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Abstract. An explicit numerical scheme is proposed for solving decoupled forward back-

ward stochastic differential equations (FBSDE) represented in integral equation form.

A general error inequality is derived for this numerical scheme, which also implies its

stability. Error estimates are given based on this inequality, showing that the explicit

scheme can be second-order. Some numerical experiments are carried out to illustrate

the high accuracy of the proposed scheme.
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1. Introduction

We consider the numerical solution of decoupled forward backward stochastic differ-

ential equations (FBSDE) on a filtered complete probability space (Ω,F ,F,P), represented

in the following equivalent integral equation form:













X t = X0 +

∫ t

0

b(s, X s)ds+

∫ t

0

σ(s, X s)dWs , t ∈ [0, T ] , (SDE)

Yt = ξ+

∫ T

t

f (s, X s, Ys, Zs)ds −
∫ T

t

ZsdWs , t ∈ [0, T ] , (BSDE)

(1.1)

where F = (Ft)0≤t≤T is the natural filtration of the standard d-dimensional Brownian

motion W = (Wt)0≤t≤T ,F =FT with the fixed finite horizon T , ξ ∈ FT is an L2 integrable

random variable, b: Ω× [0, T ]×Rq→ Rq, σ: Ω× [0, T ]×Rq→ Rq×d and f : Ω× [0, T ]×
R

q × R × Rd → R, are all measurable functions, and b(t, x), σ(t, x) and f (t, x , y, z) are

Ft -measurable for fixed (X t , Yt , Zt) = (x , y, z). Note that the integrals in (1.1) with respect
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to the Brownian motion Ws are of the Itô type, and the first equation arises from a standard

forward stochastic differential equation (SDE), while the second arises from a backward

stochastic differential equation (BSDE) since the terminal condition of YT = ξ is given. A

triple (X t , Yt , Zt) is called an L2 solution of decoupled FBSDE (1.1) if it is Ft -adapted and

square integrable.

In 1990, Pardoux and Peng proved the existence and uniqueness of the solution for

nonlinear BSDE in their original work [13]. There has since been increasing attention

paid to the theory of FBSDE and their application in many fields such as mathematical

finance, partial differential equations (PDE), stochastic control, risk measure and game

theory. However, the solution of FBSDE in closed form can seldom be found in practical

problems, so numerical methods are often invoked. Under certain conditions, the relation-

ship between the solutions of the decoupled FBSDE represented by (1.1) and parabolic PDE

has led to some numerical methods to solve the FBSDE based on solving the corresponding

parabolic PDE [3,7–9,11]. There are also other numerical schemes directly developed from

the FBSDE [1,4,15–18].

Nevertheless, most existing highly accurate numerical methods to solve for Yt are im-

plicit, with a heavy computational requirement. By using the properties of the Itô integral,

the trapezoidal rule and a stochastic process ∆W̃n,s, we propose a new explicit numerical

scheme to solve the decoupled FBSDE (1.1) in the next section. Then in Section 3, after

obtaining a useful inequality for the error estimate, the second-order convergence of our

scheme is proved under some reasonable conditions on the coefficients of (1.1). We under-

take some numerical calculations to demonstrate our theoretical results in Section 4, and

give our conclusions in Section 5.

We first introduce some relevant notation as follows.

1. | · | denotes the standard Euclidean norm in the Euclidean space R, Rq and Rq×d.

2. L2 = L2
F (0, T ;Rd) denotes the set of all Ft -adapted and mean-square-integrable

processes valued in Rd .

3. F t,x
s (t ≤ s ≤ T ) denotes a σ-field generated by the diffusion process {X r , t ≤ r ≤

s, X t = x}. When s = T , we use F t,x to denote F t,x
T .

4. Et,x
s [η] denotes the conditional mathematical expectation of the random variable

η under the σ-field F t,x
s , i.e., Et,x

s [η] = E[η|F t,x
s ]. When s = t, we use Ex

t [η] to

denote E[η|F t,x
t ].

5. C
l ,k,k

b
denotes the set of continuously differential functions φ : (t, x , y) ∈ [0, T ] ×

R
q ×R→ R with uniformly bounded partial derivatives ∂

l1
t φ and ∂

k1
x ∂

k2
y φ for any

positive integers l1 ≤ l and k1 + k2 ≤ k.

6. C
k3,k4

b
denotes the set of functions φ : (t, x) ∈ [0, T ] × Rq → R with uniformly

bounded partial derivatives up to k3 with respect to t, and up to k4 with respect to

x .

Throughout, C stands for a generic positive constant depending only on T , the given data

b, σ, f , ξ and the regularity of time partition, although its value may differ from place to

place.
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2. Explicit Numerical Scheme for the Decoupled FBSDE

For the time interval [0, T ], we consider the time partition

0= t0 < · · · < tN = T

with ∆tn = tn+1− tn and ∆t =max0≤n≤N−1∆tn; and in order to establish error estimates,

we assume that it satisfies the regularity constraint
max0≤n≤N−1∆tn

min0≤n≤N−1∆tn
≤ c0 where c0 is a positive

constant. We introduce a stochastic process ∆W̃n,s defined by

∆W̃n,s = 2∆Wn,s −
3

∆tn

∫ s

tn

(r − tn)dWr , for s ≥ tn , (2.1)

where ∆Wn,s = Ws −Wtn
. It is then assumed that ∆W̃n,s = (∆W̃ 1

n,s
, · · · ,∆W̃ d

n,s
)∗ where

(·)∗ represents the transpose of (·), defining a d-dimensional Gaussian process with the

following properties:

1. Ex
tn
[∆W̃n,s] = 0;

2. Ex
tn
[∆W̃ i

n,s∆W̃
j

n,s] = 0 for i 6= j;

3. Ex
tn
[∆W̃ i

n,s∆W i
n,s] = 2(s− tn)− 3(s−tn)

2

2∆tn
, and Ex

tn
[∆W̃ i

n,tn+1
∆W i

n,tn+1
] =

∆tn

2 ;

4. Ex
tn
[(∆W̃ i

n,s))
2] = 4(s− tn)− 6(s−tn)

2

∆tn
+

3(s−tn)
3

(∆tn)
2 , and Ex

tn
[(∆W̃ i

n,tn+1
))2] =∆tn.

2.1. Reference equations

Let (X t,x
s , Y t,x

s , Z t,x
s ) be the solution of (1.1) starting from time t with X t = x — i.e.

(X t,x
s , Y t,x

s , Z t,x
s ) satisfies













X t,x
s =x +

∫ s

t

b(r, X t,x
r )dr +

∫ s

t

σ(r, X t,x
r )dWr , s ∈ [t, T ] ,

Y t,x
s =ξ+

∫ T

s

f (r, X t,x
r , Y t,x

r , Z t,x
r )dr −
∫ T

s

Z t,x
r dWr , s ∈ [t, T ] .

(2.2)

Given the triple (X
tn ,x
t , Y

tn,x
t , Z

tn,x
t ) defined by (2.2) for t ∈ [tn, T ], we therefore have

X
tn,x
tn+1
= x +

∫ tn+1

tn

b(s, X tn ,x
s )ds+

∫ tn+1

tn

σ(s, X tn ,x
s )dWs , (2.3)

Y
tn,x
tn
= Y

tn ,x
tn+1
+

∫ tn+1

tn

f tn,x
s ds−
∫ tn+1

tn

Z tn,x
s dWs , (2.4)

where f
tn,x

s = f (s, X
tn ,x
s , Y

tn,x
s , Z

tn,x
s ), for n= 0,1, · · · , N − 1.
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For the decoupled FBSDE, (2.3) from the forward SDE can be solved independently by

existing numerical methods. In this article, we assume that {X tn,x
tn+1
} can be represented via

X
tn,x
tn+1
= x +φ(tn, x ,∆tn,∆Wn,tn+1

,ξn+1) + Rn
x

, (2.5)

where φ is some function and ξn+1 a known vector Gaussian process, and Rn
x is the trunca-

tion error. Indeed, most commonly used numerical methods for SDE correspond to omitting

the error term Rn
x from (2.5) — e.g. the Euler scheme, the Milstein scheme, and Itô-Taylor

schemes [6]. Let us therefore consider (2.4) obtained from the BSDE, where on taking the

conditional mathematical expectation Ex
tn
[·] on both sides we obtain

Y
tn,x

tn
= Ex

tn

�

Y
tn ,x
tn+1

�

+

∫ tn+1

tn

E
x
tn

�

f tn,x
s

�

ds . (2.6)

On multiplying through by ∆W̃ ∗n,tn+1
and taking the conditional mathematical expectation

E
x
tn
[·] on both sides of the consequent derived equation, we have

0=Ex
tn

�

Y
tn,x

tn+1
∆W̃ ∗n,tn+1

�

+

∫ tn+1

tn

E
x
tn

�

f tn,x
s ∆W̃ ∗n,tn+1

�

ds

−Ex
tn

�∫ tn+1

tn

Z tn,x
s dWs ·∆W̃ ∗n,tn+1

�

. (2.7)

Under the filtrationFtn
, it is notable that the integrands in (2.6) and (2.7) are determin-

istic functions of s. Thus some numerical integration methods can be used to approximate

the integrals in (2.6) and (2.7) accurately. From the trapezoidal rule, we obtain the identity

∫ tn+1

tn

E
x
tn

�

f tn,x
s

�

ds =
1

2
∆tn f

tn,x
tn
+

1

2
∆tnE

x
tn

�

f
tn,x

tn+1

�

+ Rn
yc , (2.8)

with the truncation error

Rn
yc
=

∫ tn+1

tn

�

E
x
tn

�

f tn,x
s

�− 1

2
f

tn,x
tn
− 1

2
E

x
tn

�

f
tn,x

tn+1

�
�

ds .

Substituting (2.8) into (2.6), we deduce that

Y
tn,x

tn
= Ex

tn

�

Y
tn,x

tn+1

�

+
1

2
∆tn f

tn ,x
tn
+

1

2
∆tnE

x
tn

�

f
tn,x

tn+1

�

+ Rn
yc

. (2.9)

In proposing an explicit numerical scheme to solve for {Y tn,x
tn
}, we approximate the

Y
tn,x

tn
in f

tn,x
tn
= f (tn, X n, Y

tn,x
tn

, Z
tn,x
tn
) by the right rectangle formula

Y
tn,x

tn
= Ex

tn

�

Y
tn ,x
tn+1

�

+∆tnE
x
tn

�

f
tn,x

tn+1

�

+ Rn
yr , (2.10)
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where Rn
yr
=
∫ tn+1

tn
(Ex

tn
[ f

tn,x
s ]−Ex

tn
[ f

tn,x
tn+1
])ds. Thus we obtain the following reference equa-

tion to solve for {Y tn,x
tn
}— viz.

Y
tn,x

tn
= Ex

tn

�

Y
tn,x

tn+1

�

+
1

2
∆tn f̄

tn,x
tn
+

1

2
∆tnE

x
tn

�

f
tn,x

tn+1

�

+ Rn
y , (2.11)

where we have f̄
tn,x

tn
= f (tn, X

tn ,x
tn

,Ex
tn
[Y

tn ,x
tn+1
] +∆tnE

x
tn
[ f

tn,x
tn+1
], Z

tn ,x
tn
) and Rn

y
= Rn

yc
+ Rn

yp

with Rn
yp =∆tn( f

tn ,x
tn
− f̄

tn ,x
tn
)/2. Then from (2.7) and the definition of ∆W̃n,tn+1

, we intro-

duce a reference equation to solve for {Z tn ,x
tn
}— viz.

1

2
∆tnZ

tn,x
tn
= Ex

tn

�

Y
tn ,x
tn+1
∆W̃ ∗n,tn+1

�

+∆tnE
x
tn

�

f
tn,x

tn+1
∆W̃ ∗n,tn+1

�

+ Rn
z , (2.12)

where Rn
z
= Rn

z1
+ Rn

z2
with Rn

z1
=
∫ tn+1

tn
E

x
tn
[ f

tn ,x
s ∆W̃ ∗

n,tn+1
]ds −∆tnE

x
tn
[ f

tn,x
tn+1
∆W̃ ∗

n,tn+1
] and

Rn
z2
= 1

2∆tnZ
tn,x
tn
−Ex

tn
[
∫ tn+1

tn
Z

tn,x
s dWs ·∆W̃ ∗n,tn+1

].

Remark 2.1. If the generator f , the terminal condition ξ, the drift coefficient b and the dif-

fusion coefficient σ are sufficiently smooth, then F(s) = Ex
tn
[ f

tn,x
s ] is a sufficiently smooth

function of s. From the theory of numerical integration, the truncation terms Rn
yc and Rn

yr

are O ((∆tn)
3) and O ((∆tn)

2), respectively — and further, Rn
yp ∼ O ((∆tn)

3). Consequently,

the truncation error term Rn
y in (2.11) is O ((∆tn)

3). In using the Gaussian process ∆W̃ ∗n,t ,

the truncation error term Rn
z

in (2.12) is also O ((∆tn)
3). More detailed analysis of these

terms is discussed in Section 3.

2.2. The explicit scheme

The triple (X n, Y n, Zn) is used to denote the numerical approximation of the solution

(X tn
, Ytn

, Ztn
) to the decoupled FBSDE (1.1) at the time level t = tn(n= N , · · · , 0). To sim-

plify our presentation, we also use f n to denote f (tn, X n, Y n, Zn) when the context is clear.

From the three reference equations (2.5), (2.11) and (2.12), we propose the following

explicit scheme for solving the decoupled FBSDE (1.1):

Scheme 1. Given the random variables X0, Y N and ZN , for n = N − 1, · · · , 1,0 solve for

the random variables Y n and Zn from

1

2
∆tnZn = EX n

tn

�

Y n+1
∆W̃ ∗n,tn+1

�

+∆tnE
X n

tn

�

f n+1
∆W̃ ∗n,tn+1

�

, (2.13)







Ȳ n =EX n

tn

�

Y n+1
�

+∆tnE
X n

tn

�

f n+1
�

,

Y n =EX n

tn

�

Y n+1
�

+
1

2
∆tn f̄ n +

1

2
∆tnE

X n

tn

�

f n+1
�

,
(2.14)

where f̄ n = f (tn, X n, Ȳ n, Zn),∆W̃n,tn+1
is defined by (2.1) with s = tn+1, and the X n+1 used

in (2.13) and (2.14) is rendered by

X n+1 = X n +φ
�

tn, X n,∆tn,∆Wn,tn+1
,ξn+1
�

. (2.15)
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In Scheme 1, we first predict the value Ȳ n of Y n, and then use this value to solve for Y n from

(2.14). The computing cost is notably less than the implicit numerical schemes [15,17,18].

Its accuracy of course depends not only on the accuracy of the scheme (2.13) and (2.14) for

the BSDE in (2.2), but also on the accuracy of the scheme (2.15) for the SDE in (2.2). As

discussed in Section 3, it turns out that Scheme 1 is second-order when weak second-order

methods are applied to solve the forward SDE.

The random variables ∆Wn,tn+1
, ξn+1 and ∆W̃n,tn+1

are correlated, and they can be

orthogonalised in any simulation via the Gram-Schmidt process. For example, when φ

does not depend on ξn, ∆Wn,tn+1
and ∆W̃n,tn+1

can be simulated by

∆Wn,tn+1
=
p

∆tnN (0,1) , ∆W̃n,tn+1
=

p

∆tn

2

�

N (0,1)−p3Ñ(0,1)
�

, (2.16)

where N (0,1) and Ñ(0,1) are two independent standard normal random variables. The

conditional mathematical expectations EX n

tn
[Y n+1], EX n

tn
[ f n+1], EX n

tn
[Y n+1

∆W̃ ∗n,tn+1
], and

E
X n

tn
[ f n+1

∆W̃ ∗n,tn+1
] should be calculated by some numerical procedure, such as a Monte-

Carlo method or Gauss-type quadrature — cf. Refs. [15,17] for more details.

3. Error Estimates

Let Ỹ
tn,X n

tn+1
and Z̃

tn,X n

tn+1
denote the respective values of Y

tn,X n

tn+1
and Z

tn,X n

tn+1
at X n+1. For

convenience, we introduce the following notation:

f̃
tn,X n

tn+1
= f
�

tn+1, X n+1, Ỹ
tn ,X n

tn+1
, Z̃

tn,X n

tn+1

�

,

f̂
tn,X n

tn
= f
�

tn, X n,EX n

tn

�

Ỹ
tn,X n

tn+1

�

+∆tnE
X n

tn

�

f̃
tn,X n

tn+1

�

, Z̃
tn,X n

tn

�

,

en
y
= Y

tn,X n

tn
− Y n, en

z
= Z

tn,X n

tn
− Zn ,

en+1
f
= f̃

tn,X n

tn+1
− f n+1, en

f̂
= f̂

tn,X n

tn
− f̄ n .

From the definitions of Ỹ
tn,X n

tn+1
and Z̃

tn,X n

tn+1
, we then have that

Ỹ
tn,X n

tn+1
− Y n+1 = en+1

y
, Z̃

tn,X n

tn+1
− Zn+1 = en+1

z
.

3.1. Stability error estimate

We now introduce the following notation:

Rn
y1
= EX n

tn

�

Y
tn,X n

tn+1
− Ỹ

tn,X n

tn+1

�

, Rn
y2
= EX n

tn

�

f
tn ,X n

tn+1
− f̃

tn,X n

tn+1

�

,

Rn
y3
= EX n

tn

�

f̄
tn ,X n

tn
− f̂

tn ,X n

tn

�

, Rn
z1
= EX n

tn

�

(Y
tn,X n

tn+1
− Ỹ

tn,X n

tn+1
)∆W̃ ∗

n,tn+1

�

,

Rn
z2
= EX n

tn

�

( f
tn,X n

tn+1
− f̃

tn ,X n

tn+1
)∆W̃ ∗n,tn+1

�

. (3.1)

Our stability error estimate for Scheme 1 is summarised in the following theorem.
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Theorem 3.1. Let (X t , Yt , Zt), t ∈ [0, T ] satisfy the decoupled FBSDE (1.1) and (X n, Y n, Zn)

for n= 0,1, · · · , N −1 denote its numerical solution by Scheme 1, for a regular time partition

with constraint constant c0. Assume that the generator f (t, x , y, z) is Lipschitz continuous

with respect to x, y and z with Lipschitz constant L. Then for sufficiently small time step ∆t,

E

�

|en
y |2
�

+∆t

N−1
∑

i=n

(1+ C∆t)i−n
E

�|ei
z|2
�

≤C
�

E[|eN
y |2] +∆tE[|eN

z |2]
�

+

N−1
∑

i=n

(1+ C∆t)i−n
CE
�

|Ri
y1
|2 + (∆t)2(|Ri

y2
|2 + |Ri

y3
|2) + |Ri

y |2
�

∆t

+

N−1
∑

i=n

(1+ C∆t)i−nC∆tE

�
�

1

∆tn

�2

|Ri
z1
|2 + |Ri

z2
|2 +
�

1

∆tn

�2

|Ri
z
|2
�

(3.2)

for n= N −1, · · · , 1,0 . Here C is a positive constant depending on T, c0 and L; and the terms

Ri
y , Ri

z, Ri
y1

, Ri
y2

, Ri
y3

, Ri
z1

and Ri
z2

are defined in (2.11), (2.12) and (3.1), respectively.

Proof. We prove this theorem in three steps.

Step 1. The estimate of en
y .

For each integer n (0≤ n≤ N − 1), subtracting (2.14) from (2.11) gives

en
y
= EX n

tn

�

Y
tn,X n

tn+1
− Y n+1
�

+
1

2
∆tn

�

f̄
tn,X n

tn
− f̄ n
�

+
1

2
∆tnE

X n

tn

�

f
tn,X n

tn+1
− f n+1
�

+ Rn
y

= EX n

tn

�

Y
tn,X n

tn+1
− Ỹ

tn,X n

tn+1
+ Ỹ

tn ,X n

tn+1
− Y n+1
�

+
∆tn

2

�

f̄
tn,X n

tn
− f̂

tn,X n

tn
+ f̂

tn,X n

tn
− f̄ n
�

+
∆tn

2
E

X n

tn

�

f
tn,X n

tn+1
− f̃

tn,X n

tn+1
+ f̃

tn,X n

tn+1
− f n+1
�

+ Rn
y

= EX n

tn

�

en+1
y

�

+
∆tn

2
en

f̂
+
∆tn

2
E

X n

tn

�

en+1
f

�

+ Rn
y1
+
∆tn

2

�

Rn
y2
+ Rn

y3

�

+ Rn
y . (3.3)

Then from the properties |en

f̂
| ≤ L((1+L∆tn)(E

X n

tn
[|en+1

y |]+EX n

tn
[|en+1

z |])+|en
z |) and |EX n

tn
[en+1

f
]| ≤

L(EX n

tn
[|en+1

y
|] +EX n

tn
[|en+1

z
|]), it follows that

|en
y | ≤
�

�

�E
X n

tn
[en+1

y ]

�

�

�+
L∆tn

2
|en

z |+ L∆tn

�

1+
L∆tn

2

�

E
X n

tn

�

|en+1
y |+ |en+1

z |
�

+ |Rn
y1
|+ ∆tn

2

�

|Rn
y2
|+ |Rn

y3
|
�

+ |Rn
y | . (3.4)

On noting the two inequalities

(a + b)2 ≤ (1+ γ∆t)a2 +

�

1+
1

γ∆t

�

b2,

�
m
∑

n=1

an

�2

≤ m

m
∑

n=1

a2
n , (3.5)
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we then obtain the estimate for any positive real number γ and positive integer m:

|en
y |2 ≤ (1+ γ∆t)

�

�

�E
X n

tn
[en+1

y ]

�

�

�

2

+

�

1+
1

γ∆t

�§

L∆tn

2
|en

z |

+ L∆tn

�

1+
L∆tn

2

�

E
X n

tn

�

|en+1
y |+ |en+1

z |
�

+|Rn
y1
|+ ∆tn

2

�

|Rn
y2
|+ |Rn

y3
|
�

+ |Rn
y |
ª2

≤ (1+ γ∆t)

�

�

�E
X n

tn
[en+1

y ]

�

�

�

2

+

�

5L2(∆t)2

4
|en

z |2

+ 10L2(∆t)2
�

1+
L∆t

2

�2

E
X n

tn

�

|en+1
y
|2 + |en+1

z
|2
�

+5|Rn
y1
|2 + 5∆t2

2

�

|Rn
y2
|2 + |Rn

y3
|2
�

+ 5|Rn
y |2
�

+
5

γ

�

L2
∆t

4
|en

z
|2 + 2L2

∆t

�

1+
L∆t

2

�2

E
X n

tn

�

|en+1
y
|2 + |en+1

z
|2
�

�

+
1

γ∆t

�

5|Rn
y1
|2 + 5(∆t)2

2

�

|Rn
y2
|2 + |Rn

y3
|2
�

+ 5|Rn
y |2
�

. (3.6)

Step 2. The estimate of en
z .

From (2.12) and (2.13),

∆tn

2
en

z =E
X n

tn

�

(Y
tn ,X n

tn+1
− Y n+1)∆W̃ ∗n,tn+1

�

+∆tnE
X n

tn

�

( f
tn,X n

tn+1
− f n+1)∆W̃ ∗

n,tn+1

�

+ Rn
z

. (3.7)

As for (3.3), we get the identifies

E
X n

tn

�

(Y
tn,X n

tn+1
− Y n+1)∆W̃ ∗n,tn+1

�

= Rn
z1
+EX n

tn

�

en+1
y ∆W̃ ∗n,tn+1

�

,

E
X n

tn

�

( f
tn,X n

tn+1
− f n+1)∆W̃ ∗n,tn+1

�

= Rn
z2
+EX n

tn

�

en+1
f
∆W̃ ∗n,tn+1

�

,

and inserting them into (3.7) gives

en
z
=

2

∆tn

E
X n

tn

�

en+1
y
∆W̃ ∗

n,tn+1

�

+ 2EX n

tn

�

en+1
f
∆W̃ ∗

n,tn+1

�

+
2

∆tn

Rn
z1
+ 2Rn

z2
+

2

∆tn

Rn
z

.

Consequently we have the estimate

|en
z | ≤

2

∆tn

�

�

�E
X n

tn

�

en+1
y ∆W̃ ∗n,tn+1

�
�

�

�+ 2

�

�

�E
X n

tn

�

en+1
f
∆W̃ ∗n,tn+1

�
�

�

�

+
2

∆tn

|Rn
z1
|+ 2|Rn

z2
|+ 2

∆tn

|Rn
z | . (3.8)
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From Hölder’s inequality and (3.5) with γ∆t replaced by any positive real number ǫ, it

follows that

|en
z |2 ≤(1+ ǫ)
�

2

∆tn

�2 �
�

�E
X n

tn
[en+1

y ∆W̃ ∗n,tn+1
]

�

�

�

2

+

�

1+
1

ǫ

�
n

2

�

�

�E
X n

tn
[en+1

f
∆W̃ ∗n,tn+1

]

�

�

�

+
2

∆tn

|Rn
z1
|+ 2|Rn

z2
|+ 2

∆tn

|Rn
z |
ª2

≤(1+ ǫ)
�

2

∆tn

�2 �
�

�E
X n

tn
[en+1

y ∆W̃ ∗n,tn+1
]

�

�

�

2

+ 16

�

1+
1

ǫ

�§

E
X n

tn

�

|en+1
f
|2
�

E
X n

tn

�

|∆W̃ ∗n,tn+1
|2
�

+
1

(∆tn)
2
|Rn

z1
|2 + |Rn

z2
|2 + 1

(∆tn)
2
|Rn

z |2
ª

. (3.9)

For the three conditional expectations in (3.9), we have the estimates

E
X n

tn

�

|∆W̃ ∗n,tn+1
|2
�

= d∆tn ,

E
X n

tn

�

|en+1
f
|2
�

≤ EX n

tn

�

|L(|en+1
y
|+ |en+1

z
|)|2
�

≤ 2L2
E

X n

tn

�

|en+1
y
|2 + |en+1

z
|2
�

,

E
X n

tn

�

�

�[en+1
y
∆W̃ ∗

n,tn+1
]

�

�

�

2

=

�

�

�E
X n

tn

�

(en+1
y
−EX n

tn
[en+1

y
])∆W̃ ∗

n,tn+1

�
�

�

�

2

≤ EX n

tn

�

|∆W̃∗n,tn+1
|2
�

E
X n

tn

h�

en+1
y −EX n

tn
[en+1

y ]
�2
i

= d∆tn

�

E
X n

tn

�

|en+1
y |2
�

−
�

�

�E
X n

tn
[en+1

y ]

�

�

�

2
�

.

Substituting these three estimates into (3.9), we obtain

|en
z
|2 ≤(1+ ǫ) 4d

∆tn

�

E
X n

tn

�

|en+1
y
|2
�

−
�

�

�E
X n

tn
[en+1

y
]

�

�

�

2
�

+ 32

�

1+
1

ǫ

�

L2d∆tnE
X n

tn

�

|en+1
y |2 + |en+1

z |2
�

+ 16

�

1+
1

ǫ

��

1

(∆tn)
2
|Rz1
|2 + |Rn

z2
|2 + 1

(∆tn)
2
|Rn

z |2
�

. (3.10)

On dividing both sides of (3.10) by (1+ ǫ)4d/∆t, we conclude that

∆t

4d(1+ ǫ)
|en

z |2 ≤c0

�

E
X n

tn

�

|en+1
y |2
�

−
�

�

�E
X n

tn
[en+1

y ]

�

�

�

2
�

+
8L2

ǫ
∆tn∆tEX n

tn

�

|en+1
y |2 + |en+1

z |2
�

+
4∆t

dǫ

�

1

(∆tn)
2
|Rn

z1
|2 + |Rn

z2
|2 + 1

(∆tn)
2
|Rn

z |2
�

. (3.11)

Step 3. The proof of (3.2).

Multiplying (3.6) by c0 and then adding the result to (3.11), we obtain
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c0|en
y |2 +

∆t

4(1+ ǫ)
|en

z |2

≤c0

�

1+

�

γ+ 10L2

�

1+
L∆t

2

�2�1

γ
+∆t

�

+
8L2
∆t

c0ǫ

�

∆t

�

E
X n

tn

�

|en+1
y |2
�

+

�

10c0

�

1+
L∆t

2

�2 �1

γ
+∆t

�

+
8∆t

dǫ

�

L2
∆tEX n

tn

�|en+1
z |2
�

+
5c0 L2

4

�

1

γ
+∆t)

�

∆t|en
z |2 + 5c0

�

1+
1

γ∆t

�§

|Rn
y1
|2 + 1

2
∆t2
�

|Rn
y2
|2 + |Rn

y3
|2
�

+ |Rn
y |2
ª

+
4∆t

dǫ

�
�

1

∆tn

�2

|Rn
z1
|2 + |Rn

z2
|2 +
�

1

∆tn

�2

|Rn
z |2
�

,

which can be simplified to

c0E

�

|en
y |2
�

+ C3∆tE
�|en

z |2
�

≤c0[1+ C2∆t]E
�

|en+1
y
|2
�

+ C4∆tE
�|en+1

z
|2�

+
C5

∆t
E

�

|Rn
y1
|2 + 1

2
∆t2
�

|Rn
y2
|2 + |Rn

y3
|2
�

+ |Rn
y |2
�

+
C6∆t

ǫ
E

�
� 1

∆tn

�2|Rn
z1
|2 + |Rn

z2
|2 +
� 1

∆tn

�2|Rn
z |2
�

,

where

C2 =

�

γ+ 10L2

�

1+
L∆t

2

�2 �1

γ
+∆t

�

+ 8L2
∆t/(c0ǫ)

�

∆t ,

C3 =
1

4(1+ ǫ)
− 5c0 L2

4

�

1

γ
+∆t

�

,

C4 =

�

10c0

�

1+
L∆t

2

�2 �1

γ
+∆t

�

+
8∆t

dǫ

�

L2 ,

C5 = 5c0

1+ γ∆t

γ
, C6 =

4

d
.

Now choose ǫ = 1, γ large enough and ∆t0 sufficiently small such that if 0 < ∆t ≤ ∆t0

there exist two positive constants C and C∗ depending on c0 and L satisfying C2 ≤ C ,

C5 ≤ C , and C3 − C4 > C∗ > 0. Then for 0<∆t ≤∆t0, we obtain

c0E

�

|en
y |2
�

+ C3∆tE
�|en

z |2
�

≤c0(1+ C∆t)E
�

|en+1
y |2
�

+ C4∆tE
�|en+1

z |2
�

+
CE
�

|Rn
y1
|2 + 1

2(∆t)2(|Rn
y2
|2 + |Rn

y3
|2) + |Rn

y |2
�

∆t

+ C6∆tE

�
� 1

∆tn

�2|Rn
z1
|2 + |Rn

z2
|2 +
� 1

∆tn

�2|Rn
z |2
�

. (3.12)
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On substituting ei
y
, i = n+ 1, · · · , N − 1 recursively, we consequently deduce that

c0E

�

|en
y |2
�

+ C3∆t

N−1
∑

i=n

(1+ C∆t)i−n
E

�|ei
z|2
�

≤(1+ C∆t)N−nc0E

�

|eN
y
|2
�

+ C4∆t

N
∑

i=n+1

(1+ C∆t)i−n
E

�|ei
z
|2�

+

N−1
∑

i=n

(1+ C∆t)i−n
CE
�

|Ri
y1
|2 + (∆t)2(|Rn

y2
|2 + |Rn

y2
|2) + |Ri

y |2
�

∆t

+

N−1
∑

i=n

(1+ C∆t)i−nC6∆tE

�
�

1

∆tn

�2

|Ri
z1
|2 + |Ri

z2
|2 +
�

1

∆tn

�2

|Ri
z|2
�

(3.13)

— i.e.

c0E

�

|en
y |2
�

+ C∗∆t

N−1
∑

i=n

(1+ C∆t)i−n
E

�|ei
z|2
�

≤(1+ C∆t)N−nc0E

�

|eN
y
|2
�

+ C4∆t(1+ C∆t)N−n
E

�|eN
z
|2�

+

N−1
∑

i=n

(1+ C∆t)i−n
CE
�

|Ri
y1
|2 + (∆t)2(|Ri

y2
|2 + |Ri

y3
|2) + |Ri

y |2
�

∆t

+

N−1
∑

i=n

(1+ C∆t)i−nC6∆tE

�
�

1

∆tn

�2

|Ri
z1
|2 + |Ri

z2
|2 +
�

1

∆tn

�2

|Ri
z
|2
�

,

which leads to the inequality (3.2).

Remark 3.1.

• The estimate (3.2) in Theorem 3.1 implies that Scheme 1 is stable.

• The terms Rn
y

and Rn
z

are the truncated errors from the numerical integration methods

used in (2.11) and (2.12). The five terms Rn
y1

, Rn
y2

, Rn
y3

, Rn
z1

and Rn
z2

are determined

by the numerical approximation (2.15) for solving the SDE in (1.1), which reflect the

local errors (in weak sense) of the SDE scheme. Under certain regularity conditions

on b, σ, f and ξ, the estimates of these terms can be obtained, then we can get the

error estimates for Scheme 1 by Theorem 3.1.

3.2. Error estimates for the explicit scheme

Let us now consider the error estimate of Scheme 1 for the decoupled FBSDE (1.1) with

ξ = ϕ(XT ) under some regularity conditions on the functions b, σ, f andϕ. We first derive

estimates for the error terms Rn
y , Rn

z , Rn
y1

, Rn
y2

, Rn
y3

, Rn
z1

and Rn
z2

defined in Theorem 3.1, and

then get the error estimate of Scheme 1 from Theorem 3.1.
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To proceed, we introduce the following assumption:

Assumption 3.1. Assume X t0
is Ft0

-measurable with E[|X t0
|2]<∞. The drift coefficient

b and the diffusion coefficientσ are jointly L2-measurable in (t, x) ∈ [t0, T ]×Rq, uniformly

Lipschitz continuous and of linear growth — i.e. there exist constants L > 0 and K > 0

such that

|b(t, x)|2 ≤ K(1+ |x |2) , |σ(t, x)|2 ≤ K(1+ |x |2) , (3.14)

|b(t, x)− b(t, y)| ≤ L|x − y| , |σ(t, x)−σ(t, y)| ≤ L|x − y| , (3.15)

for all t, s ∈ [0, T ] and x , y ∈ Rq.

It is well-known that under Assumption 3.1 the SDE in (1.1) has a unique solution [12], and

the following lemma shows some regularity results for the solution (Yt , Zt) of the decoupled

FBSDE (1.1).

Lemma 3.1. (cf. Refs. [2,4,5,10,14]) Let the functions b, σ, f and ϕ be uniformly Lipschitz

continuous with respect to (x , y, z) and Hölder continuous with respect to t with parameter

1/2. Assume ϕ ∈ C2+α
b

for some α ∈ (0,1), and that the matrix-valued function a = σσ∗ is

uniformly elliptic. Then the solution (Yt , Zt) of (1.1) can be represented as Yt = u(t, X t ) and

Zt =∇xu(t, X t )σ(t, X t ), where u(t, x) is the smooth solution of the PDE

(∂t +Lt,x)u(t, x) + f (t, x ,u(t, x),∇x u(t, x)σ(t, x)) = 0

with the terminal condition u(T, x) = ϕ(x), whereL is the second order differential operator

defined by

Lt,x =
1

2

∑

i, j

[σσ∗]i j(t, x)∂ 2
xi x j
+
∑

i

bi(t, x)∂xi
.

Furthermore, if b,σ ∈ C
1+k,2+2k

b
, f ∈ C

1+k,2+2k,2+2k

b
and ϕ ∈ C2+2k+α

b
for some α ∈ (0,1)

where k = 0,1,2, · · · , then u ∈ C
1+k,2+2k

b
for k = 0,1,2, · · · .

Lemma 3.1 states that under suitable conditions the solution Yt and Zt of (1.1) are

functions of (t, X t), and smooth functions if b, σ, f and ϕ are smooth.

Obviously, the accuracy of Scheme 1 depends on the accuracy of the numerical scheme

for solving the forward SDE, and we make the following assumption on the scheme (2.15).

Assumption 3.2. The numerical solution X n solved by (2.15) has the following stability

property: for any positive integer r, there exists a constant C ∈ (0,∞) such that

max
0≤n≤N

E [|X n|r] ≤ C (1+E[|X0|r]) (3.16)

— and the following approximation properties: there exist positive numbers r1, r2, β , γ

such that for any g ∈ C
2β+2

b
and for n= 0,1, · · · , N − 1 we have

�

�

�E
X n

tn

�

g(X
tn ,x
tn+1
)− g(X n+1)
�
�

�

� ≤ Cg(1+ |X n|2r1)(∆t)β+1 , (3.17)
�

�

�E
X n

tn

�

(g(X
tn ,x
tn+1
)− g(X n+1))∆W̃tn+1

�
�

�

� ≤ Cg(1+ |X n|2r2)(∆t)γ+1 , (3.18)
�

�E

�

g(X tn
)− g(X n)
��

� ≤ Cg(∆t)β , (3.19)
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where Cg > 0 is a constant that does not depend on ∆t. The number β + 1 is called the

local weak order of the approximation.

Remark 3.2. Many numerical schemes for forward SDE have the above properties — e.g.

for the Euler and Milstein schemes, with β = γ = 1; and for the weak order-2.0 Itô-Taylor

scheme [6], with β = γ = 2. Also, under Assumption 3.1, if E[|X0|2m] <∞ for some

integer m ≥ 1 then the solution of (2.3) has the estimate

E
X n

tn
(|X tn,X n

s |2m) ≤ (1+ |X n|2m)eC(s−tn) (3.20)

for any s ∈ [tn, T ], where C is a positive constant depending only on the constants K , L

and m.

We now estimate the truncation errors Rn
y , Rn

z , Rn
y1

, Rn
y2

, Rn
y3

, Rn
z1

and Rn
z2

under certain

regularity conditions on b, σ, f and ϕ. For clarity, we only consider the case q = d = 1.

Let L0 and L1 be two differential operators defined by

L1 = σ∂x , L0 = ∂t + b∂x +
1

2
σ2∂ 2

x x
.

We introduce the following two lemmas.

Lemma 3.2. If f (t, x , y, z) ∈ C
2,4,4,4

b
, b(t, x),σ(t, x) ∈ C

2,4

b
, ϕ ∈ C4+α

b
for α ∈ (0,1) and

|b(t, x)|2 ≤ K(1+ |x |2),|σ(t, x)|2 ≤ K(1+ |x |2), then for sufficiently small time step ∆t we

have

E

�

|Rn
y
|2
�

≤ C
�

1+E[|X n|8]� (∆t)6 , for any 0≤ n≤ N − 1 , (3.21)

where C is a positive constant depending only on T, K and the upper bounds of the derivatives

of b, σ, f and ϕ.

Lemma 3.3. Under the conditions of Lemma 3.2, for sufficiently small time step ∆t and for

any 0≤ n≤ N − 1,

|Rn
z1
| =
�

�

�

�

�

∫ tn+1

tn

E
X n

tn
[ f tn ,x

s
∆W̃tn+1

]ds−∆tnE
X n

tn
[ f

tn,X n

tn+1
∆W̃tn+1

]

�

�

�

�

�

2

≤ C
�

1+EX n

tn
[|X n|8]
�

(∆tn)
6,

|Rn
z2| =
�

�

�

�

�

1

2
∆tnZ

tn,X n

tn
−EX n

tn

��∫ tn+1

tn

Z tn,x
s dWs

�

∆W̃tn+1

�
�

�

�

�

�

2

≤ C
�

1+EX n

tn

�|X n|8�
�

(∆tn)
6,

|Rn
z |2 ≤C
�

1+EX n

tn

�|X n|8�
�

(∆t)6 , (3.22)

where C is a positive constant depending on T, K and the upper bounds of the derivatives of

b, σ, f and ϕ.

The proofs of Lemmas 3.2 and 3.3 are quite similar to those for certain lemmas in

Refs. [18], so omitted here.

Let us now proceed to deduce the error estimate for Scheme 1. We state the error

estimate result in the following theorem.
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Theorem 3.2. Under Assumption 3.2 and the conditions of Lemma 3.2, for sufficiently small

time step ∆t, we have the estimate

E

�

|en
y |2
�

+∆t

N−1
∑

i=n

(1+ C∆t)i−n
E

�|ei
z |2
�

≤C1

�

E[|eN
y |2] +∆tE[|eN

z |2]
�

+ C2

�

∆t2β +∆t2γ +∆t4
�

for 0 ≤ n ≤ N − 1, where C is a positive constant depending on c0 and L, C1 is a positive

constant depending on c0, T and L, C2 is also a positive constant depending on c0, T , L, K,

the initial value of X t in (1.1), and the upper bounds of the derivatives of b, σ, f and ϕ.

Proof. From the definitions of Ri
y1

, Ri
y2

, Ri
y3

, Ri
z1

and Ri
z2

in Theorem 3.1, if Assump-

tion 3.2 holds we have the following estimates under the conditions of Lemma 3.2:

E

�|X i|2� ≤ C
�

1+E[|X0|2]
�

,

E

�

|Ri
y1
|2
�

≤ C
�

1+E[|X i|4r1]
�

(∆t)2β+2 ≤ C
�

1+E[|X0|4r1]
�

(∆t)2β+2 ,

E

�

|Ri
y2
|2
�

≤ C
�

1+E[|X i|4r2]
�

(∆t)2β+2 ≤ C
�

1+E[|X0|4r2]
�

(∆t)2β+2 ,

E

�

|Ri
y3
|2
�

≤ C
�

1+E[|X i|4r3]
�

(∆t)2β+2 ≤ C
�

1+E[|X0|4r3]
�

(∆t)2β+2 ,

E

�

|Ri
z1
|2
�

≤ C
�

1+E[|X i|4r4
�

(∆t)2γ+2 ≤ C
�

1+E[|X0|4r4
�

(∆t)2γ+2 ,

E

�

|Ri
z2
|2
�

≤ C
�

1+E[|X i|4r5]
�

(∆t)2γ+2 ≤ C
�

1+E[|X0|4r5]
�

(∆t)2γ+2 (3.23)

for i = 0,1, · · · , N −1, where ri(i = 1, · · · , 5) are positive numbers independent of the time

partition. From Lemma 3.2, for 0≤ i ≤ N − 1 we have

E

�

|Ri
y |2
�

≤ C
�

1+E[|X0|8]
�

(∆t)6 , E

�|Ri
z|2
� ≤ C
�

1+E[|X0|8]
�

(∆t)6 . (3.24)

From (3.23) and (3.24),

N−1
∑

i=n

(1+ C∆t)i−n
CE
�

|Ri
y1
|2 + (∆t)2(|Ri

y2
|2 + |Ri

y3
|2) + |Ri

y
|2
�

∆t

≤C

�

1+

3
∑

i=1

E[|X0|4ri ] +E[|X0|8]
�

�

(∆t)2β + (∆t)4
�

(3.25)

and

N−1
∑

i=n

(1+ C∆t)i−n
∆tE

�
�

2

∆tn

�2

|Ri
z1
|2 + |Ri

z2
|2 +
�

2

∆tn

�2

|Ri
z|2
�

≤C
�

1+E[|X0|4r4] +E[|X0|4r5] +E[|X0|8]
� �

(∆t)2γ + (∆t)4
�

. (3.26)

From Theorem 3.1, and the estimates (3.25) and (3.26), we complete the proof.
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Remark 3.3. Under Theorem 3.2, the accuracy of Scheme 1 depends on the accuracy of

the numerical methods used to solve the forward SDE. The explicit scheme has first-order

accuracy in solving for Yt and Zt when either the Euler scheme or the Milstein scheme is

used, but it is second-order accuracy when weak order-2.0 Itô-Taylor schemes are used.

4. Numerical Experiments

Some numerical calculations have been carried out to illustrate the high accuracy of

our explicit scheme. To confirm the conclusion of Theorem 3.2, we used the Euler scheme,

the Milstein scheme and a weak order-2.0 Itô-Taylor (Weak 2.0 for short) scheme to solve

the forward SDE. The Weak 2.0 scheme chosen to solve the forward SDE was [6]

X n+1 =X n + bn
∆tn +σ

n
∆Wn,tn+1

+
1

2
σnσn

x

�

∆W 2
n,tn+1
−∆tn

�

+
1

2

�

σn
t +σ

n bn
x + bnσn

x +
1

2
(σn)2σn

x x

�

∆tn∆Wn,tn+1

+
1

2

�

bn
t + bn bn

x + (σ
n)2 bn

x x

�

(∆tn)
2 . (4.1)

All three numerical schemes satisfy Assumption 3.2 — cf. [18]. For the Euler and Milstein

schemes, the inequalities (3.17)-(3.19) hold for β = γ= 1.0, while for the weak order-2.0

scheme they hold for β = γ= 2.0.

In our numerical experiments, we set X0 = 0, the initial time t0 = 0 and the terminal

time T = 1.0. The degree of the Lagrangian interpolation polynomials was k = 5. In the

following tables, |Y0 − Y 0| and |Z0 − Z0| denote the absolute errors between the exact and

numerical solutions for Yt and Zt at (t0, X0), respectively (CR stand for convergence rate).

Example 4.1. In this example, we test Scheme 1 for the following decoupled FBSDE with

a linear driver function f with respect to Yt and Zt :




























X t =X0 +

∫ t

0

sin(s+ X s)ds+

∫ t

0

cos(s+ X s)dWs,

Yt = sin(T + XT ) cos(t + XT ) +

∫ T

t

�

2Ys cos2(s+ X s)

+
�

sin2(s+ X s)− cos2(s+ X s)
��

1+ sin(s+ X s) + cos2(s+ X s)
�

+ Zs cos(s+ X s)
�

ds−
∫ T

t

ZsdWs .

(4.2)

The exact solution of (4.2) is
(

Yt = sin(t + X t) cos(t + X t),

Zt = cos(t + X t)
�

cos2(t + X t)− sin2(t + X t)
�

.
(4.3)

The errors and convergence rates for different time partitions and different SDE schemes

(the Euler, the Milstein, and the Weak 2.0 schemes) are listed in Table 1.
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Table 1: Errors and onvergene rates for Example 4.1.

SDE Scheme Euler Milstein Weak 2.0

N |Y0 − Y 0| |Z0 − Z0| |Y0 − Y 0| |Z0 − Z0| |Y0 − Y 0| |Z0 − Z0|
16 8.689E-02 1.877E-02 6.485E-02 1.403E-02 4.690E-03 1.550E-03

32 4.528E-02 1.201E-02 3.296E-02 9.593E-03 1.226E-03 3.632E-04

64 2.308E-02 6.653E-03 1.661E-02 5.466E-03 3.140E-04 7.851E-05

128 1.165E-02 3.491E-03 8.337E-03 2.903E-03 7.947E-05 1.924E-05

256 5.850E-03 1.786E-03 4.176E-03 1.493E-03 1.998E-05 4.429E-06

CR 0.974 0.857 0.990 0.819 1.970 2.114

Table 2: Errors and onvergene rates for Example 4.2.

SDE Scheme Euler Milstein Weak 2.0

N |Y0 − Y 0| |Z0 − Z0| |Y0 − Y 0| |Z0 − Z0| |Y0 − Y 0| |Z0 − Z0|
16 1.413E-03 1.695E-03 1.276E-03 1.662E-03 7.467E-05 1.291E-04

32 7.158E-04 8.023E-04 6.465E-04 7.859E-04 1.860E-05 3.440E-05

64 3.600E-04 3.893E-04 3.252E-04 3.811E-04 4.713E-06 8.895E-06

128 1.806E-04 1.916E-04 1.632E-04 1.875E-04 1.158E-06 2.240E-06

256 9.045E-05 9.502E-05 8.171E-05 9.295E-05 2.812E-07 5.578E-07

CR 0.992 1.038 0.992 1.039 2.011 1.965

Example 4.2. This is an FBSDE example with a nonlinear driver function:























X t =X0 +

∫ t

0

1

1+ 2 exp(s+ X s)
ds+

∫ t

0

exp(s+ X s)

1+ exp(s+ X s)
dWs ,

Yt =
exp(t + XT )

1+ exp(t + XT )
+

∫ T

t

�

− 2Ys

1+ 2 exp(s+ X s)

−1

2

�

YsZs

1+ exp(s+ X s)
− Y 2

s Zs

��

ds−
∫ T

t

ZsdWs .

(4.4)

The analytic solution of (4.4) is











Yt =
exp(t + X t)

1+ exp(t + X t)
,

Zt =
(exp(t + X t))

2

(1+ exp(t + X t))
3

.

(4.5)

The errors and convergence rates of our experiments are listed in Table 2.

As shown in Tables 1 and 2, for the weak order-1.0 schemes such as the Euler scheme

or the Milstein scheme the convergence rate of our explicit scheme is only 1 — but when we

used the weak order-2.0 scheme, the convergence rate was 2. This outcome is consistent

with Theorem 3.2.
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5. Conclusions

An explicit numerical scheme for solving decoupled forward-backward stochastic differ-

ential equations is proposed in this article. Errors for the scheme have been analysed, and

a general error estimate was obtained for decoupled forward-backward stochastic differen-

tial equations that also guarantees the scheme is stable. Under some regularity conditions

on the coefficients of the decoupled forward-backward stochastic differential equations, the

error estimate implies that the accuracy of the explicit scheme depends on the numerical

method for solving forward SDE. In particular, the proposed method is generally order-

1 accurate for solving Yt and Zt when the Euler or Milstein scheme is used, and order-2

accurate when weak order-2.0 Itô-Taylor type schemes are used.
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