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Abstract. A compact finite difference scheme is derived for a time fractional differential
equation subject to Neumann boundary conditions. The proposed scheme is second-
order accurate in time and fourth-order accurate in space. In addition, a high order
alternating direction implicit (ADI) scheme is also constructed for the two-dimensional
case. The stability and convergence of the schemes are analysed using their matrix
forms.
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1. Introduction

Fractional differential equations have become the focus of many studies, due to their
various applications. Many problems from signal processing, anomalous diffusion and fi-
nance can be modelled more accurately using equations with fractional derivatives. For
example, when studying universal electromagnetic responses involving the unification of
diffusion and wave propagation phenomena, there are processes that are described by
equations with time fractional derivatives of order between 1 and 2 (to “interpolate" be-
tween diffusion equations and wave equations). Reference may be made to the books [1,2]
for further information, where theoretical results such as solution existence and unique-
ness can also be found. One of the key features of fractional derivatives is nonlocal depen-
dence, which causes difficulties when numerical schemes for solving fractional differential
equations are designed, but substantial progress has been made in recent years — e.g. see
Refs. [3-25], and in particular Refs. [21-25] where time fractional differential equations
subject to Neumann boundary conditions are discussed.
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High Order Schemes for a Time FDE 223

We consider high order finite difference schemes for the numerical solution in a region
Q for problems in the following form:

gDzu(x, t) =k Au(x, t) — kou(x,t) + g(x,t),
xeN, O0<t<T, l<y<2, (1.1

subject to the initial conditions

du(x,0) -
u(x,0) =vY(x), 8—_¢(X) xeN=QUIN,
and the zero flux boundary condition
du(x, t)
=0, xe€dN, 0<t<T,
on

where 9 is the boundary of 2, d /9 n is the differentiation in the normal direction and k4,
K, are positive constants. Here g D!u denotes the Caputo fractional derivative of u with
respect to the time variable t:

1 Y 92u(x,s)
CDY — 4 _A\1-r
oDru(x,t) F@—YXL 52 (L8 Tds,

where I'(-) is the gamma function. Eq. (1.1) can be rewritten as (cf. [15])

du(x, t)
ot

ﬁzu(x s)

:¢(x)+r( )J (t —s)*~ 1 K1 —Kzu(x,s)}ds—i-f(x,t),

X€EQ, 0<t<T,

B

where 0 <a=y—-1<1, f(x,t) =(I7g(x,t), and (I} is the Riemann-Liouville fractional
integral operator of order a defined as

1 t
olfg(x,t) = mfo (t—s)*""g(x,5)ds .
We also note that 9 (x)/dn = 0 for x € 1.

By applying the weighted and shifted Griinwald difference (cf. [13, 14, 16]) to the
Riemann-Liouville fractional integral, in this article we establish compact schemes with
second-order temporal accuracy and fourth-order spatial accuracy. Our analysis is based
on the matrix form of the schemes, which turns out to render some of the intuitive ideas
on certain norms and inner products noted in previous related articles. In Section 2 and
Section 3, we first consider the one-dimensional case of Eq. (1.1), where we propose a high
order scheme and study its convergence. In Section 4, a high order alternating direction
implicit scheme is then proposed for the two-dimensional case. Numerical examples are
given in the last section.
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2. Proposed Compact Difference Scheme

In this section, we develop a high order scheme for the one-dimensional case — viz.

C oy 2%u(x,t)
OD[u(XJt):KIW_K2u(xat)+g(x)t))
0<x<L, O0<t<sT, 1<y<2, 2.1
0
u(x,0)=1(x), ;t) $(x), 0<x<L, (2.2)
du(0,t Ju(L,t
u )—O u( )=0, O0<t<T, (2.3)

ox dx
where we assume that ¢y = 0 in (2.2) without loss of generality (since we can solve the
equation for v(x,t) = u(x t)— IIJ(X’) in general). An equivalent form of (2.1) is

du(x,t) w— 1 82u(x s)
=¢(x)+=——= (t s) —Kyu(x,s) |ds+ f(x,t), (2.4)
at F( ) Jo

where 0 < x <L, 0<t<T, O<a=y—1 <1, f(x,t)zolf‘g(x,t).

For given integers M and N, we discretize the equation using the spatial step size
h = L/M and the temporal step size T = T/N Fori =0,1,---,M and k = 0,1,--- ,N,
we denote x; = ih, t, = kT and uk = (u ul, ,u’;/l)T, and then for the grid function
u= {uf |0 <i<M, 0<k <N} approximating the solution we adopt the following:

1

5xuif_l = E(uf—uf_l), 1<i<M,
2

%5xuli , i=0,
2
s2uk ={ 36, —6.uf ), 1<isM-1,
2 2
_%5xullt4 1 l—M,
%(5u0+u1), i=0,
Au={ S +10u+uy,), 1<i<M-1,
g (Uunr—1 +5up) i=M,

M
2
v =hQ e, Il = (), ulls = max bl

The discretisation of 92u/dx? is based on the following lemma.

Lemma 2.1. (cf. Ref. [25]). Denote {(s) = (1 —s)>[5 —3(1 —s)?].
M If £ (x) € 6°[xq, 1], then

(257 e) + 2] — 2 [LE S 0)

——— — f'(xo)]

4

1
gf///(xo) + f(S)( o) + %J f(6)(x0 +sh){(s)ds .
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(D If f (x) € €°[xp_1, Xpr), then

flxum) —f(XM—1)]

[2F"Con)+ 2" Can)] = 2 [ /) T2

h
ng”/(xM) _f(S)(XM) + ﬁf FO(xy —sh){(s)ds .

(1) If f(x) € €°[x;_1,X;41], 1 <i <M —1, then

1 1/ 1/ 1/ 1
D Lf7Ceim) +10F7(x) + f " (xi41)] — %) [f(xiz1) = 2f () + f (xig1)]

(!

=360 ) [f(6)(xi —sh) +f(6)(xi +sh)} C(s)ds .

Our numerical scheme for Eq. (2.1) is derived using the equivalent form Eq. (2.4). We
introduce the shifted Griinwald difference to the Riemann-Liouville fractional integral

AL FO) =7 jorf(t = (k=r)7)

k=0
where w; = (—1)k(_k“), to obtain the second-order approximation for Riemann-Liouville
fractional integrals as follows [13,16].

Lemma 2.2. Let f(t), _OOI? af and (iw)* *Z[f](w) belong to L'(R), and define the
weighted and shifted difference operator by
2p +

Zerdd 0= 200 20 -0

T g f(O+ 2 f (D).

( p)
Then we have
I, J(O) = IEf(D)+0(7%)
for t € R, where p and q are integers and p # q.
With (p,q) = (0, —1), which yields 3 2q+a =1—2and 2% — 2 in Lemma 2.2, we get

-p) 2 2(p-q) 2
ay o a <
ofzur tren) =57 (1-3) S warrt e 43 ol *| +0()

k=0 k=0

n+1

=1 Z?Lku?ﬂ_k +0(7?),
k=0
and
n+1
ol ey (Xp, tyq) = T [(1 - —) Za) 52u "H ky— Zwk52 e k} +0(t%+h?)
n+1

=7 ZA §2urtk 4 o(t2 +h?),
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where
a a a
Aoz(l—a)wo, Akz(l—a)wk-l'awk_l, k>1. (2.5)

A weighted Crank-Nicolson scheme for Eq. (2.4) is therefore

un+1_un T n+1 n

i i _ 2, n+l-k +1-k 2, n—k —k

—_—=¢; + — E A(kp05u} — KU} )+ E A(rp 65U — Koui ™)
T 2 iz k=0

1
+ E(fin +fin+1)'
To derive a higher order scheme, we follow Ref. [25]. Thus beginning with i = 0, one has

32"(118+1 —ug)

_ Ta+1 & 2 (K |:25 un+1_k 2 au(oa tn+1—k) h agu(()’ tn+1—k) h3 asu(o’ tn+1—k)]
= k = —_ = —_ = e

2 h*3 h dx 6 dx3 +9O dx°

k=0

- KZ%uSH_k)

atl I 2 2 0u(0,t,_ h a3u(0,t,_ h® 9°u(0,t,_
+T Ak(Kl |:_5xu,1_k__ u( n k)__ ( n k)+_ ( n k)]
0 2

2 & h h dx 6 0x3 90 x>

T
— szfug—k) + T Go+ oA (fo + D + R, (2.6)

where Rgﬂ = O(7t? +h*). We can now differentiate Eq. (2.1) with respect to x to give

8u(x,t)_ 2%u(x,t) du(x,t)
ax Y axd 27 ax

Letting x — 0" and noting the boundary condition (2.3), we have

5D} + g.(x, 1)

2%u(0,t) _

K3 8x3 - _gx(o: t) . (27)

With the Caputo fractional derivative operator g D! acting on Eq. (2.7), it follows that

93u(0,t) 1
cpr ot CpY
0 tT——K—lthgx(O,t). (2.8
Meanwhile, differentiating equation (2.1) three times with respect to x yields
23u(x, t) 2°u(x,t) 2%u(x,t)

5 { =K1 — Kz

0 dx3 x> dx3
Once again, we let x — 07 in (2.9). We can then substitute Egs. (2.7) and (2.8) to Eq. (2.9)
to obtain

+ G (X, 1) . 2.9

2°u(0,t) B

K =— (0 t)—ﬂ (0 t)—icDY (0,1) (2.10)
1 8x5 Exxx\Y; K_lgx > Klo t &x\Y, . .
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Inserting Egs. (2.7) and (2.10) into Eq. (2.6) and noting the boundary condition (2.3), on
omitting small terms the compact scheme for i = 0 becomes

n+1 n
F(uy" —uy

a+1 1 n
= 5 [Zkk(KﬁiugH_k —Kzﬁu3+1_k)+ZAk(K15iu3 — Ko Ug~ )}
k=0 k=0
a+1 ntl B3
+ 5 ( (gx n+l-k _ [(gxxx)n-H k+ (gx)n+1 k+ (CDa+1gx g+1 k])
k=0
Ta-i—l n h h3
+— kzlk(g(gx o [(gxxx)g Ky 2 (gx)g 4 — (CD"‘“gx o k])
=0
T
+r%¢0+5%(f0”+f0”+1), 0<n<N-1. (2.11)

The scheme at the other end can similarly be derived as

%(un—kl u;\l/])

a+1 +1 n
== [Zkk(Kﬁzu”H k KZ%uRﬂ+1_k)+ZAk(K15iuR/I — Ko Uy, )}
k=0
- Z ( ()" n+l-k _ [(gxxx)m—l k+ ( x)n+1 ky — - CDf‘ng X/I+1 k])
k=0
Ta+1 n h B h3 1 ~
- Do et~ g [+ 2 (EDE 0] )
k=0
T
+rhpy+ A (fy+fir ), 0<n<N-1. (2.12)

At any internal grid point, the scheme can be written

%( ?“ —uf!)

n+1
[Zkk(K 52 n+1 k _ Ky %un—H k)"'Z)Lk(K 52 n—k _ Ky %un k)i|
+r%¢i+§%(fi”+fi"+l), 1<i<M-1, 0<n<N-1. (2.13)
The approximate solution is then found assuming
wW=0, O0<i<M. (2.14)

At each time level, the difference scheme Egs. (2.11)-(2.14) is a linear tridiagonal system
with a strictly diagonal dominant coefficient matrix, so it has a unique solution.
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3. Stability and Convergence of the Compact Scheme
The main convergence result for the scheme outlined in the previous section can be
established via the following lemmas.

Lemma 3.1. (cf. Ref. [16]) With {A,}>°  defined as in (2.5), for any positive integer k and
real vector (vy, vy, ,v)" € RF we have

k-1 n

Z Z Apvn+1—p Vnt1 =0.

n=0 \ p=0

Lemma 3.2. ( [26]) Assume that {k,} and {p,} are nonnegative sequences, and the sequence

{pn} satisfies
n—1 n—1
$0<8, Iu<t+y,p+) kg, n=x1,
[=0 [=0

where gy > 0. Then the sequence {¢,} satisfies

n—1 n—1
¢ = (80"‘2171) exp (Zkz) »  nx1.
1=0 1=0

Our compact difference scheme (2.11)-(2.14) thus has high order convergence, as follows.

Theorem 3.1. Assume u(x,t) € %f”tz([O,L] x [0, T1]) is the solution of the problem (2.1)-

(2.3) and {uif|0 <i <M, 0 <k <N} is a solution of the finite difference scheme (2.11)-
(2.14), respectively. Denote

ek=u(x,t;)—uf, 0<i<M, O0<k<N.
Then there exists a positive constant ¢ such that
llek|l < c(t? +h*), 0<k<N.

Proof. We can easily get the following error equation:

k

A k1 kY KlTaH}: A k+1-1 | k-1

C(e —e )——W AIQ(E +e )
1=0

at+l _k
DIl p ey 4 oR, =0, 0<i<M, (3.1)
[=0

where ||[R*F| < ¢; (72 +hY),

Ko T
2

10 2 2 =2
1 10 1 -1 2 -1

G=— S SRR . G2
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Multiplying Eq. (3.1) by % eId % where [ is the identity matrix, we get

a+1

229

k 1k
Clek+l _ghy= _ K17 20k +H1-1 4 gk=1y _ Ky 2 CekH1-1 4 gkl
(e e)= o2 1Q(e +e"7) 5 1C(e +e"7)
1=0 1=0
+ TRk+1 ,

where |[RFF| < ¢, (72 4+ %),

5 1
1 10 1
1 2
C=— '.. =F
12
1 10 1
1 5
(thus E the square root of C), and
1 -1
-1 2 -1
Q= =sTs
-1 2 -1
-1 1
with
-1 1
S = N e RM*xM+1
-1 1

3.3)

(3.4)

(3.5)

(3.6)

Here we have used the fact that C = ﬁtrl’[l,S, 1]+ %(O ® I & 0) is positive definite.

Consequently, on multiplying Eq. (3.3) by h(e *! + )T, we obtain

h(ek+1 + ek)TC(ekH _ ek)

k
KlToH—l

- _ o le(em—l +eF)TTg(ekt1-1 4 k=1
1=0

K2h7a+1 k
_ 5 le(ek%—l + ek)TEZ(ek-H—l +ek—l) + Th(€k+1 +ek)TRk+1 )
=0

Summing up for 0 < k < n — 1 and noting that
h(€k+1 + ek)TC(ek+1 _ ek) —h [(ek+1)TCek+1 _ (ek)TCek] ,

1
h(e™)Ce" > leenllz,
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from Lemma 3.1 we then have

1
_ en 2
4|| Il
n—2
<th(e"+ e HTR" + 7:h2:(ekJr1 + ef)TRK+1
k=0

U'I

1 5 T n—1 T n—2 n—1
<clle|? + ||R“||2 2|| "2 + ||R“||2+52||e’<||2+EZneanﬂZannz
k=1 k=1 k=1

,_L

572 n—1 n
<llemP+ == IR+ 7 3 et + 7 3 RN,
k=1 k=1

whence
n—1 n
lle"||* <2572[[R"2 + 207 ) [lek[I> + 207 Y _ |IR¥[|?
k=1 k=1
n—1
<207 Y [le¥2 + 3 (v + h*)2,
k=1
so the desired result follows from Lemma 3.2. O

Remark 3.1. One can adopt aspects in the proof for Theorem 3.1 to show that the proposed
compact scheme (2.11)-(2.14) is unconditionally stable. Indeed, consider the solution
{v!‘} of

%(Vk+1 k)
gatl k+1 k
|:Z AZ(K152vé‘+1_l - Kz.%”vgﬂ_l) + ZAI(K15iv§ - Kz.%”vo ):|
1=0
ratl k+1

L R -1, K2 - 1 -
Z 2 (gx)k“ L [ G 2+ — (D g
90 K1 K1

a+l k

3
T k-1 N k-1, K2 k=1 4 Cpa+l,. k-l
+ 5 ;7&1 (g(gx)o - 9_0 [(gxxx)o + K_l(gx)o ( Dy g")o ]
+1(¢ +”)+3%(f’<+f’<+1) 0<k<N-1 (3.7)
o1 Po 5 0 0 > =r= ’ '
%(vk+1 V]]\(/[)
patl k+1 k
[Z A, 82V~ — e, spyiit=ly 4 ZAI(K15iV}\(/1—l - Kzﬁ"]]\(/[_l)}

=0
a+1 k+1

h
TZ Z ( (gx)k-HZ

[=0

3

[(gxxx)k+l l+ ( x)k+1 l+ (cDa+1gx)k+1 l])
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231
catl K h 3 K 1
_ " k-1 " k=1, "2 k=l | — (Cpat+l, \k—I
72 le !~ g [l + w0l + 0505
T
+r%(¢M+ﬁM)+5%(fﬁ +AY, 0<k<N-1, (3.8)

32"(1/5“rl — vik)

a+1 [ k+1 k
k+1-1 k+1-1 k-1 k-1
== |:ZE Al(KléiviH —Kzﬁfviﬂ )+ZE Al(Kl(Sivi — Ko V] ):|
=0 =0

~ T ko pk+l .
+T%(¢i+pi)+§%(fi +£0), 1<i<M-1,

0<k<N-1, 3.9

with v? = p;, 0 <i <M. Thus from (2.11)-(2.13) and (3.7)-(3.9), one can check that
ef = vil - u% — p; satisfy

%(sf“ — sf‘)
potl k+1 k
== [le(KﬁisfH_l — Kz.%”sl“l_l) + Zkl(Kl(Siel’.‘_l — Kzﬁsf_l)} + THP;
1=0 [=0
ratl k+1 k
+ [le(mﬁipi —1p) + D MK, 82p; — Kzﬁpi)} ,
=0 [=0

0<i<M, 0<k=<N-1,

=0, 0<i<M.

(3.10)

k+1
By following the proof for Theorem 3.1 and noting t* ). A; = ﬁ +0(7), we then have
[=0
the estimate

k-1
5 2 ~
ek < 200 3 1l IP + [ =g + 1] [Imad20l + lheap P + 117
[=0

2
<p20r[__ 2 5 1o .
= ¢ |:I"(a+1)+1] (11,8212 + llxapl2 + 115112 - 3.1

This implies that

k_ ok k_ ok
v =ufl[ < V" =u® = pll+llell

< lor|__ 2 N 5 —
= [r(a+1)+1]\/||'<15xpll +llxapl 2+ 11112 + ol

and hence the stability of the scheme.
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4. The Compact ADI Scheme for the Two-Dimensional Problem

In this section, we consider the two-dimensional case

gDzuzAu—u+g(x,y,t), (x,y)ea, 0<t<T, 1<y<2, 4.1)
du(x,y,0) -
u(x,y,0)=0 T=¢(x,y), (x,y)eQ=Quoq, (4.2)
du(x,y,t)
_— =0, (x,y)ed, O0<t<T, 4.3)
on 20

where A is the two-dimensional Laplacian and n is the unit outward normal vector of the
domain Q = (0, L) x (0, L,) with boundary 9. An equivalent form of Eq. (4.1) is

du(x,y,t)

3t =¢(x, )+—J (t —)* HAu(x,y,s) —ulx,y,s)lds + f(x,y,t), (4.4)

I'(a)

where (x,y) €Q, 0<t<T,0<a=7y-1<1, f(x,y,t) = ol g(x,y,t). The discreti-
sation of Eq. (4.4) is carried out in steps similar to that of the one-dimensional case. Thus
we let hy = L,/M;, hy, = Ly/M, and T = T /N be the respective spatial and temporal step
sizes, where M;, M, and N are some given integers. Fori =0,1,--- ,M;, j=0,1,--- ,M,
and k =0,1,---,N, we denote x; = ih;, y; = jhy, t; = k7 and introduce the following
notation on a grid function u = {uf.‘jIO <i<M;,0<j<M,, 0<k<N}L

1
5xui_%’j = h_l(uij —ui1;),
5u1], l:0) OSJSMZ)
1 . .
5)26111‘]': (5 ul+ JJ 5xui—%’j)a 1SLSM1_1) OSJSMZ)
h_15xuMl—%’j’ i=M;, 05j<M,,
1(5u0J+u1]-) l:0, OS]SMz,
%xul'j %Z(UI 1]+10u +ul+1,]'), 1SlSM1—1, OSJSMz,
6(uM1—1,J+5uM1,J)’ i:Ml, OS]SMZ

One can define similar notation in the y direction. We further denote

Houy = A A ug; = (6,65 + 7,53y

M; M,

2 _ p— .
P=huha D vy, P =), = max gl

i=0 j=

l]’
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With the above preparation, we obtain the compact ADI scheme as follows. We denote
u=1%"1/2and Gl = (Gilj)” + (Gizj)”, where

h
szk( T (gx)n k- 9_0% [(gxxx)g;k - (gxyy)g,;k + (gx)g,;k

+(§D?+1gx)3;k] ) i=0, 0<j<M,,

(Gt={ 0, 1<i<M -1, 0<j<My,
3

hy
—uzxk( (50 = 557 [ (Gexi s = (8 Vi s + (8050

+(gD?+1gx);\1/[_lf;i|)5 l:Ml ) OS] SMZ:

h
lek( &3 (gy)n k- 9_0% [(gyyy)?,ak - (gxxy)zak + (gy)zak

+(8Df‘“gy)za"]), j=0, 0<is<M,

(GI)'=4 0, 1<j<M,—-1, 0<i<M,
3

h;
_“Zkk( < 7 (gy)l M, " 90 [(gyyy)l M, (gxxy)l M, T (gy)l M,

+((C):D?+1g_y)i’&lzi|): j:M25 OSlSMl

Following the steps in the one-dimensional case, one can deduce

n+1 n
AW —ul) =T AP+ [ZM(A AW+ (A - %)ugj—k}
k=0 =
T 1
+ 5+ FD+ GG+ G D+ RO

u?j =0, (x,y)eq, (4.5)

where (R, )’?.H =0(1? +h‘1‘ +hg). Denoting Fi’;. = %(T%’fi? + G?j)’ and adding a small term

25 52 Z(u”+1 ufy) = O(73"2%) on both sides of Eq. (4.5), we have

1+ul
242
U“A
n+l _  n 0 2 2 n+1 n
A (u; u)+ T+ 6,65 (Ui —uf)
n+1 n
=TH i+ U [Z M = AT 2 (A - %)u?j—k} + Ff} 4 4 oROH
k=0 =

u; =0,  (x,y)eq, (4.6)
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with R?J.H = 07?2 + h‘{ + h‘z‘). Omitting the truncation error in Eq. (4.6), we reach the
following scheme in the ADI setting:

Hio 2 Ao 2 +1
1+ phott — —20 5 1+ phott, — —20 52 |y
( * Vv 1+ uig * y Vv 1+ uig s
‘U,le n+1 n
=du + ———5282ul + | D A(A = AR+ Y dp (A — ol
1+ p2o k=1 k=0

+T%¢ij+Fi’}+Fi'}+1, (x,y))€Q, 0<n<N-1,
u?jzo, (x;, ;) €.

For ADI methods (cf. Ref. [27] for example), the solution {ugﬂ} is determined by solving
two independent one-dimensional problems. Specifically, the intermediate variables

A
u;;=(1+ux0%y—&52)uw 0<i<M,, O0<j<M,,

v/ 14+ pui ypeuo

are first solved from the following system with fixed j € {0,1,---, M,}:

uro %
52w,
\/ 1+ ‘U,AO

‘U,le n+1 n
=AUl + -5262u + | D Ak(A— AR A (A — el
1+po k=1 k=0

+T%¢ij+Fi’}+Fi'}+1, 0<i=<M,

( 1+ urg s, —

When {ufj} is found, the approximate solution {u?jﬂ} is solved from the following system
for fixed i € {0,1,---,M; }:

A
( 1+uloﬁfy—L52)uZﬂ:ufj, 0<j<M,.

W14+ udg d

Under the ADI method, the computational cost for solving a two-dimensional problem is
usually greatly reduced.

We now proceed to give the convergence result of our compact ADI scheme (4.6), and
one can show that the scheme is stable in the same sense as that given in Remark 3.1.
Theorem 4.1. Assume that u(x,y,t) € %2’5:?((2 x [0, T]) is the solution of the problem
(4.1)-(4.3) and {uf.‘jlo <i<M;,0=<j<M, 0<k<=<N}isa solution of the finite
difference scheme (4.6), respectively. Denote

efs =u(x;y;, i) —uf;, 0<i<M;, 0<j<M, 1<ks<N.
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Then there exists a positive constant ¢ such that

ekl <é(r®+ht+nd), 0<k<N,

k_rek ok .. ok ko ok .. ok L. ek k e ok T
where e —[eo,o’el,o’ »€ny00€0,10€1,10 7 0y 10" 0 Co,My 0 €My ’eMl,Mz]‘

Proof: One can easily check that the following error equation holds:

w2AG

(C QCuy i)t —ef)y ——— 9
My+1 M;+1 (1+‘U/A,0)h%h%

(Quy+1 ® QM1+1)(ek+1 —e)

k
Ta+1

~ _ ~ ~ ratl k _ ~ ~ ~
== 5 D MCuri1 8 Quy )@ ) = D T4 (Qupir ® g2 6D
1 1=0

2 1=0
at+1l k

- ZAI(C’MZH ® C»Ml+1)(ek+1—z 4 k1) 4 pRKH,
1=0

e;=0, 0<i<M;, O0<j<M,,

4.7)

where |[R*1|| < & (72 +h? +h3) and the matrices Cy 1, Cy,+1, Q41> Qur,11 are given
in (3.2), with the corresponding sizes given by the subscripts.

Multiplying the equation (4.7) with (% ®Iy,1 0 %) ® (% Oy, 10 %), we get

242
usA
(Cry1 ® CM1+1)(ek+1 -+ W(QM2+1 ® QM1+1)(ekJrl )
07119
at+1l k a+1l k
_ _ T _ _
=T o ZAI(CM2+1 ® Qup,+1)(e T +ef ) — oh2 ZAZ(QM2+1 ® Cp, 1) k)
1 1=0 2 1=0
at+1l k

=5 D 2(Cutya1 ® gy )€ 4 €57 2R,
=0
e;=0, 0<i<M;, O0<j<M,, (4.8)

where |[R*!|| < &(72+h? +h}) and

_ 2 _ 2 _ T _ T
Cv+1=Ey 1o Cvpr1 = Eyy1s Quu+1 =Sy 41Sm+15> Qup+1 = Sy, 41SMy+1

are as in (3.4) and (3.5), respectively. (Once again, we have used the subscripts to indicate
the sizes of the matrices.) We can now multiply (4.8) by hyh,(eX*! 4 eX)T and add up the
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equations for 0 < k < n — 1. Noting that

(eFHl 4+ ek)T(CM2+1 ® CM1+1)(€kJrl —eh)
= (ekH)T(CMZH ® CM1+1)ek+1 - (ek)T(CMzﬂ ® CM1+1)€k,
(k1 + ek)T(QMZ—H ® QM1+1)(€kJr1 )

= (ek+1)T(QM2+1 ® QM1+1)ek+1 - (ek)T(QMZH ® QM1+1)ek >
1
h1h2(€n)T(CM2+1 ® Cpy11)e" = RHCHHZ,
(€M) (Quy+1 ® Qu, 41)e" >0,
(Cry 11 ®Qupy41) = (Epy 41 ® 517\;[1+1)(EM2+1 ® Sy, +1) 5
(Qumy+1 ®Cpy 1) = (SI\T/IZH ® Epg,+1)(Suy1 ® Epgy41)

from Lemma 3.1 we have that

_ en 2
|
n—2
<thjhy(e" +e" )TR" + thyh, Xl(ekJrl + ek)TRKH
k=0

1 972 T T T n—1 . T n—2 . n—1 .
<—|le"I* + —|IR™"I> + =lle" 1>+ = IR*I*+ = > lle“II*+ = > lle"]I*+ 7 ) ,IR¥|]?
Tglle" P+ IR+ S lle™ " + SRS + 5 k; lle®l”+ 3 k; lle®]] k; IRl

1 972 ot <
<oglelP + IR 2 Y eI+ 2 Y IRFI,
k=1 k=1

as in the one-dimensional case. O

5. Numerical Experiments

In this section, we describe numerical experiments for the finite difference scheme to
illustrate our theoretical statements. All our tests were done in MATLAB. Although our
theoretical results correspond to the discrete L2 norm, we find that the maximum norm
errors

E_(h = max ||[U* —uk
(b, ) = max IU*— i

between the exact and the numerical solutions also match the proposed order for the
examples we have tested (we had similar observations in Ref. [16]). In the numerical
examples given below, the maximum norm errors are therefore reported.

We first consider the following one-dimensional problem.
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0.12

true solution
numerical solution

0.1

0.08 -

0.02

0

0 0.2 0.4 0.6 0.8 1
X

Figure 1: Exact solution and numerical solution for Example 5.1 at t =1, when a =0.5 and h=171 =
1/100.

Example 5.1.

cr, _ 9%

ODtuzﬁ—u+g(x,t), 0<x<1, 0<t=<1, 1<y<2,
du(x,0)

u(X,O):O, TZO, SXSl,

Ju(0,t du(L,t

oudt) o oulbb oo oiar,

dx dx

where g(x,t) = @tzexxz(l — x)? — e*t7"2(2 — 8x + 8x3). Note that the differential
equation can be rewritten as

Q) = 1% (e, ) —u(x, ]+ f(x,1), 0<x<1, 0<t<1,

where a =y —1, f(x,t) = (a+3)e*x2(1 —x)*t*+2 — %e"@ —8x + 8x3)t2**3, The

exact solution is u(x, t) = e*x2(1 — x)?t**3.

Curves for the exact and numerical solutions for the problem at t = 1 with a = 0.5 and
h =7 =1/100 are shown in Fig. 1. The maximum norm errors are shown in Tables 1 and
2. The temporal convergence order and spatial convergence order, denoted by

E(h,27) Em(Zh,T))

Ratel =1 ooV 7/
el =08 ( Eoo(h,7) Eo(h,7)

) and Rate2 = log, (

respectively, are also reported.
Let us now consider the stability of the scheme by testing (3.11) numerically. We note
that the bound in (3.11) has been magnified to a certain extend when it is derived theoret-

ically. In our test, we find that the quantity B= [F(%—i—l) +1] \/|I5§p||2 +|lpll> +11p11? only
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Table 1: Numerical convergence orders in temporal direction with h = 1/50 for Example 5.1.

T

a=

0.3

a=0.5

a=0.7

E(h,T)

Ratel

E(h,T)

Ratel

E(h,T)

Ratel

1/5

1.6417e-3

*

2.3844e-3

*

3.1904e-3

*

1/10

4.1558e-4

1.9820

6.0481e-4

1.9791

7.9961e-4

1.9964

1/20

1.0441e-4

1.9929

1.5221e-4

1.9904

2.0066e-4

1.9945

1/40

2.6115e-5

1.9993

3.8133e-5

1.9970

5.0254e-5

1.9975

1/80

6.4822e-6

2.0103

9.5080e-6

2.0038

1.2551e-5

2.0015

Table 2: Numerical convergence orders in spatial direction with T = 1/2000 when a = 0.5 for Exam-

ple 5.1.

h E.(h,7) | Rate2
1/2 | 2.2688e-2 | x

1/4 1.3235e-3 | 4.0995
1/8 | 8.2429¢e-5 | 4.0050
1/16 | 5.1310e-6 | 4.0058
1/32 | 3.0926e-7 | 4.0524

Table 3: Stability of the scheme for Example 5.1 when T =1, a =0.5.

p=p=0.1x p =p =0.1sin(x)

M=, |N==||"]| |B M=+ |N==|]"] |B

100 500 0.3097 | 5.4637 | 100 500 0.2668 | 6.0461
1000 0.3102 | 5.4637 1000 | 0.2672 | 6.0461
2000 0.3105 | 5.4637 2000 | 0.2674 | 6.0461
4000 0.3107 | 5.4637 4000 | 0.2675 | 6.0461

200 500 0.4349 | 7.6982 | 200 500 0.3747 | 8.5231
1000 0.4356 | 7.6982 1000 | 0.3752 | 8.5231
2000 0.4360 | 7.6982 2000 | 0.3755 | 8.5231
4000 0.4363 | 7.6982 4000 | 0.3757 | 8.5231

can serve as a fine upper bound for ||¢"||. We have considered two kinds of perturbation
given by the discretisation of some functions p and §, and the results are given in Table 3.

The next example is a two-dimensional problem.



High Order Schemes for a Time FDE 239

Table 4: Numerical convergence orders in temporal direction with h = /50 for Example 5.2.

T a=0.3 a=0.5 a=0.7
E . (h,T) Ratel | E,(h,7) | Ratel | E,(h,7) | Ratel
1/5 | 1.5208e-2 | x 2.0989e-2 | * 2.9859e-2 | *

1/10 | 3.7508e-3 | 2.0196 | 5.2056e-3 | 2.0115 | 7.5354e-3 | 1.9864
1/20 | 9.3437e-4 | 2.0051 | 1.2874e-3 | 2.0155 | 1.8780e-3 | 2.0045
1/40 | 2.3411e-4 | 1.9968 | 3.1958e-4 | 2.0102 | 4.6777e-4 | 2.0053
1/80 | 5.8774e-5 | 1.9939 | 7.9583e-5 | 2.0057 | 1.1666e-4 | 2.0035

Example 5.2.

M(y +4
SDIu = Au—u+ cos(x)cos(y) [¥t3+3t7+3} ,
(x,y)e@=(0,m)x(0,m), 0<t<1,
du(x,y,0)

at
=0, (x,y)e o, 0<t<1.

u(x,y,0)=0, 0, (x,y)eq,

du(x,y, 0
G oo

Note that the differential equation can be rewritten as
du(x,y,t)

3Al(a+5
ot = oI (Au—u) + cos(x) cos(y) [(a +4)t9t3 + Lt2a+4j| ,

r2a+5)
where a = y — 1. The exact solution for this problem is u(x, t) = cos(x) cos(y)t**.
We let h; = h, = h in this example. Fig. 2 shows the exact solution (left) and numer-

ical solution (right) for Example 5.2 when a = 0.5 and h = 7 = 1/50. In addition, the
maximum norm errors between the exact and the numerical solutions

E(h,T)= max max

k
u(x;, y;, te) —us
OSkSN(Xi,yj)EQ l).yji k 1]

are shown in Tables 4 and 5. The temporal convergence order and spatial convergence
order, denoted by

E(h,2 E(2h,
Ratelzlogz( ool 27) M),

—_ 2 =1
Eoo(h,r)) and Rate2 =log, ( Eoo(l, 7)

respectively, are again also reported. These tables confirm the theoretical analysis.
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Figure 2: The exact solution (left) and numerical solution (right) for Example 5.2, when a = 0.5,
h=1=1/50.

Table 5: Numerical convergence orders in spatial direction with T =1/20000 when a = 0.5 for Example
5.2.

h E.(h,7) | Rate2
m/2 | 3.4342e-3 | x

n/4 | 2.0348e-4 | 4.0770
/8 1.2502e-5 | 4.0247
/16 | 7.7904e-7 | 4.0043
m/32 | 4.9832e-8 | 3.9665
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