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Abstract. We establish some explicit expressions for norm-wise, mixed and component-
wise condition numbers for the weighted Moore-Penrose inverse of a matrix A⊗ B and
more general matrix function compositions involving Kronecker products. The con-
dition number for the weighted least squares problem (WLS) involving a Kronecker
product is also discussed.
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1. Introduction

Consider the weighted least squares problem (WLS) involving Kronecker products [6,
25]

min
v
‖(A⊗ B)v− c‖C , (1.1)

where A ∈ Rm×n, B ∈ Rp×q, A⊗ B ∈ Rmp×nq
nq , c ∈ Rmp, C = M ⊗ P, M ∈ Rm×m and

P ∈ Rp×p are two symmetric positive definite matrices, with Rm×n and Rm×n
r respectively

denoting the set of all m × n real matrices and the set of all m × n real matrices with
rank r, and Rm = Rm×1. The solution of (1.1) is relevant to the weighted Moore-Penrose
inverse involving a Kronecker product. Kronecker products are widely used in system and
control theory [7,8,26], signal processing [9], image processing [23], computing Markov
chains [16], and play an important role in computing the solution of Sylvester matrix
equations [14].
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Here we study the condition numbers of the weighted Moore-Penrose inverse and the
WLS problem (1.1) involving Kronecker products, important for sensitivity in some compu-
tational problems as first discussed by Rice [20]. To take into account the relative scaling
of data components or possible sparseness, two kinds of condition numbers have increas-
ingly been considered — viz. mixed condition numbers and component-wise condition
numbers [11]. Mixed condition numbers measure errors in the output with norms but
the input perturbation component-wise, and component-wise condition numbers measure
both the error in the output and the perturbation in the input component-wise.

There are some earlier publications on the condition numbers of the weighted Moore-
Penrose inverse involving a Kronecker product and the WLS problem (1.1). Perturbation
analysis for the LS problem is discussed in Refs. [2, 3, 5, 21]) for example, and related
results on mixed and component-wise condition numbers of the WLS problem in Ref. [17].
Recently, Diao et al. [10] presented explicit expression for condition numbers for the linear
least squares problem involving Kronecker products.

The rest of this paper is organized as follows. In Section 2, some basic notation
and preliminaries are provided. In Section 3, we investigate the norm-wise, mixed, and
component-wise condition numbers for the weighted Moore-Penrose inverse involving Kro-
necker products. In Section 4, we discuss the condition numbers for the associated WLS
problem (1.1), and in Section 5 we report some numerical comparisons.

2. Preliminaries

For A ∈ Rm×n, we denote the transpose of A by AT , the rank of A by rank(A), and
the identity matrix of order n by In, respectively. The symbols ‖ · ‖F and ‖ · ‖2 stand for
the Frobenius norm and the spectral norm (or the Euclidean vector norm). For a vector
a = (a1, a2, · · · , an), ‖a‖∞ denotes the infinity norm and Da = diag(a1, a2, · · · , an). Let
A= [a1 a2 · · ·an] ∈ Rm×n, vec(A) = [aT

1 aT
2 · · ·aT

n ]
T , and DA= Dvec(A).

In order to define mixed and component-wise condition numbers, the following form
of component-wise distance will be useful — for any c ∈ R,

c‡ =

(
1/c , if c 6= 0 ,

1 , otherwise.

Furthermore, for any a,b ∈ Rn we define component-wise division by

a

b
= D

‡
b
a , (2.1)

where D
‡
b
= diag(b‡

1, b
‡
2, · · · , b‡

n). The component-wise distance between a and b is then
defined by

d(a,b) =


a− b

b


∞
= max

1¶i¶n

¦
|b‡

i
||ai − bi|
©

. (2.2)
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Moreover, we can extend the function d to the matrix case in the following manner. For
A, B ∈ Rm×n, we define A/B by �

A

B

�

i j

= b
‡
i j

ai j ,

and the component-wise distance between A and B by

d(A, B) = d(vec(A), vec(B)) =


A− B

B


max

,

where ‖M‖max = maxi, j |mi j| for M = (mi j). For a vector a = [a1, a2, · · · , ap]
T ∈ Rp, we

also define
Ω(a) = {k | ak = 0, 1≤ k ≤ p} .

Further, given ε > 0 we denote

B(a,ε) = {x ∈ Rp| ‖x− a‖2 ¶ ε‖a‖2} ,

and
Bo(a,ε) = {x| |x i − ai| ¶ ε|ai|, i = 1 : p} .

It is obvious that if x ∈ Bo(a,ǫ) then Ω(a)⊆ Ω(x) and x = diag(a)diag‡(a)x.

Definition 2.1. Let X and Y be Banach spaces, and let S ⊂ X be an open subset of X . A
function F : S→ Y is called Fréchet differentiable at a ∈ S if there exists a bounded linear
operator Fa : S→ Y such that

lim
t→0

‖F(a+ t)− F(a)− Fa(t)‖Y
‖t‖X

= 0 ,

where ‖ · ‖X and ‖ · ‖Y are norms defined in X and Y , respectively. The linear operator
Fa = F ′(a) is called the Fréchet derivative of F at a.

Definition 2.2. Let F : Rp→ Rq be a continuous mapping defined on an open set SF ⊂ Rp

and a ∈ SF ,a 6= 0, such that F(a) 6= 0. Then
(i) the norm-wise condition number of F at a is defined by

κ(F,a) = lim
ε→0

sup
x∈B(a,ε)

x 6=a

‖F(x)− F(a)‖2/‖F(a)‖2
‖x− a‖2/‖a‖2

;

(ii) the mixed condition number of F at a is

m(F,a) = lim
ǫ→0

sup
x∈Bo(a,ǫ)

x 6=a

‖F(x)− F(a)‖∞
‖F(a)‖∞

1

d(x,a)
;

(iii) the component-wise condition number of F at a is

c(F,a) = lim
ǫ→0

sup
x∈Bo(a,ǫ)

x 6=a

d(F(x), F(a))

d(x,a)
.
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Remark 2.1. Definition 2.2 (iii) is the same as that given in Ref. [11] when F(a) has no
zero components. Because the proposed distance d is always finite, the hypothesis there
that F(a) has no zero components can be removed.

The following lemma provides explicit expressions for the condition numbers given in
Definition 2.2.

Lemma 2.1. Under the same assumptions as in Definition 2.2, and supposing that F is Fréchet

differentiable at a, we have

κ(F,a) =
‖F ′(a)‖2‖a‖2
‖F(a)‖2

,

m(F,a) =
‖F ′(a)Da‖∞
‖F(a)‖∞

(2.3)

and

c(F,a) = ‖D‡
F(a)

F ′(a)Da‖∞ . (2.4)

Proof. Here we only prove (2.3), and note that the proof of the other two results are
analogous. From Definition 2.2, (2.1) and (2.2) we have

m(F,a) = lim
ǫ→0

sup
x∈Bo(a,ǫ)

x 6=a

‖F(x)− F(a)‖∞
‖F(a)‖∞

1

d(x,a)

= lim
ǫ→0

sup
x∈Bo(a,ǫ)

x 6=a

‖F(x)− F(a)‖∞
‖F(a)‖∞‖D‡

a(x− a)‖∞
.

Since x ∈ Bo(a,ǫ), we know that Ω(a) ⊆ Ω(x) and x = DaD‡
ax. Let y = D‡

ax and b = D‡
aa.

Then x = Day, a = Dab and x 6= a if and only if y 6= b, so by the Chain Rule of the Fréchet
derivative

m(F,a) = lim
ǫ→0

sup
x∈Bo(a,ǫ)

x 6=a

‖F(x)− F(a)‖∞
‖F(a)‖∞‖D‡

ax− D
‡
aa‖∞

= lim
ǫ→0

sup
y∈Bo(b,ǫ)

y 6=b

‖F(Day)− F(Dab)‖∞
‖F(Dab)‖∞‖y− b‖∞

=
‖F ′(Dab)Da‖∞
‖F(Dab)‖∞

=
‖F ′(a)Da‖∞
‖F(a)‖∞

.
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The Kronecker product A⊗B of A∈ Rm×n and B ∈ Rp×q is defined by (e.g. see Ref. [12])

A⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB



∈ Rmp×nq .

The following well known properties of the Kronecker product will be used below.

Lemma 2.2. (cf. Refs [13,22]) Let A∈ Rm×n, B ∈ Rp×q and y ∈ Rn. Then

|A⊗ B| = |A| ⊗ |B| ,
‖A⊗ B‖2 = ‖A‖2‖B‖2 ,

vec(AX B) = (BT ⊗ A)vec(X ) ,

vec(A⊗ B) = (In ⊗Πqm⊗ Ip)(vec(A)⊗ vec(B)) ,

a⊗ b= vec(baT) ,

Πmnvec(A) = vec(AT ) ,

Πmn(y⊗A)= A⊗ y , (2.5)

where Πmn is the vec-perturbation matrix

Πmn =

m∑

i=1

n∑

j=1

Ei j(m× n)⊗ E ji(n×m) . (2.6)

Here Ei j(m× n) = e
(m)

i
(e
(n)

j
)T ∈ Rm×n, and e

(k)

i
∈ Rk is the ith column of the identity matrix

of order k.

Next we consider the condition numbers for the weighted Moore-Penrose inverse in-
volving Kronecker products. We recall that there exists a unique matrix X ∈ Rn×m such
that the following equations hold (e.g. see Ref. [12]):

AXA= A , XAX = X , (MAX )T = MAX , (N XA)T = N XA .

The matrix X = A
†
MN is said to be the weighted Moore-Penrose inverse of A with respect to

the symmetric positive definite matrices M and N , respectively.

3. Weighted Moore-Penrose Inverses involving Kronecker Products

In this section, we present the norm-wise, mixed and component-wise condition num-
bers in the context of the weighted Moore-Penrose inverse of A⊗ B. Consider a matrix
function of a matrix X as follows [12]:f(X ) = f11(X ) f12(X ) · · · f1t(X )

f21(X ) f22(X ) · · · f2t(X )
...

...
. . .

...
fs1(X ) fs2(X ) · · · fst(X )




.
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Let X = A⊗ B, where A∈ Rm×n and B ∈ Rp×q. Then we obtainf(A⊗ B) =




f11(A⊗ B) f12(A⊗ B) · · · f1t (A⊗ B)

f21(A⊗ B) f22(A⊗ B) · · · f2t (A⊗ B)
...

...
. . .

...
fs1(A⊗ B) fs2(A⊗ B) · · · fst(A⊗ B)




.

Henceforth we always assume that the matrices M̃ , Ñ , P̃ and Q̃ are all positive definite,
and C̃ = M̃ ⊗ P̃ and D̃ = Ñ ⊗ Q̃. According to Definition 2.2, the norm-wise, mixed and
component-wise condition numbers for the weighted Moore-Penrose inverse of f(A⊗ B)

with respect to C̃ and D̃ can be defined as

κ
�f†

C̃ D̃
(A⊗ B)
�
= lim
ε→0

supp
‖∆A‖2F+‖∆B‖2F
¶ε
p
‖A‖2F+‖B‖2F

f†
C̃ D̃
((A+∆A)⊗ (B+∆B))− f†

C̃ D̃
(A⊗ B)


F

ε

f†
C̃ D̃
(A⊗ B)


F

,

m
�f†

C̃ D̃
(A⊗ B)
�
= lim
ε→0

sup
‖∆A

A
‖∞¶ε

‖∆B

B
‖∞¶ε

vec(f†
C̃ D̃
((A+∆A)⊗ (B+∆B))− f†

C̃ D̃
(A⊗ B))


∞

ε

vec(f†
C̃ D̃
(A⊗ B))


∞

,

c
�f†

C̃ D̃
(A⊗ B)
�
= lim
ε→0

sup
‖∆A

A
‖∞¶ε

‖∆B

B
‖∞¶ε

1

ε


f†

C̃ D̃
((A+∆A)⊗ (B+∆B))− f†

C̃ D̃
(A⊗ B)f†

C̃ D̃
(A⊗ B)


∞

,

respectively. The following lemma is useful in the sequel.

Lemma 3.1. (cf. Refs [19,22]) Let x = [x1, x2, · · · , xn]
T ∈ Rn and F(x) = [ f1, f2, · · · , fm]

T ,

where each fi is a real-valued differentiable function of x. Then the matrix representation of

F ′(x) is given by the Jacobian matrix

F ′(x) =
∂ F(x)

∂ xT
=




∂

∂ x1
f1(x)

∂

∂ x2
f1(x) · · · ∂

∂ xn
f1(x)

∂

∂ x1
f2(x)

∂

∂ x2
f2(x) · · · ∂

∂ xn
f2(x)

...
...

. . .
...

∂

∂ x1
fm(x)

∂

∂ x2
fm(x) · · · ∂

∂ xn
fm(x)




.

Lemma 3.2. Let X be an m× n matrix of full rank. Then the differential dX
†
MN is

dX
†
MN =(In − X

†
MN X )N †(dX T )X

†
MN

T
N X

†
MN

+ X
†
MN M†X

†
MN

T
(dX T )M(Im − X X

†
MN )− X

†
MN (dX )X

†
MN ,

so the Jacobian matrix is

∂ vec(X †
MN )

∂ vec(X )T
=
n
(X

†
MN

T
N X

†
MN )⊗ (In − X

†
MN X )N †+M(Im − X X

†
MN )⊗

X
†
MN M†X

†
MN

T
o
Πmn− X

†
MN

T ⊗ X
†
MN ,

where Πmn is given by (2.6).
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Proof. From Theorem 8.3 of Ref. [22],

dX † = (In − X †X )(dX T)X †T
X †+ X †X †T

(dX T )(Im− X X †)− X †(dX )X †.

Since X
†
MN = N−

1
2 (M

1
2 X N−

1
2 )†M

1
2 ,

dX
†
MN = d
�

N−
1
2 (M

1
2 X N−

1
2 )†M

1
2

�
= N−

1
2 d
�
(M

1
2 X N−

1
2 )†
�

M
1
2

=N−
1
2

�
In − (M

1
2 X N−

1
2 )†M

1
2 X N−

1
2

��
d(M

1
2 X N−

1
2 )T
�
(M

1
2 X N−

1
2 )†

T
(M

1
2 X N−

1
2 )†M

1
2

+ N−
1
2 (M

1
2 X N−

1
2 )†(M

1
2 X N−

1
2 )†

T�
d(M

1
2 X N−

1
2 )T
��

Im−M
1
2 X N−

1
2 (M

1
2 X N−

1
2 )†
�

M
1
2

− N−
1
2 (M

1
2 X N−

1
2 )†
�

d(M
1
2 X N−

1
2 )
�
(M

1
2 X N−

1
2 )†M

1
2

=(In − X
†
MN X )N †(dX T )X

†
MN

T
N X

†
MN + X

†
MN M†X

†
MN

T
(dX T )M(Im − X X

†
MN )

− X
†
MN (dX )X

†
MN

and

d(vec(X †
MN )) = vec
�

d(X
†
MN )
�

=
n�
(X

†
MN

T
N X

†
MN )⊗ (In − X

†
MN X )N †+M(Im − X X

†
MN )⊗ X

†
MN M†X

†
MN

T�
Πmn

− X
†
MN

T ⊗ X
†
MN

o
d(vec(X)) .

This completes the proof of the lemma.

According to Lemma 3.2, we consider the Fréchet derivative of the mapping (a,b) 7−→
vec(f†

C̃ D̃
), where a= vec(A),b= vec(B), f = f(A⊗ B) and f†

C̃ D̃
= f†

C̃ D̃
(A⊗ B).

Lemma 3.3. Let A∈ Rm×n, B ∈ Rp×q, and the mapping ψ : Rmn×Rpq 7−→ Rst be ψ(a,b) =
vec(f†

C̃ D̃
(A⊗ B)), where a = vec(A),b = vec(B). If f is continuously differentiable at A⊗ B

and f(A⊗ B) has full rank, then ψ is continuous and Fréchet differentiable. Furthermore,

ψ′(a,b) =
�
φ(A,B)LB φ(A,B)LA

�
,

where φ(A,B), LA, LB, eΠ are defined by (3.1) and (3.2) in the proof below.

Proof. From Lemma 3.2 and that f(A⊗ B) has full rank, f†
C̃ D̃
(A⊗ B) is differentiable atf(A⊗B). Since f is continuously differentiable at A⊗B, ψ = vec◦f†

C̃ D̃
is differentiable with

respect to [(vec(A))T (vec(B))T ]T . From Lemma 3.2,

d(f†
C̃ D̃
(A⊗ B)) =(It − f†

C̃ D̃
f)D̃†
�

d(f(A⊗ B))T
� f†

C̃ D̃

T
D̃f†

C̃ D̃

+ f†
C̃ D̃

C̃†f†
C̃ D̃

T �
d(f(A⊗ B))T
�

C̃(Is − ff†
C̃ D̃
)− f†

C̃ D̃
d (f(A⊗ B)) f†

C̃ D̃
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and

d
�

vec(f†
C̃ D̃
(A⊗ B))
�
=vec(d(f†

C̃ D̃
(A⊗ B)))

=
nhf†

C̃ D̃

T
D̃f†

C̃ D̃
⊗ (It − f†

C̃ D̃
f)D̃†+ C̃(Is − ff†

C̃ D̃
)⊗ f†

C̃ D̃
C̃†f†

C̃ D̃

T
i
Πst

− (f†
C̃ D̃

T ⊗ f†
C̃ D̃
)
o

vec (d(f(A⊗ B))) .

From Lemma 3.2 of Ref. [10],

vec(d(f(A⊗ B))) =

�
∂ f(A⊗ B)

∂ vec(A⊗ B)T

�
(In ⊗Πqm⊗ Ip)

×
n�

Imn ⊗ vec(B)
�
Πmnvec(dA)+
�
vec(A)⊗ Ipq

�
vec(dB)
o

.

Let

LA = vec(A)⊗ Ipq, LB =
�

Imn ⊗ vec(B)
�
Πmn, eΠ= In ⊗Πqm⊗ Ip . (3.1)

and

φ(A,B) =
nhf†

C̃ D̃

T
D̃f†

C̃ D̃
⊗ (It − f†

C̃ D̃
f)D̃†+ C̃(Is − ff†

C̃ D̃
)⊗ f†

C̃ D̃
C̃†f†

C̃ D̃

T
i
Πst − (f†

C̃ D̃

T ⊗ f†
C̃ D̃
)
o

×
�
∂ f(A⊗ B)

∂ vec(A⊗ B)T

�
eΠ . (3.2)

Then we can derive

d(f†
C̃ D̃
(A⊗ B)) =
�
φ(A,B)LB φ(A,B)LA

�� d(vec(A))
d(vec(B))

�
.

From the Fréchet derivative of ψ(a,b), we obtain the following explicit expressions of
the norm-wise, mixed, and component-wise condition numbers for the weighted Moore-
Penrose inverse of f(A⊗ B) with respect matrices C̃ and D̃.

Theorem 3.1. Under the same assumptions as in Lemma 3.3, we have

κ
�f†

C̃ D̃
(A⊗ B)
�
=

[φ(A,B)LB φ(A,B)LA]


2

p
‖A‖2F + ‖B‖2Ff†

C̃ D̃
(A⊗ B)


F

,

m
�f†

C̃ D̃
(A⊗ B)
�
=

|φ(A,B)LB|vec(|A|)+ |φ(A,B)LA|vec(|B|)

∞vec(f†

C̃ D̃
(A⊗ B))


∞

, (3.3)

and

c
�f†

C̃ D̃
(A⊗ B)
�
=


|φ(A,B)LB|vec(|A|)+ |φ(A,B)LA|vec(|B|)

vec(f†
C̃ D̃
(A⊗ B))


∞

. (3.4)
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Proof. Here we only prove the first equation and (3.4). The proof of (3.3) is analogous.
According to Lemmas 2.1 and 3.3, we have

κ
�f†

C̃ D̃
(A⊗ B)
�
=
‖ψ′(a,b)‖2‖(aT ,bT )‖2

‖ψ(a,b)‖2
=

[φ(A,B)LB φ(A,B)LA]


2

p
‖a‖22 + ‖b‖22vec(f†

C̃ D̃
(A⊗ B))


2

=

[φ(A,B)LB φ(A,B)LA]


2

p
‖A‖2F + ‖B‖2Ff†

C̃ D̃
(A⊗ B)


F

.

From (2.4), we have

c
�f†

C̃ D̃
(A⊗ B)
�
=

D‡
ψ(a,b)ψ

′(a,b)DA,B


∞

=

D
‡
vec(f†

C̃ D̃
(A⊗B))

�
φ(A,B)LB φ(A,B)LA

��DA

DB

�
∞

=



�����D
‡

vec(f†
C̃ D̃
(A⊗B))

�
φ(A,B)LB φ(A,B)LA

��DA

DB

������e

∞

=



���
�
φ(A,B)LB φ(A,B)LA

����
�

vec(|A|)
vec(|B|)

�

vec
�f†

C̃ D̃
(A⊗ B)
�


∞

=



��φ(A,B)LB

��vec(|A|)+
��φ(A,B)LA

��vec(|B|)
vec
�f†

C̃ D̃
(A⊗ B)
�


∞

,

where DA,B =

�
DA

DB

�
with DA (and similarly DB) as in the definition in the first para-

graph of Section 2, and e= [1,1, · · · , 1]T .

Let g(A) : Rm×n 7−→ Re× f and h(B) : Rp×q 7−→ Rg×h be two matrix functions andf(A⊗ B) = g(A)⊗h(B). Henceforth we always assume that C = M ⊗ P, D = N ⊗Q, where
M , N , P and Q be positive definite matrices of orders m, n, p and q, respectively. From
Theorem 2.1 of Ref. [24],

(A⊗ B)
†
C D
= A

†
MN ⊗ B

†
PQ

.

It is then easy to obtain f†
C̃ D̃
(A⊗ B) = g†

M̃ Ñ
(A)⊗h†

P̃Q̃
(B), where C̃ = M̃ ⊗ P̃, D̃ = Ñ ⊗ Q̃, M̃ ,

Ñ , P̃ and Q̃ are positive definite matrices of orders e, f , g and h, respectively.
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Using Lemmas 2.2 and 3.2, we obtain

d
�

vec
�f†

C̃ D̃
(A⊗ B)
��

=d
�

vec
�g†

M̃ Ñ
(A)⊗h†

P̃Q̃
(B)
��

=vec
�

d
�g†

M̃ Ñ
(A)
�⊗h†

P̃Q̃
(B) + g†

M̃ Ñ
(A)⊗ d
�h†

P̃Q̃
(B)
��

=bΠ
n

vec
�
d
�g†

M̃ Ñ
(A)
��⊗ vec
�h†

P̃Q̃
(B)
�
+ vec
�g†

M̃ Ñ
(A)
�⊗ vec
�
d
�h†

P̃Q̃
(B)
��o

=bΠ
n�

I f e ⊗ vec
�h†

P̃Q̃
(B)
��

vec
�
d
�g†

M̃ Ñ
(A)
��
+
�
vec
�g†

M̃ Ñ
(A)
�⊗ Ihg)vec
�
d
�h†

P̃Q̃
(B)
��o

=bΠ
n�

I f e ⊗ vec
�h†

P̃Q̃
(B)
��nh�g†

M̃ Ñ

T
(A)Ng†

M̃ Ñ
(A)
�⊗ �I f − g†

M̃ Ñ
(A)g(A)�Ñ †

+M̃
�

Ie − g(A)g†
M̃ Ñ
(A)
�
⊗ g†

M̃ Ñ
(A)M̃†g†

M̃ Ñ

T
(A)
i
Πe f − g†

M̃ Ñ

T
(A)⊗ g†

M̃ Ñ
(A)
o

vec
�
d(g(A))�

+
�

vec(g†
M̃ Ñ
(A))⊗ Ihg

�nh�h†
P̃Q̃

T
(B)Q̃h†

P̃Q̃
(B)
�⊗ �Ih−h†

P̃Q̃
(B)h(B)�Q̃†

+ P̃
�

Ig −h(B)h†
P̃Q̃
(B)
�
⊗h†

P̃Q̃
(B)P̃†h†

P̃Q̃

T
(B)
i
Πgh−h†

P̃Q̃

T
(B)⊗h†

P̃Q̃
(B)
o

vec (d(h(B)))o,
(3.5)

where bΠ= (Ie ⊗Πg f ⊗ Ih).From (3.5), we have the following corollary.

Corollary 3.1. Let A ∈ Rm×n
n , B ∈ Rp×q

q and ψ(a,b) = vec((A⊗ B)
†
C D), where a = vec(A)

and b = vec(B). Then ψ is continuous and Fréchet differentiable at all (a,b). Furthermore,

ψ′(a,b) =
�

QBMA PANB

�
,

where

MA = −(A†
MN

T ⊗ A
†
MN ) +
�

M(Im − AA
†
MN )⊗ (AT MA)−1

�
Πmn ,

PA = (Im ⊗Πpn ⊗ Iq)
�

vec(A†
MN )⊗ Iqp

�
,

NB = −(B†
PQ

T ⊗ B
†
PQ) +
�

P(Ip − BB
†
PQ)⊗ (BT PB)−1

�
Πpq ,

QB = (Im⊗Πpn ⊗ Iq)
�

Inm⊗ vec(B†
PQ)
�

.

Proof. Since A and B have full column rank,

A
†
MN A= In, B

†
PQB = Iq . (3.6)

Let f(A⊗ B) = A⊗ B,g(A) = A and h(B) = B. Then the result follows from (3.6).

From the Fréchet derivative of ψ(a,b) and Theorem 3.1, we can obtain the explicit
expressions of the condition numbers for the weighted Moore-Penrose inverse of A⊗ B.
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Theorem 3.2. Under the same assumptions as in Corollary 3.1, we have

κ
�
(A⊗ B)

†
C D

�
=

[QB MA PANB]


2

p
‖A‖2F + ‖B‖2FA†

MN


F

B†
PQ


F

,

m
�
(A⊗ B)

†
C D

�
=

|QBMA|vec(|A|)+ |PANB|vec(|B|)

∞vec

�
A

†
MN ⊗ B

†
PQ

�
∞

(3.7)

and

c
�
(A⊗ B)

†
C D

�
=


|QBMA|vec(|A|)+ |PANB|vec(|B|)

vec
�

A
†
MN ⊗ B

†
PQ

�

∞

. (3.8)

Proof. Here we only prove (3.8). The proofs of the other two equations of this theorem
are analogous. Let f(A⊗ B) = A⊗ B. According to Theorem 3.1 and (3.5), we have

c((A⊗ B)
†
C D) =


|φ(A,B)LB|vec(|A|)+ |φ(A,B)LA|vec(|B|)

vec
�

A
†
MN ⊗ B

†
PQ

�

∞

. (3.9)

From Lemma 3.3 and Corollary 3.1,

φ(A,B)LB = QB MA, φ(A,B)LA = PANB , (3.10)

hence the result follows from (3.9) and (3.10) .

Remark 3.1. When C = I and D = I ,

MA = −(A†T ⊗ A†) +
�
(Im − AA†)⊗ (AT A)−1

�
Πmn ,

NB = −(B†T ⊗ B†) +
�
(Ip − BB†)⊗ (BT B)−1

�
Πpq ,

PA = (Im ⊗Πpn⊗ Iq)
�

vec(A†)⊗ Iqp

�
,

and

QB = (Im ⊗Πpn⊗ Iq)
�

Inm ⊗ vec(B†)
�

.

Thus the equations in Theorem 3.2 are the same as κ((A⊗B)†), m((A⊗B)†) and c((A⊗B)†)

in Ref. [10].

In Theorem 3.2, we present explicit expressions for the condition numbers κ((A⊗B)
†
C D),

m((A⊗ B)
†
C D) and c((A⊗ B)

†
C D). However, the vec-perturbation matrix Π is involved in the

explicit expression of these condition numbers and is very difficult to compute, and we
present some computable upper bounds as follows.
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Corollary 3.2. Under the same assumptions as in Corollary 3.1, we have

κ
�
(A⊗ B)

†
C D

�
≤
‖B†

PQ‖F
�
‖A†

MN‖22 + ‖M(Im − AA
†
MN )‖2‖(AT MA)−1‖2

�p
‖A‖2F + ‖B‖2F

‖A†
MN‖F‖B†

PQ‖F

+
‖A†

MN‖F
�
‖B†

PQ
‖22 + ‖P(Ip − BB

†
PQ
)‖2‖(BT PB)−1‖2

�p
‖A‖2F + ‖B‖2F

‖A†
MN‖F‖B†

PQ‖F
:=κ
�
(A⊗ B)

†
C D

�upper
,

m
�
(A⊗ B)

†
C D

�
≤

|A†
MN | ⊗
�
|B†

PQ||B||B†
PQ|+ |(BT PB)−1||B|T |P(Ip − BB

†
PQ)|
�

max

‖A†
MN ⊗ B

†
PQ‖max

+


�
|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im− AA

†
MN )|
�
⊗ |B†

PQ|


max

‖A†
MN ⊗ B

†
PQ‖max

:=m
�
(A⊗ B)

†
C D

�upper
,

c
�
(A⊗ B)

†
C D

�
≤

|A†

MN | ⊗
�
|B†

PQ||B||B†
PQ|+ |(BT PB)−1||B|T |P(Ip − BB

†
PQ)|
�

A
†
MN ⊗ B

†
PQ


max

+



�
|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im− AA

†
MN )|
�
⊗ |B†

PQ|
A

†
MN ⊗ B

†
PQ


max

:=c
�
(A⊗ B)

†
C D

�upper
.

Proof. From Lemma 2.2, we have

‖QB MA‖2 ¶ ‖QB‖2
−(A†

MN

T ⊗ A
†
MN ) +
�

M(Im −AA
†
MN )⊗ (AT MA)−1

�
Πmn


2

¶ ‖vec(B†
PQ)‖2
�
‖A†

MN

T ⊗ A
†
MN‖2 + ‖M(Im −AA

†
MN )⊗ (AT MA)−1‖2

�

= ‖B†
PQ‖F
�
‖A†

MN‖22 + ‖M(Im − AA
†
MN )‖2‖(AT MA)−1‖2

�
,

and

‖PANB‖2 ¶ ‖A†
MN‖F
�
‖B†

PQ‖22 + ‖P(Ip − BB
†
PQ)‖2‖(BT PB)−1‖2

�
.

Furthermore, we have

‖[QB MA PANB]‖2 ¶‖QB MA‖2 + ‖PANB‖2
¶‖B†

PQ‖F
�
‖A†

MN‖22 + ‖M(Im − AA
†
MN )‖2‖(AT MA)−1‖2

�

+ ‖A†
MN‖F
�
‖B†

PQ‖22 + ‖P(Ip − BB
†
PQ)‖2‖(BT PB)−1‖2

�
.
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According to Theorem 3.2, we can obtain the upper bound κ((A⊗ B)
†
C D)

upper. Then from
Lemma 2.2 we obtain
��QB MA

 |vec(A)|
¶

���
�

Im ⊗Πpn⊗ Iq

��
Inm ⊗ vec
�

B
†
PQ

�����

×
���−�A†

MN

T ⊗A
†
MN

�
+
h

M
�

Im− AA
†
MN

�⊗ �AT MA
�−1
i
Πmn

��� |vec(A)|
¶
�

Im⊗Πpn ⊗ Iq

��
Inm ⊗ vec(|B†

PQ|)
�

×
��|A†

MN

T | ⊗ |A†
MN |
�
+
�
|M(Im −AA

†
MN )| ⊗ |(AT MA)−1|

�
Πmn

�
|vec(A)|

¶
�

Im⊗Πpn ⊗ Iq

��
Inm ⊗ vec(|B†

PQ|)
�

× vec
�
|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im − AA

†
MN )|
�

¶
�

Im⊗Πpn ⊗ Iq

�
vec
�
vec(|B†

PQ|)vec
�
|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im −AA

†
MN )|
�T�

=
�

Im⊗Πpn ⊗ Iq

��
vec
�
|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im − AA

†
MN )|
�
⊗ vec(|B†

PQ|)
�

=vec
��|A†

MN ||A||A†
MN |+ |(AT MA)−1||A|T |M(Im −AA

†
MN )|
�⊗ |B†

PQ
|
�

.

We also have

|PANB||vec(B)| ¶ vec
�
|A†

MN | ⊗
�|B†

PQ||B||B†
PQ|+ |(BT PB)−1||B|T |P(Ip − BB

†
PQ)|
��

.

From Theorem 3.2, ‖vec(A)‖∞ = ‖A‖max and the matrix norm triangular inequality, we
can obtain the upper bounds m((A⊗ B)

†
C D)

upper and c((A⊗ B)
†
C D)

upper .

Remark 3.2. When C = I and D = I , we have

κ
�
(A⊗ B)†
�upper

=
‖B†‖F
�
‖A†‖22 + ‖Im − AA†‖2‖(AT A)−1‖2

�p
‖A‖2F + ‖B‖2F

‖A†‖F‖B†‖F

+
‖A†‖F
�
‖B†‖22 + ‖Ip − BB†‖2‖(BT B)−1‖2

�p
‖A‖2F + ‖B‖2F

‖A†‖F‖B†‖F
,

m
�
(A⊗ B)†
�upper

=

|A†| ⊗
�
|B†||B||B†|+ |(BT B)−1||B|T |Ip − BB†|

�
max

‖A†⊗ B†‖max

+


�
|A†||A||A†|+ |(ATA)−1||A|T |Im− AA†|

�
⊗ |B†|


max

‖A†⊗ B†‖max

,

c
�
(A⊗ B)†
�upper

=


|A†| ⊗
�
|B†||B||B†|+ |(BT B)−1||B|T |Ip − BB†|

�

A†⊗ B†


max

+



�
|A†||A||A†|+ |(ATA)−1||A|T |Im− AA†|

�
⊗ |B†|

A†⊗ B†


max

.
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It is seen that in this case the results of Corollary 3.2 are the same as m((A⊗ B)†)upper and
c((A⊗ B)†)upper in Ref. [10].

4. Weighted Least Squares Problems (WLS) involving Kronecker Products

Let A∈ Rm×n
n , b ∈ Rm, M ∈ Rm×m and N ∈ Rn×n be positive definite matrices. It is well

known that the WLS problem
min
u∈Rn
‖Au− b‖M (4.1)

has a unique minimum-norm (N) and least-squares (M) solution [18]

x = A
†
MNb . (4.2)

Let us now discuss the condition numbers for the following KPWLS problem:

min
v∈Rnq

(A⊗ B)v− c


C
, (4.3)

where A∈ Rm×n
n , B ∈ Rp×q

q , A⊗ B ∈ Rmp×nq
nq , c ∈ Rmp, C = M ⊗ P, D = N ⊗Q, and M , N , P

and Q are positive definite matrices of orders m, n, p and q, respectively. From (4.2), we
know that (4.3) has a unique minimum-norm (D) and least-squares (C) solution

x = (A⊗ B)
†
C Dc= (A†

MN ⊗ B
†
PQ)c=
�
(AT MA)−1 ⊗ (BT PB)−1

�
(AT ⊗ BT )(M ⊗ P)c . (4.4)

We proceed to generalise some results for the nonsingular linear equations (A⊗B)x = d to
the WLS problem involving Kronecker products [15,27].

The perturbed system of (4.3) is

min
v∈Rnq

�(A+∆A)⊗ (B+∆B)
�

v− (c+∆c)


C
, (4.5)

where ∆A, ∆B and ∆c have the same dimensions as A, B and c, respectively. Let the
mapping ϕ : Rmn × Rpq × Rmp 7−→ Rnq be given by ϕ(a,b,c) = vec((A⊗ B)

†
C D

c), where
a= vec(A) and b = vec(B). Similar to Corollary 3.1, we first consider the Fréchet derivative
of ϕ.

Lemma 4.1. Let A ∈ Rm×n
n , B ∈ Rp×q

q , c ∈ Rmp, C = M ⊗ P and D = N ⊗ Q, where M ,
N , P and Q be positive definite matrices of orders m, n, p and q, respectively. Consider

ϕ(a,b,c) = vec((A⊗ B)
†
C Dc), where a = vec(A) and b = vec(B). Then ϕ is continuous and

Fréchet differentiable at all (a,b,c). Furthermore,

ϕ′(a,b,c) =
�
Q P A

†
MN ⊗ B

†
PQ

�
,

where

Q =
�

rT ⊗ �(AT MA)−1⊗ (BT PB)−1���Im⊗Πpn ⊗ Iq

��
Imn ⊗ vec(BT )
�
Πmn

−
�

xT ⊗ (A†
MN ⊗ B

†
PQ)
��

In ⊗Πqm⊗ Ip)(Imn⊗ vec(B)
�

,

P =
�

rT ⊗ �(AT MA)−1⊗ (BT PB)−1���Im⊗Πpn ⊗ Iq

��
vec(AT )⊗ Ipq

�
Πpq

−
�

xT ⊗ (A†
MN ⊗ B

†
PQ)
��

In ⊗Πqm⊗ Ip

��
vec(A)⊗ Ipq

�
,

r=C
�
c− (A⊗ B)x
�

.
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Proof. From Lemma 3.3, we know that (A⊗ B)
†
C D is continuous and differentiable, and

so is ϕ(a,b,c) = (A⊗ B)
†
C Dc. According to (4.4), we obtain

dx=d
�
(A⊗ B)

†
C D

c
�

=−
�

A
†
MN ⊗ B

†
PQ

�
(dA⊗ B+ A⊗ dB)x

+
�
(AT MA)−1 ⊗ (BT PB)−1

��
dAT ⊗ BT + AT ⊗ dBT

�
r

+
�

A
†
MN ⊗ B

†
PQ

�
dc . (4.6)

Vectorizing both sides of (4.6) yields

dx=vec(dx)

=vec
�
−(A†

MN ⊗ B
†
PQ)(dA⊗ B+ A⊗ dB)x

�

+ vec
��
(AT MA)−1 ⊗ (BT PB)−1��dAT ⊗ BT + AT ⊗ dBT

�
r
�
+ vec
�
(A

†
MN ⊗ B

†
PQ)dc
�

=−
�

xT ⊗ (A†
MN ⊗ B

†
PQ)
�
Π̃
�

vec(dA)⊗ vec(B) + vec(A)⊗ vec(dB)
�

+
�

rT ⊗ �(AT MA)−1 ⊗ (BT PB)−1�� G̃
�

vec(dAT )⊗ vec(BT ) + vec(AT )⊗ vec(dBT )
�

+ (A
†
MN ⊗ B

†
PQ)dc

=−
�

xT ⊗ (A†
MN ⊗ B

†
PQ)
�
Π̃
��

Imn ⊗ vec(B))vec(dA)+ (vec(A)⊗ Ipq

�
vec(dB)
�

+
�

rT ⊗ �(AT MA)−1 ⊗ (BT PB)−1�� G̃
��

Imn ⊗ vec(BT )
�
Πmnvec(dA)

+
�
vec(AT )⊗ Ipq

�
Πpqvec(dB)
�
+ (A

†
MN ⊗ B

†
PQ)dc ,

where

Π̃ =
�

In ⊗Πqm⊗ Ip

�
,

G̃ =
�

Im⊗Πpn ⊗ Iq

�
,

or

dx=
�
Q P A

†
MN ⊗ B

†
PQ

��
daT dbT dcT
�T

.

Thus the Fréchet derivative of ϕ is given by

ϕ′(a,b,c) =
�
Q P A

†
MN ⊗ B

†
PQ

�
.

From the Fréchet derivative of ϕ(a,b,c), we can obtain the explicit expressions of the
norm-wise, mixed, and component-wise condition number for the KPWLS problem.
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Corollary 4.1. Under the same assumptions as in Lemma 4.1, we have

κwls(A⊗ B,c) := lim
ε→0

supp
‖∆A‖2

F
+‖∆B‖2

F
+‖∆c‖22

¶ε
p
‖A‖2

F
+‖B‖2

F
+‖c‖22

‖∆x‖2
ε‖x‖2

=

[Q P A
†
MN ⊗ B

†
PQ]


2

p
‖A‖2F + ‖B‖2F + ‖c‖22

‖x‖2
,

mwls(A⊗ B,c) := lim
ε→0

sup
|∆A|¶ε|A|
|∆B|¶ε|B|
|∆c|¶ε|c|

1

ε

‖∆x‖∞
‖x‖∞

=

|Q|vec(|A|)+ |P |vec(|B|)+ (|A†
MN | ⊗ |B†

PQ|)|c|

∞

‖x‖∞
,

cwls(A⊗ B,c) := lim
ε→0

sup
|∆A|¶ε|A|
|∆B|¶ε|B|
|∆c|¶ε|c|

1

ε


∆x

x


∞

=


|Q|vec(|A|)+ |P |vec(|B|) + (|A†

MN | ⊗ |B†
PQ|)|c|

x


∞

.

The proof of this corollary is similar to that of Theorem 3.1, so we omit it.
The following corollary gives the computable upper bounds for these three condition

numbers.

Corollary 4.2. Under the same assumptions as in Lemma 4.1, we have

κwls(A⊗ B,c) ¶
eK
p
‖A‖2F + ‖B‖2F + ‖c‖22
‖x‖2

+

A†
MN ⊗ B

†
PQ


2

p
‖A‖2F + ‖B‖2F + ‖c‖22
‖x‖2

:=κwls(A⊗ B,c)upper ,

mwls(A⊗ B,c) ¶
2
|(A†

MN ⊗ B
†
PQ)|(|A| ⊗ |B|)|x|


∞

‖x‖∞

+
2
|(AT MA)−1⊗ (BT N B)−1|(|A|T ⊗ |B|T )|r|


∞

‖x‖∞
+

|A†
MN ⊗ B

†
PQ||c|

∞

‖x‖∞
:=mwls(A⊗ B,c)upper ,

cwls(A⊗ B,c) ¶2
|D‡

x||(A†
M ⊗ B

†
N )|(|A| ⊗ |B|)|x|


∞

+2
|D‡

x||(AT MA)−1⊗ (BT N B)−1|(|A|T ⊗ |B|T )|r|

∞+
|D‡

x||A†
M ⊗ B

†
N ||c|

∞

:=cwls(A⊗ B,c)upper ,
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where

eK =
�
‖r‖2‖(AT MA)−1‖2‖(BT PB)−1‖2 + ‖x‖2‖A†

MN‖2‖B†
PQ‖2
��‖B‖F + ‖A‖F

�
.

Proof. From Lemma 2.2,

‖Q‖2 ¶
(rT ⊗ �(AT MA)−1 ⊗ (BT PB)−1)

�
(Im⊗Πpn ⊗ Iq)

�
Imn ⊗ vec(BT )
�
Πmn


2

+

−(xT ⊗ �A†
MN ⊗ B

†
PQ
)
�
(In ⊗Πqm⊗ Ip)

�
Imn ⊗ vec(B)
�

2

¶‖r‖2
(AT MA)−1


2

(BT PB)−1


2

vec(BT )


2 + ‖x‖2
A†

MN


2

B†
PQ


2
‖vec(B)‖2

=

�
‖r‖2
(AT MA)−1


2

(BT PB)−1


2+ ‖x‖2
A†

MN


2

B†
PQ


2

�
‖B‖F

and

‖P ‖2 ¶
�
‖r‖2
(AT MA)−1


2

(BT PB)−1


2 + ‖x‖2
A†

MN


2

B†
PQ


2

�
‖A‖F .

Furthermore, we have

�
Q P A

†
MN ⊗ B

†
PQ

�
2
¶‖Q‖2 + ‖P ‖2 +

A†
MN ⊗ B

†
PQ


2

¶eK +
A†

MN ⊗ B
†
PQ


2

.

According to Corollary 4.2, we can obtain the upper bounds κwls(A⊗ B, c)upper .
From Lemma 2.2, we obtain

|Q||vec(A)|¶
���
�

rT ⊗ ((AT MA)−1 ⊗ (BT PB)−1))G̃(Imn ⊗ vec(BT )
�
Πmn

��� |vec(A)|

+

���(xT ⊗ (A†
MN ⊗ B

†
PQ))Π̃(Imn⊗ vec(B))

��� |vec(A)|
¶
��
|rT | ⊗ |(AT MA)−1 ⊗ (BT PB)−1|

�
G̃
�

Imn ⊗ vec(|BT |)
�� ��vec(|AT |)
��

+
�
(|xT | ⊗ |A†

MN ⊗ B
†
PQ|)Π̃(Imn⊗ vec(|B|))

���vec(|A|)
��

=
�
|rT | ⊗ |(AT MA)−1 ⊗ (BT PB)−1|

�
G̃vec
�

vec(|BT |)vec(|AT |)T
�

+
�
|xT | ⊗ |A†

MN ⊗ B
†
PQ|
�
Π̃vec
�
vec(|B|)vec(|A|)T�

=
�
|rT | ⊗ |(AT MA)−1 ⊗ (BT PB)−1|

�
vec
�|AT | ⊗ |BT |�

+
�
|xT | ⊗ |A†

MN ⊗ B
†
PQ|
�

vec
�|A| ⊗ |B|�

=

���A†
MN ⊗ B

†
PQ

���
�|A| ⊗ |B|�|x|+

��(AT MA)−1 ⊗ (BT PB)−1
�� �|A|T ⊗ |B|T�|r| ,

where
Π̃ = (In ⊗Πqm⊗ Ip), G̃ = (Im ⊗Πpn⊗ Iq) .
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Similarly,

|P ||vec(B)| ¶
���A†

MN ⊗ B
†
PQ

���
�|A| ⊗ |B|�|x|+

��(AT MA)−1 ⊗ (BT PB)−1
�� �|A|T ⊗ |B|T�|r| .

From Corollary 4.2 and the matrix norm triangular inequality, we can obtain the upper
bounds M wls(A⊗ B,c)upper and cwls(A⊗ B,c)upper .

5. Numerical Example

In this section, we provide the examples for illustration. All computations were per-
formed using MATLAB 7.0. The relative machine precision was 2.2× 10−16.

Positive definite matrices M , N , P and Q were taken randomly, and matrices A and B

generated randomly such that rank(A⊗ B) = nq.
Table 1 shows that upper bounds that are about the same magnitude as their exact

condition numbers. Table 2 shows the upper bound of norm-wise condition numbers that
are around two orders of magnitude larger than their exact counterparts, while those of
mixed and component-wise condition numbers are about one order of magnitude larger
than their exact values.

For further illustration, positive definite matrices M , N , P, Q ∈ R8×8 and full column
rank matrices A and B ∈ R8×8 were generated randomly in 100 runs.

The numerical results are shown in Fig. 1, where κ, m, c, κw, mw and cw are equal to
κ((A⊗ B)

†
C D), m((A⊗ B)

†
C D), c((A⊗ B)

†
C D), κ

wls(A⊗ B,c), mwls(A⊗ B,c) and cwls(A⊗ B,c),
respectively. Also, κupper , mupper , cupper , κupper

w , m
upper
w and c

upper
w are equal to κ((A⊗Table 1: Weighted Moore-Penrose inverse of a Kroneker produt.

p = m = 4, q = n= 3 p = m = 8, q = n= 5 p = m = 12, q = n= 6
κ((A⊗ B)

†
C D) 1.3921e+001 2.2485e+001 3.4869e+001

κ((A⊗ B)
†
C D)

upper 4.9667e+001 6.2037e+001 7.1191e+001
m((A⊗ B)†C D) 9.5813 1.6362e+001 2.6815e+001

m((A⊗ B)†C D)
upper 2.2748e+001 2.6637e+001 3.8591e+001

c((A⊗ B)†C D) 1.6858e+002 5.9543e+001 4.3705e+003
c((A⊗ B)†C D)

upper 2.1159e+002 6.4579e+002 4.6430e+003Table 2: Weighted linear least squares problems involving Kroneker produts.
p = m= 4, q = n= 3 p = m = 8, q = n= 5 p = m = 12, q = n= 6

κwls(A⊗ B,c) 3.2863e+001 3.3469e+001 6.8390e+001
κwls(A⊗ B,c)upper 2.0199e+003 6.7526e+003 1.8640e+004

mwls(A⊗ B,c) 2.399e+001 2.3796e+001 4.3432e+001
mwls(A⊗ B,c)upper 2.4765e+002 6.5998e+002 1.3813e+003

cwls(A⊗ B,c) 2.1002e+002 9.3953e+002 1.9027e+004
cwls(A⊗ B,c)upper 1.5914e+003 2.1122e+004 5.5902e+005
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Figure 1: Condition numbers and their upper bounds.
B)

†
C D)

upper , m((A⊗ B)
†
C D)

upper , c((A⊗ B)
†
C D)

upper , κwls(A⊗ B,c)upper , mwls(A⊗ B,c)upper

and cwls(A⊗ B,c)upper , respectively.
From Fig. 1 we see that sometimes the proposed upper bounds can provide rough

estimates for the condition numbers.
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