

these tasks. We focus on the variational level set method, which has the main advantage

that it easily incorporates various prior knowledge such as on gradients and second-order

directional derivatives, in formulating an energy functional for robust image segmentation.

The level set method introduced by Osher & Sethian [11] is a versatile tool for interface

tracing. In image processing and computer vision applications, variational level set models

have been studied extensively for image segmentation [7-10]. These variational level set

models express object contour extraction as the minimisation of an energy functional, per-

formed using gradient descent that provides a partial differential equation (PDE) for level

set evolution. The zero level set (evolution curve) is used to represent the object contours,

and the evolution PDE is subject to constraints from both the level set function (LSF) itself

and the image data. According to the difference in constraints from the LSF, the energy

functional typically includes the internal energy and external energy. The internal energy

smooths the level zero curve and the LSF itself, and the external energy assists robust image

segmentation.

Existing level set models for image segmentation can roughly be categorised into two

classes — viz. region-based models [8, 10, 12-15] and edge-based models [7, 9, 16, 17].

Region-based models approximate the intensity in each region by global or local statistics

information, and edge-based models use local edge information to construct external con-

straints. These models [7-10, 12-17] are amenable to physical insight into the problem of

image segmentation, and build up elegant outputs via variational frameworks, especially

for medical [13] and infrared images [17].

Edge-based models [7, 9] generally utilise image gradients to construct edge indicators,

which are considered external constraints that stop the contours on the boundaries of the

desired objects. However, the information contained in a gradient is limited to a point and

its immediate neighbours, which makes the level set evolution highly sensitive to the initial

contours. On the other hand, the scale value of the edge indicator is always positive, so the

edge indicator cannot vanish along the object boundaries such that the curve propagating

cannot stop on the object boundaries and continuously moves into weak object boundaries.

In fact, an image is intrinsically a matrix that includes a large amount of data such as the

intensity, gradient, or directional information and more. The data in oriented domains

characterise image features such as the direction of the image edges. Incorporating the di-

rectional information into a variational framework benefits the segmentation performance

of the models.

Recently, a number of algorithms incorporated image data in oriented domains into a

variational framework, and attracted considerable interest [18-25]. In Ref. [18], an optimal

edge-integration was designed with regard to the energy functional, which accumulates

the inner product between the normal to the edge and the grey level image-gradient along

the edge. Paragios et al. [19] proposed a bidirectional geometric flow, by integrating the

gradient vector flow into the geodesic active contours (GAC) model [7] that improved the

segmentation effect and exhibited more freedom with respect to the initial conditions.



Integrating Feature Direction Information with a Level Set Formulation for Image Segmentation 3

In Ref. [20], a modified GAC model was proposed, where the level set evolution was

controlled by an edge indicator based on the intensity profile perpendicular to the evolving

front. Melonakos et al. [21] developed a new GAC model in a Finsler metric, where the

cost of a curve is defined as the length of the curve weighted by a position and a direction,

with the advantage that it allows for asymmetric processing of information. Luo & Wu

[22] combined gradient directional information into the local binary fitting (LBF) model

[23] for accurate image segmentation. Gallego et al. [24] proposed the directional GAC by

accounting for the magnitude and direction of the gradient. Estellers et al.[25] proposed

harmonic active contours, which exploit the directional information of the image gradient

and the LSF, aligning the contours of the segmentation with the image edges. In preliminary

work [16], we integrated the second-order directional derivatives of the image data into

an external energy, which makes the variational model free of manual initialisation and

produces better segmentation effects for images with complex backgrounds. However, this

approach could cause an inherent ambiguity in the evolution direction of the LSF, because

the external constraint is the weighted sum of two directional derivatives, which could

severely damage weak object contour extractions in some noisy cases.

Here we focus on the issue of weak object segmentation with edge-based models in

noisy or intensity-inhomogeneous images. We first discuss the action of the second-order

directional derivatives of the image data for the level set evolution, and then propose a

feature-dependent variational formulation for image segmentation. This approach is in-

spired by the work of Carmona & Zhong [26] with edge-based models on image smoothing

and the level set method. The noise influence on the level set evolution is alleviated by

removing the mistaken directive from the image contour direction. Our variational en-

ergy functional involves an external energy term and two internal energy terms. To guide

the front of the active contour toward the desired object boundary, and to prevent it from

moving over the weak edges in noisy images, we present a novel external energy that inte-

grates the information in the maximal (magnitude) second-order directional derivative of

the image data into a common variational framework.

The direction of the maximal second-order directional derivative is considered to be the

direction across the image feature. The internal energy terms penalise the smoothing of the

LSF and the deviation of the LSF from a signed distance function. The evolution of the LSF is

the gradient flow that minimises the total energy functional. Due to the external energy, the

level set function can be initialised as a constant function, which is more convenient than

the widely used signed distance function [7, 8] or binary function [9, 10]. Our proposed

model can be used to segment images with weak boundaries or intensity inhomogeneity,

and it is also robust for noisy images.

In Section 2, we briefly review the work of Carmona & Zhong [26] on image smoothing

and our previous work on image segmentation, and then further discuss the action of the

second-order directional derivatives for level set evolution. In Section 3, our proposed

new model is explained in detail. Numerical algorithms are presented in Section 4, and

experimental results are given in Section 5, followed by our brief summary in Section 6.
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2. Background

2.1. Image smoothing with respect to feature directions

The model proposed by Carmona & Zhong [26] respects the feature directions in image

smoothing, in using the Hessian method for image feature direction extraction. For a given

image I(x , y), the Hessian is the matrix

�

Ix x Ix y

Ix y I y y

�

. (2.1)

The two eigenvalues of the Hessian are

λ1 =
1

2

�

Ix x + I y y +
Ç

(Ix x − I y y )
2 + 4I2

x y

�

,

λ2 =
1

2

�

Ix x + I y y −
Ç

(Ix x − I y y )
2 + 4I2

x y

�

. (2.2)

Let λη denote the larger magnitude eigenvalue and λξ the other eigenvalue. The corre-

sponding eigenvectors υη and υξ can be regarded as the directions across and along the

image feature, respectively. The evolution equation for the image smoothing then takes the

form

ut = c(aλη + bλξ) . (2.3)

The main idea behind this model is to control the direction of smoothing — i.e. to have

minimal smoothing across the image features directions, and maximal smoothing along the

image features directions.

2.2. Level set evolution without initial contours

In our previous work [16], we proposed an edge-based variational model driven by an

external energy Eex t(φ) defined as

Eex t(φ) =

∫

Ω

w(Iσ)Hǫ(−φ) d x d y , (2.4)

where Hǫ(φ) is the smooth Heaviside function and w(Iσ) is the weighted function defined

by

w(Iσ) = g (|∇Iσ|) |∇Iσ|
2 ∂

2 Iσ

∂ ξ2
− G′ (|∇Iσ|) |∇Iσ|

2 ∂
2 Iσ

∂ η2
, (2.5)

involving the convolution Iσ = Gσ ∗ I of the image I with the Gaussian function Gσ (with

standard deviation σ), g(s) = 1/(1 + (s/K)2) , G(s) = s · g(s), and the second-order di-

rectional derivatives ∂ 2 Iσ/∂ η
2 and ∂ 2 Iσ/∂ ξ

2 of the image Iσ along the image gradient

direction η and contour direction ξ, respectively. The complete energy has two extra inter-

nal energy terms — i.e.

E(φ) = Eex t(φ) + βL(φ) +µP(φ) , (2.6)
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where β , µ > 0 are constant, the length term L(φ)minimises the contour length, and P(φ)

keeps φ close to the signed distance function.

In formulas (2.4)-(2.6), the weight function w(Iσ) guides the level set function defor-

mation in the opposite direction (up or down) on either side of the edges, so the contours

can be extracted automatically at image locations that encounter two opposite directions

of flow. This arrangement makes the level set evolution start with a constant level set func-

tion — i.e. this is a level set evolution model without initial contours, which we call the

LSVWIC model. However, the weighted function w(Iσ) in Eex t(φ) is the weighted sum of

the two directional derivatives. The contour direction ξ could mistakenly give a directive

to the level set evolution under some noisy circumstances and severely damage the contour

extractions, a case we demonstrate in the next subsection.

2.3. Action of the second-order directional derivatives on image segmentation

If g(s) = 1/s2, the function w(Iσ) in formula (2.4) can be rewritten w(Iσ) =
∂ 2 Iσ
∂ ξ2 +

∂ 2 Iσ
∂ η2 ,

so the properties of w(Iσ) have a close relationship with the Laplacian operator. It is known

that the Laplacian operator has a stronger response to noise points [27], which causes an

inherent ambiguity in the evolution of the LSF in noisy cases when minimising the energy

(2.6). The generation of w(Iσ) contains an external constraint in two orthogonal directions

along the edge of image, one the gradient direction η and the other the contour direction

ξ. To address the problem of noise sensitivity in the LSVWIC model, we must first delineate

the action of w(Iσ) in the directions ξ and η. Considering (2.5), we decompose formula

(2.4) as

E
ξ
ex t(φ) =

∫

Ω

�

g (|∇Iσ|) |∇Iσ|
2 ∂

2Iσ

∂ ξ2

�

Hǫ(−φ) d x d y , (2.7)

E
η
ex t(φ) =

∫

Ω

�

−G′ (|∇Iσ|) |∇Iσ|
2 ∂

2 Iσ

∂ η2

�

Hǫ(−φ) d x d y , (2.8)

so we obtain another two models similar to (2.6) — viz.

E(φ) = E
ξ
ex t(φ) + βL(φ) +µP(φ) , (2.9)

E(φ) = E
η
ex t(φ) + βL(φ) +µP(φ) . (2.10)

In Fig. 1 we compare the segmentation effects of the LSVWIC model (2.6) with these

modified models (2.9) and (2.10). An image with Gaussian noise of zero mean and 0.3

variance is selected to test these models — cf. Fig. 1(a). In Fig 1(b),(c) we show the seg-

mentation results from the modified models by E
ξ
ex t(φ) and E

η
ex t(φ), respectively. It is seen

that the external constraint in the contour direction ξ has little effect on the image segmen-

tation, but the external constraint in the gradient direction η plays a key role in the level

set evolution. Fig. 1(d) shows the segmentation result of the LSVWIC model. Although

this model mostly still works, some false contours are generated in the resulting image,

indicating that the external constraint in the contour direction ξ plays a ’bad’ role in the
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(a)                      (b)                          (c)                        (d)  

Figure 1: An example with a noisy image: (a) noisy image; (b) result from the modi�ed LSVWIC model

with E
ξ
ex t(φ) (formula (2.9)); () result from the modi�ed LSVWIC model with E

η
ex t(φ) (formula(2.10));

(d) result from the LSVWIC model (formula(2.6)).

evolution of the LSF under noisy circumstances. Thus the external constraint in the gra-

dient direction η is better for segmentation than the weighted sum of the two directional

derivatives. In fact, the directions η and ξ have a very close relationship with the direction

across and along the image feature [26], and we can conclude that extraction of the image

feature directions is essential to image segmentation. However, Carmona & Zhong [26]

have noted that the gradient-contour (η,ξ) pair is a poor estimator across and along the

feature direction pair for image smoothing. We show that this inaccurate feature direction

estimation affects the segmentation results by Fig. 1 and the experiments in Section 5.

3. Proposed Model

In this section, we propose a variational model with directional information from the

maximal second-order directional derivatives. Our goal is to automatically detect weak

boundaries in noisy images, which depends upon accurate extraction of the image feature

directions.

3.1. Integrating feature direction information to the level set

Let Ω ⊂ R2 be an image domain. For a given image I : Ω→ R and a level set function

φ(x , y) : Ω→ R, we propose the integral

Aλ̃(φ) =

∫

Ω

λ̃ (I(x , y)) ·H(−φ) d x d y (3.1)

as an external energy to deform the level set function and drive the zero level set toward

the object boundaries, where H(·) is the Heaviside function and λ̃ (I(x , y)) is a variable

coefficient that depends upon the higher order differentiation in the Hessian matrix. When

the coefficient λ̃ (I(x , y)) = 1 is constant, the energy functional Aλ̃(φ) gives the area of the

region Ω− = {(x , y)|φ(x , y) < 0}. A positive (or negative) coefficient λ̃ (I(x , y)) speeds up

shrinking (or expansion) of the zero level set when minimising the energy functional (3.1)

— cf. also Ref. [9]). we now specify the coefficient λ̃ (I(x , y)) in detail.
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On the basis of Eq. (2.1), we have the Hessian matrix of the smooth image Iσ as

�

(Iσ)x x (Iσ)x y

(Iσ)x y (Iσ)y y

�

, (3.2)

with the two eigenvalues

λ̃1 =
1

2

�

(Iσ)x x + (Iσ)y y +
Ç

((Iσ)x x − (Iσ)y y)
2 + 4(Iσ)

2
x y

�

,

λ̃2 =
1

2

�

(Iσ)x x + (Iσ)y y −
Ç

((Iσ)x x − (Iσ)y y)
2 + 4(Iσ)

2
x y

�

. (3.3)

If λ̃η denotes the larger magnitude eigenvalue and λ̃ξ the other eigenvalue, depending

upon the signs of (Iσ)x x + (Iσ)y y , we have

λ̃η =







λ̃1 , (Iσ)x x + (Iσ)y y > 0 ,

λ̃2 , (Iσ)x x + (Iσ)y y < 0 ,

|λ̃1| or |λ̃2| , (Iσ)x x + (Iσ)y y = 0 .

(3.4)

The eigenvector υ̃η corresponding to λ̃η defines the direction of the maximal second-order

directional derivative (of all directions), which is taken to be the direction across the fea-

tures of the smoothing image Iσ. We write λ̃ (I(x , y)) = λ̃η, and re-write our proposed

external energy (3.1) as

Aλ̃(φ) =

∫

Ω

λ̃η H(−φ) d x d y , (3.5)

where λ̃η is defined by formula (3.4). Clearly, λ̃η shares the property of w(Iσ) in the gradi-

ent direction η, in extracting the direction information across the image feature. However,

the energy (3.5) differs from (2.4) in taking out the external constraint across the image

feature direction. However, integrating λ̃η into the level set avoids the inherent ambiguity

in the evolution of the LSF, and can alleviate the influence of the image noise. At the same

time, the accurate directive of the maximal second-order directional derivative allows our

model to capture weak objects. Let us now investigate the action of λ̃η on level set evolu-

tion by a simple example. In Fig. 2(a), the LSF φ evolves according to the PDE associated

with Aλ̃(φ) as
∂ φ

∂ t
= λ̃ηδ(φ) (3.6)

where δ(φ) is the Dirac delta function, the derivative of the Heaviside function H(φ) in-

troduced above, approximated by a smooth function. Fig. 2(b) shows the grey image of λ̃η
about image Fig. 2(a). We see that λ̃η is positive at point A in Fig. 2(b), in the transition

region associated with the dark side of the edge at point A in Fig. 2(a), and negative λ̃η
associated with the bright point B in Fig. 2(b). Furthermore, from Eq. (3.6) we observe

that the value of φ is monotone increasing if λ̃η > 0, but monotone decreasing if λ̃η < 0,

hence the evolution processes of Eq. (3.6) in the artificial time t naturally encourage φ to

deform (up or down) in opposite directions on either side of the image edges. We initialise
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(a)                                    (b)                                    (C) 

Figure 2: The grey �gure of λ̃η and its ontribution to level set evolution driven by Eq.(3.6): (a) original

image; (b) grey �gure of λ̃η; () grey image of φ after one iteration.

the LSF φ to be a constant function with value of 1. Fig. 2(c) shows the result of φ after

one iteration according to Eq. (3.6). We observe that the function φ increases from 1 to 4

in the region where λ̃η > 0 (point A in Fig 2(b)) and decreases to −3 from 1 in the region

where λ̃η < 0 (point B in Fig 2(b)), so the contours can be generated automatically at

the image locations where two opposite directions of flow are encountered after multiple

iterations. This property also ensures the new scheme can be initialised as any bounded

function, including a constant function.

3.2. The energy formulation

In image segmentation, the external energy Aλ̃(φ) drives the zero level set towards the

desired image feature — and the internal energy, dependent only on the function of φ,

must be defined to constrain the LSF itself. The constraints can be categorised in two parts

— viz. the constraints on the zero level curve, and those on the LSF. Here we use the length

term in [8, 9] in our model to constrain the smoothness of the zero level curve, and to avoid

small isolated regions occurring in the final segmentation. In the sense of distributions, the

length term is expressed as

L(φ) =

∫

Ω

|∇H(φ)| d x d y =

∫

Ω

δ(φ) |∇φ| d x d y , (3.7)

where δ(z) is the Dirac delta function. For the LSF to evolve stably, the distance regularised

term in Ref.[9] is adopted in our model, to penalise the deviation of the level set function

from a signed distance function. The distance regularised term is thus defined as

P(φ) =

∫

Ω

1

2
(|∇φ| − 1)2 d x d y . (3.8)

From Eqs. (3.5), (3.7) and (3.8), the total energy is

E(φ) = αAλ̃(φ) + β L(φ) +µ P(φ)

= α

∫

Ω

λ̃η ·H(−φ) d x d y + β

∫

Ω

|∇H(φ)| d x d y +µ

∫

Ω

1

2
(|∇φ| − 1)2 d x d y , (3.9)
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where α,β ,µ > 0 are constants and λ̃η is defined in (3.4). In a steepest descent dynam-

ical scheme, minimising the energy functional (3.9) with respect to φ yields the gradient

descent flow

∂ φ

∂ t
= αλ̃ηδ(φ) + βδ(φ)∇ ·

�

∇φ
|∇φ|

�

+µ

�

∆φ −∇ ·
�

∇φ
|∇φ|

��

. (3.10)

4. Implementation

4.1. Numerical scheme

In practice, the Dirac function δ(z) is approximated by a smooth function δǫ(z), which

is typically

δǫ(z) =
1

π

ǫ

ǫ2 + z2
, (4.1)

and we adopt ǫ = 2.0 for all of the numerical results reported here. In the numerical imple-

mentation, the spatial partial derivatives ∂ φ/∂ x and ∂ φ/∂ y in (3.10) are approximated

by central differences, and the temporal partial derivative ∂ φ/∂ t by the forward difference

formula. Let ∆t be the time step, h be the space step and (x i, yi) = (ih, jh) denote the grid

points. Let φn
i, j
= φ(x i , y j , n∆t) be an approximation of φ(x , y, t) for integers n ≥ 0, and

write φ0 = φ0. The central differences are thus

∆
xφi, j =

φi+1, j −φi−1, j

2h
, ∆

yφi, j =
φi, j+1 −φi, j−1

2h
, (4.2)

and the evolution equation (3.14) is discretised as

φn+1
i, j
−φn

i, j

∆t
= αλ̃ηδǫ(φ

n
i, j) + βδǫ(φ

n
i, j)k

n
i, j +µ

�

∆
x(∆xφn

i, j) +∆
y(∆yφn

i, j)− kn
i, j

�

, (4.3)

where

kn
i, j
=∆x

 

∆
xφn

i, j
q

(∆xφn
i, j
)2 + (∆yφn

i, j
)2

!

+∆y

 

∆
yφn

i, j
q

(∆xφn
i, j
)2 + (∆yφn

i, j
)2

!

. (4.4)

The computational steps are as follows;

1. initialise the level set function φ0 = constant, and set n= 0;

2. compute λ̃η according to formula (3.4);

3. solve the discretised PDE (4.3), to obtain φn+1; and

4. check whether the evolution is stationary — if not, then set n= n+ 1 and repeat.
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 (a)                                  (b)                    (C)                         (d)1600 itera!ons  

 (e)                                  (f)                    (g)                         (h)1500 itera!ons  

 (i)                                  (j)                    (k)                         (l)100 itera!ons  

 (q)                                  (r)                    (s)                         (t) 20 itera!ons  

 (m)                                  (n)                    (o)                         (p) 30 itera!ons  

Figure 3: Segmentation of a real vessel image with di�erent initial onditions using our proposed model.

The �rst olumn: 3-D plot of initial level set funtions. The seond olumn: Initial ontours orrespond

to di�erent initial sheme. The third olumn: Finial ontours of our proposed model. The forth olumn:

3-D plot of �nal level set funtions.
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4.2. Flexible initialisation of the level set function

In the traditional level set method, the level set function must be initialised to a singed

distance function (e.g. see Refs. [7,8]) or a binary function (e.g. see Refs. [9, 10]). Since

the zero level set is chosen as the starting contour for the level set evolution and the Euler-

Lagrange equation involves gradient descent, different initial contours may lead to different

local minima and so generate different segmentation results — i.e. the level set evolution

is sensitive to initial contours. Because of the feature information (3.4) introduced, our

proposed model allows us to adopt more flexible initialisation schemes.

Here, we propose the following three functions as the initial function φ0

1) a signed distance function (see Fig. 3(a)),such as

φ0(x , y) =







−d , (x , y) ∈ in(C)

0, (x , y) ∈ C

+d , (x , y) ∈ out(C)

(4.5)

where d denotes the (shortest) Euclidean distance from the point (x , y) to the curve C .

2) a binary function(see Fig. 3(e), (i) and (m)), such as

φ0(x , y) =

�

−ρ, (x , y) ∈ω
+ρ, (x , y) ∈ Ω\ω

(4.6)

3) a constant function (see Fig. 3(q)),such as

φ0(x , y) = ρ, (x , y) ∈ Ω. (4.7)

We apply the different initial schemes and evolution model (3.10) for the same image in

Fig. 3. The initial contours, the evolution results and the final level set functions are shown

in the second, third and forth column, respectively. As clear seen in the figures, though

the level set evolution starts with different initial level set functions and different initial

contours, the same desirable results are obtained. This experiment demonstrates the ro-

bustness of our model to initial conditions.

It is worth noting that the constant initialisation scheme significantly deviates from a

signed distance function or a binary function. There are no initial contours for the constant

initialisation scheme (see Fig. 3(q) and (r)). During the evolution, the contours emerge

automatically via the image information and convergence to the object boundaries. This

means that our proposed model eliminates the need of initial contours. Indeed the constant

initialisation scheme makes us do not consider the problems, such as how and where to

initialize the contours. So it frees of manual intervention to define the initial contours.

5. Experimental Results

This section shows the results from our proposed model for both synthetic and real

images. In our numerical experiments, the LSF φ(x , y, t) is initialized as the function φ0

with φ0(x , y) = 1 (for images that have brighter objects) or φ0(x , y) = −1 (for images
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(a)                       (b)                        (c)                        (d) 

(e)                       (f)                        (g)                        (h) 

(i)                       (j)                        (k)                        (l) 

Figure 4: Comparisons of the LSVWIC model [16℄ and our proposed model for lean and noisy images.

Row 1: lean and noisy images ((a)lean image; (b)noisy image (zero mean, 0.09 variane); ()noisy

image (zero mean, 0.2 variane); (d)noisy image (zero mean, 0.3 variane)). Row 2: results from the

LSVWIC model (left to right: K = 1, 0.75, 0.70 and 0.65). Row 3: results from our proposed model

(left to right: α = 2, 1.22, 1.13 and 1.13).

that have darker objects). In addition, we choose σ = 2.2, β = 10, µ = 0.04 and time step

∆t = 5.0. Only the regularisation parameter α, which has a scaling role, is not the same

for different experiments. If we have to detect a weak or blurry object, then α should be

large. If we have to detect a object in noisy environment, then α should be small. We will

give the exact value of α in each experiment, performed on Intel(R) Core(TM)i5-3317U

CPU 1.70GHz with Matlab 2011, on Win7.

Fig. 4 shows the robustness of our proposed model to noisy images. In the experiment,

three images are created by adding Gaussian noise to a synthetic dragon-like image (128

× 128, Fig. 4(a)), as shown in the first row. The results obtained by the LSVWIC model

and our proposed method are shown in the second and third row, respectively. Results

show that similar visual quality appears for the first two images. As the noise increases,

some correct contours are prone to collapse, and some false contours are generated in the

results from the LSVWIC model (see Fig. 4(g) and (h)). But our proposed model achieves

satisfactory results for these high-level noisy images (see Fig. 4(k) and (l)).
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Table 1: The DSC and RSE values for the images in Fig. 4.

DSC RSE

Image Fig.4(b) Fig4.(c) Fig4.(d) Fig.4(b) Fig4.(c) Fig4.(d)

LSVWIC model 0.9275 0.8814 0.8192 0.0443 0.0699 0.0988

our proposed 0.9397 0.9142 0.9079 0.0369 0.0521 0.0547

(a)                      (b)                          (c)                        (d)  

Figure 5: Comparisons of the LSVWIC model [16℄ and our proposed model for infrared images with

weak objets. Row 1: original images. Row 2: results from the LSVWIC model (left to right: K = 1.2,

1.0, 1.0 and 0.9). Row 3: results from our proposed model (left to right: α = 2.0, 1.6, 1.7 and 1.8).

We also demonstrate the accuracy of our proposed model by quantitative comparison.

The metric adopted in this paper is the dice similarity coefficient (DSC) [28] and the seg-

mentation error [29]. They are defined as

DSC =
2N (S1 ∩ S2)

N (S1) + N (S2)
, RSE =

N (S2\S1) + N (S1\S2)

N (Ω)
, (5.1)

where N (·) indicates the number of pixels in the enclosed set, and Ω is the image domain.

S1 and S2 represent the true object and the foreground region found by the model, respec-

tively. The closer the DSC value is to 1 and the closer the RSE value is to 0, the better is

the segmentation. Table 1 shows the DSC and RSE values of the LSVWIC model and our

proposed model for the images in Fig. 4. The results (Fig. 4(e) and (i)) of the two models

on clean image (Fig. 4(a)) are chosen as the true objects. It is clearly to know that our

proposed model produces the more accurate results for these noisy images.

Figs. 5 - 7 demonstrate the effects of our proposed model on the IR images. IR images
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Figure 6: results from the LSVWIC model [16℄ and our proposed model on infrared images with blurred

objets. Row 1: original images. Row 2: results from the LSVWIC model (left to right: K = 1.5, 1.7,

3.0 and 5.0). Row 3: results from our proposed model (left to right: α = 1.3, 2.5, 6.0 and 6.0).

are obtained by sensing the radiation in the IR spectrum, which is emitted or reflected

by the objects in the scene. This property makes the IR images suffer from low intensity

contrast with weak boundaries or noise, and difficult to detect. In Fig. 5, the LSVWIC model

is compared. In the experiment, four infrared (IR) images with a water-sky background are

the chosen test images, as shown in the first row in Fig. 5 (left to right: 206 × 199, 250

× 180, 250 × 180 and 319 × 232). The target is to segment the blurry boats, which are

surrounded by water and sky. Both models are initialised as φ0(x , y) = 1. The second

and third rows show the segmentation results from the LSVWIC model and our proposed

model, respectively. We see that the LSVWIC model fails in weak object region where a

boat is separated into two or more objects, but our proposed model successfully converges

to the desired weak boundaries.

Fig. 6 shows the segmentation results from the LSVWIC model and our proposed model

on IR images with blurred objects. The test images are shown in the first row (left to right:

196 × 145, 203 × 129, 146 × 111 and 135 × 72). We see that the targets embedded in

the dim background are quite blurry. The results obtained by the LSVWIC model and our

proposed method are shown in the second and third row, respectively. These results demon-

strate the good performance of our proposed model in extracting blur object boundaries,

unlike the results from the LSVWIC model seen in Fig. 6(b) - (d).

Fig. 7 shows our effective proposed method on various infrared images with a water-

mountain-sky background (250× 180). The wave reflection and the influence of the moun-

tain and sky make the backgrounds of these images quite complex. The second row shows

the results from the LSVWIC model. Although it extracts the objects correctly for the first

two images, some false contours emerge for the last two images. The third row shows the
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(a)                        (b)                           (c)                           (d) 

Figure 7: results from the LSVWIC model [16℄ and our proposed model on infrared images with water-

mountain-sky bakground. Row 1: original images. Row 2: results from the LSVWIC model (left to

right: K = 0.83, 1.0, 1.5 and 1.4). Row 3: results from our proposed model (left to right: α = 1.3,

1.5, 2.25 and 1.7).

results from our proposed model, where the object contours are extracted accurately for all

images despite the scene complexity.

Figs. 8-11 illustrate the segmenting image ability of our proposed model when there is

intensity inhomogeneity. Because of the technical limitation of imaging devices (e,g, the ir-

regularities of scanner magnetic fields or non-uniform beam attenuation within the body),

intensity inhomogeneity often occurs in medical images from different sources. The images

have an intensity variation in the same tissue in different locations, so the segmentation

is not a trivial task. Fig. 8 shows the effects of our proposed method on blood vessel im-

ages corrupted by intensity inhomogeneity, compared with the LSVWIC model and the RSF

model [12]. The RSF model is a recognised widely known region-based model, with some

capability to handle intensity inhomogeneity. To make a fair comparison, we chose (1) the

best governing parameter ν for the RSF model, and (2) the best scale parameter K and α

for the LSVWIC model and our proposed model. The test images are shown in the first row

in Fig. 8. We can see that some parts of the vessels are quite weak. The second and third

rows show that the RSF model with different initial contours extracts the objects correctly

only for the carefully selected initial contours (in the second row), and fails to segment

the objects for the other initial contours (shown in the third row), so the locations of the

initial contours are crucial for the RSF model. Unlike the case of the RSF model, the level

set function is initialised to a nonzero function for the LSVWIC model and our proposed

model, and there is no initial contours for level set evolution. The fourth and fifth rows
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(a)                    (b)                         (c)                         (d) 

Figure 8: Results on blood vessel images. Row 1: blood vessel images. Rows 2 and 3: results from the

RSF model [12℄ with di�erent initial ontours and with initialisations in yan and �nal ontours in red

(left to right: ν = 0.001 × 255

2
, 0.001 × 255

2
, 0.001 × 255

2
and 0.0015 × 255

2
). Row 4: results from

the LSVWIC model (K = 1.2), starting with a onstant funtion φ0 = 0.15. Row 5: results from our

proposed model (α = 3.5), starting with a onstant funtion φ0 = 1 .
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Table 2: CPU times (in seonds) and iteration ounts for the RSF, LSVWIC and our proposed model

for the results shown in Fig. 8.

Image Fig. 8(a) Fig. 8(b) Fig. 8(c) Fig. 8(d)

Image size 103×131 111×110 132×131 176 ×167

RSF model 2.07 1.25 2.29 15.34

140 220 200 900

LSVWIC model 0.31 0.38 0.72 1.25

45 60 110 100

our proposed 0.23 0.21 0.26 0.28

30 30 30 20

show the results from the LSVWIC model and our proposed model, respectively. We see

that the LSVWIC model cannot extract the blood vessel accurately for the first two images,

but our proposed model works very well for all four images. Table 2 gives the CPU times

(in seconds) and iteration counts for the three models, where both the CPU times and iter-

ation counts for our proposed model are less than those of the RSF model and the LSVWIC

model, for all four images.

Fig. 9 compares our proposed model with the LSVWIC and RSF model [12] on images

with multiple weak objects. The test images shown in the first row are: a bacteria image

(173 × 173), a potato image (170 × 170), a DNA channel image (229 × 168), and a cell

image (176 × 169). All of these images suffer from intensity inhomogeneity. Although

we made many attempts and selected the best initial contours for the RSF model, some

unwanted contours were generated in the final results — cf. the second row. The third row

shows that the LSVWIC model fails to segment the last image. All of the object contours

were extracted correctly by our proposed model — cf. the fourth row.

Fig. 10 demonstrates the effects of our proposed method on medical images with texture

background. Four breast cyst images (left to right: 91 × 92, 157 × 110, 126 × 128 and

168 × 147) were chosen as the test images, as shown in the first row. For these images, the

objective of the segmentation was to extract the white cysts surrounded by breast tissues.

This step is very important for computer-aided analysis in an accurate diagnosis system.

However, various factors make the segmentation process more difficult — e.g. the presence

of noise or hair, blurry edges, or highly asymmetric cysts,. The results show that only our

proposed model accurately extracted all of the desired objects, starting with a constant

function, while the RSF model and the LSVWIC model fail to segment the last three images.

Finally, we provide an experiment on more general medical images (cf. Fig. 11) to

further demonstrate the performance of our proposed model. It should be noted that these

images are obtained by different imaging devices. The test images in the first row are a

hysterosalpingography (HSG) image (130 × 96), a vascular biopsy image (94 × 123), an

MR image of corpus callosum (159 × 122) and a wrist X-ray image (90 × 196). The test

images in the third row are a microscope cell image (83 × 65), an MR image of bladder

(180 × 107), a brain MR image (120 × 160) and an ultrasonic image (113 × 116). The

corresponding segmentation results are shown in the second and fourth rows. Although

the objects in these images are quite dim and blurry, the results in the second and fourth
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Figure 9: Results on images with multiple weak objets and intensity inhomogeneity. Row 2: results

from the RSF model [12℄ with initialisations in yan and �nal ontours in red (left to right: α = 0.002

× 255

2
, 0.001 × 255

2
, 0.002 × 255

2
and 0.003 × 255

2
). Row 3: results from the LSVWIC model (left

to right: K = 0.8, 1, 1 and 1), starting with φ0 = ρ (left to right: ρ = -0.15, 0.15, 0.15, and 0.15).

Row 4: results from our proposed model (left to right: α = 1, 2.5, 2.5 and 2.5), starting with φ0 = ρ
(left to right: ρ = -1, 1, 1, and 1).

rows show the desirable performance of our proposed model in segmentation.

6. Conclusion

A feature-dependent variational level set formulation for image segmentation has been

discussed. Based on analysing the action of the second-order directional derivatives, we

show that accurate extraction of the image feature directions is essential for the level set

evolution, so the maximal eigenvalue of the second-order directional derivative is taken

as a new external constraint to study. Due to good properties of the external constraint,

our model can extract weak objects in noisy or intensity inhomogeneous images. The con-

stant initialisation scheme renders our model free of manual intervention in defining the
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Figure 10: Results on breast yst images that have texture bakground. Row 1: original images. Row

2: results from the RSF model with initialisations in yan and �nal ontours in red (left to right: ν =

0.005 × 255

2
, 0.01 × 255

2
, 0.005 × 255

2
and 0.01 × 255

2
). Row 3: results from the LSVWIC model

(left to right: K = 0.8, 1.5, 1.1 and 1.1), starting with φ0 = 1. Row 4: results from our proposed model

(left to right: α = 1.2, 1.4, 1.4 and 1.55), starting with φ0 = 1.

initial contours. Experiments on IR images and medical images from different modalities

demonstrate the effectiveness of our proposed model.
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Figure 11: Results on medial images with intensity inhomogeneity. Row 1: original images; row 2:

results from our proposed model (left to right: α = 2.5, 2, 1.4 and 4), starting with a onstant funtion

φ0 = ρ (left to right: ρ = 1, 1, 1 and -1); row 3: original images; row 4: results from our proposed

model ( left to right: α = 5.2, 2, 4 and 1.2), starting with a onstant funtion φ0 = ρ (left to right: ρ
= 1, -1, 1 and -1).
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