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Abstract. In this article, we derive a new fourth-order finite difference formula based

on off-step discretisation for the solution of two-dimensional nonlinear triharmonic par-

tial differential equations on a 9-point compact stencil, where the values of u, (∂ 2u/∂ n2)

and (∂ 4u/∂ n4) are prescribed on the boundary. We introduce new ways to handle the

boundary conditions, so there is no need to discretise the boundary conditions involving

the partial derivatives. The Laplacian and biharmonic of the solution are obtained as

a by-product of our approach, and we only need to solve a system of three equations.

The new method is directly applicable to singular problems, and we do not require any

fictitious points for computation. We compare its advantages and implementation with

existing basic iterative methods, and numerical examples are considered to verify its

fourth-order convergence rate.
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1. Introduction

We consider the numerical solution of the two-dimensional (2D) nonlinear triharmonic

equation of the form

ǫ∇6u(x , y)≡ ǫ
�

∂ 6u

∂ x6
+ 3

∂ 6u

∂ x4∂ y2
+ 3

∂ 6u

∂ x2∂ y4
+
∂ 6u

∂ y6

�

= f (x , y,u,ux ,uy ,∇2u,∇2ux ,∇2uy ,∇4u,∇4ux ,∇4uy) , 0< x , y < 1 , (1.1)
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where 0 < ǫ ≤ 1, (x , y) ∈ Ω = {(x , y)|0 < x , y < 1} with boundary ∂Ω, and ∇2u(x , y) ≡
∂ 2u/∂ x2 + ∂ 2u/∂ y2 and ∇4u(x , y) ≡ ∂ 4u/∂ x4 + 2∂ 4u/(∂ x2∂ y2) + ∂ 4u/∂ y4 represent

the 2D Laplacian and biharmonic of the function u(x , y). We assume that the solution

u(x , y) is smooth enough to maintain the order and accuracy of the scheme as high as

possible. Dirichlet boundary conditions of the second kind are considered, given by

u= g1(x , y),
∂ 2u

∂ n2
= g2(x , y),

∂ 4u

∂ n4
= g3(x , y), (x , y) ∈ ∂Ω. (1.2)

The triharmonic equation (1.1) is a sixth-order elliptic partial differential equation en-

countered in viscous flow problems. Two-dimensional slowly rotating highly viscous flow

in small cavities is modelled by the triharmonic equation for the stream function. However,

few researchers have tried to solve triharmonic equations numerically, for it is difficult to

discretise the differential equations and boundary conditions on a compact cell — and

moreover, triharmonic problems require large computing power and a huge amount of

memory that have begun to become available only recently.

Various techniques for the numerical solution of 2D nonlinear biharmonic equations

have been considered in the literature, but not for 2D nonlinear triharmonic equations.

A popular technique for the biharmonic equation is to split it into two coupled Poisson

equations, each of which may be discretised using standard approximations and solved

using a Poisson solver. A difficulty with this approach is that the boundary conditions for

the new variable Laplacian introduced are not known and need to be approximated at

the boundary. Smith [26] and Ehrlich [2, 3] have solved 2D biharmonic equations using

coupled second-order accurate finite difference approximations, and Bauer and Riess [1]

have used a block iterative method. Kwon et al. [7], Stephenson [28], Evans and Mohanty

[4], and Mohanty et al. [9–12] subsequently developed certain second-order and fourth-

order finite difference approximations for biharmonic problems using a 9-point compact

cell. The compact cell approach involves discretising the biharmonic equations, using not

just the grid values of the unknown solution u but also the values of the derivatives ux x ,uy y

and uzz at the selected grid points. For 2D and 3D problems, these researchers solved

systems of three and four equations to obtain the values of u,ux x ,uy y and u,ux x ,uy y ,uzz ,

respectively. Fourth-order compact finite difference schemes have become quite popular,

compared with lower order schemes that require high mesh refinement and hence are less

computationally efficient. The higher order accuracy of the fourth-order compact methods,

combined with the compactness of the difference stencil, yields highly accurate numerical

solutions on relatively coarse grids with greater computational efficiency.

One numerical approach for solving the 2D triharmonic equation (1.1) is to discretise

the differential equation on a uniform grid using 49-point approximations with a trun-

cation error of order h2. This approximation connects central point values, in each case

involving 48 neighbouring values of u in a 7× 7 grid. The central value of u is connected

to grid points three grids away in each direction from the central point, and the differ-

ence approximations need to be modified at grid points near the boundaries. However, in

the solution of the linear and nonlinear systems obtained through such 49-point discreti-

sation of the 2D triharmonic equation, there are serious computational difficulties that
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Figure 1: 9-point 2D single omputational ell.
approximations using compact cells avoid. The compact cell approach previously involved

discretising not only the grid values of the unknown solution u but also the values of the

derivatives ux x and uy y at selected grid points [9]. Recently, Mohanty et al. [15–20] have

developed single-cell compact finite difference discretisations of order two and four, for

multi-dimensional biharmonic and triharmonic problems.

In this article, we split the differential equation (1.1) into a system of three Poisson

equations, and introduce new ways to handle the boundary conditions that avoid discretis-

ing them in the system of equations. We require only a 9-point compact cell (cf. Fig. 1)

and four off-step grid points, in a fourth-order approximation of the differential equation

(1.1). The Dirichlet boundary conditions (1.2) are exactly satisfied, with no approxima-

tions required for the derivatives at the boundaries. The proposed new technique is not

applicable to the triharmonic problem of the first kind, as we cannot obtain the 9-point

compact cell fourth-order approximations in that case. However, the methods developed

in our earlier work [19,20]were not directly applicable to singular problems without some

modification, but the new method proposed here is.

In Section 2, we discuss the finite difference approximation for the differential equa-

tions (1.1), and in Section 3 we give a complete derivation of the method. In Section 4, we

discuss block iterative methods, and in Section 5 we present stability analysis and illustrate

the method and its fourth-order convergence by solving three problems. We compare the

advantages and implementation of the proposed new method in the context of existing

basic iterative methods. Our concluding remarks are made in Section 6.

2. Triharmonic Discretisation

Consider a 2D uniform grid centred at the point (x l , ym), where h > 0 is the constant

mesh length in both the x and y directions, and x l = lh, ym = mh, l, m = 0,1,2, · · · , N with

(N + 1)h= 1. Let Ul ,m and ul ,m be the exact and approximate solution values of u(x , y) at
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the grid point (x l , ym), respectively. Recall that the Dirichlet boundary conditions are given

by (1.2). Since the grid lines are parallel to coordinate axes and the values of u are exactly

known on the boundary, this implies that the successive tangential partial derivatives of u

are known exactly on the boundary. We follow the technique given by Mohanty [15].

The values of u(x , 0), uy y (x , 0) and uy y y y (x , 0) are known on the line y = 0, such

that the values of ux (x , 0), ux x (x , 0), ux x x (x , 0), ux x x x (x , 0), uy y x (x , 0), uy y x x (x , 0), · · · ,
etc. are also known there. This implies the values of u(x , 0), ∇2u(x , 0) ≡ ux x (x , 0) +

uy y (x , 0) and ∇4u(x , 0)≡ ux x x x(x , 0)+ 2ux x y y (x , 0)+ uy y y y (x , 0) are known on the line

y = 0. Similarly, the values of u, ∇2u and ∇4u are known on all sides of the square region

Ω. The Dirichlet boundary conditions (1.2) may be replaced by

u = g1(x , y) , ∇2u = g2(x , y) , ∇4u = g3(x , y) , (x , y) ∈ ∂Ω . (2.1)

Let us write ∇2u = v and ∇2
v = w. Then we can re-express the boundary value

problem consisting of the partial differential equation (1.1) subject to the conditions (2.1)

as a system of three Poisson equations of the form

∇2u(x , y)≡ ∂
2u

∂ x2
+
∂ 2u

∂ y2
= v(x , y) , (x , y) ∈ Ω , (2.2a)

∇2
v(x , y)≡ ∂

2
v

∂ x2
+
∂ 2

v

∂ y2
= w(x , y), (x , y) ∈ Ω , (2.2b)

ǫ∇2w(x , y) ≡ ǫ
�

∂ 2w

∂ x2
+
∂ 2w

∂ y2

�

= f (x , y,u,v , w,ux ,vx , wx ,uy ,vy , w y ) ,

(x , y) ∈ Ω . (2.2c)

and we have the exact Dirichlet boundary conditions for all three equations (2.2a)–(2.2c):

u= g1(x , y) , v = g2(x , y) , w = g3(x , y) , (x , y) ∈ ∂Ω . (2.3)

In passing, we note that for the first kind problem the values of u(x , 0), ux(x , 0), ux x(x , 0),

uy(x , 0),ux y(x , 0),ux x y(x , 0), · · · etc. are known on the line y = 0, but we do not have any

information about the values of uy y (x , 0). Consequently, in that case we cannot evaluate

v(x , 0) nor w(x , 0), and similarly we cannot find the value of v(0, y) or w(0, y) either, so

the modified boundary value problem (2.2a)–(2.3) is inapplicable.

At the grid points (x l , ym), let us denote the exact and approximate solution values

of v(x , y) and w(x , y) by Vl ,m,Wl ,m and vl ,m, wl ,m, respectively. Fourth-order nine-point

compact finite-difference methods for Poisson and harmonic equations are discussed by

Jain [21], Collatz [22] and Ames [23]. For fourth-order approximation of the nonlinear

differential equation (1.1) on the 9-point compact cell, we need the following approxima-
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tions:

Ūl± 1

2
,m =

1

2

�

Ul±1,m+ Ul ,m

�

, (2.4a)

V̄l± 1

2
,m =

1

2

�

Vl±1,m + Vl ,m

�

, (2.4b)

W̄l± 1

2
,m =

1

2

�

Wl±1,m+Wl ,m

�

, (2.4c)

Ūl ,m± 1

2

=
1

2

�

Ul ,m±1+ Ul ,m

�

, (2.5a)

V̄l ,m± 1

2

=
1

2

�

Vl ,m±1 + Vl ,m

�

, (2.5b)

W̄l ,m± 1

2
=

1

2

�

Wl ,m±1+Wl ,m

�

, (2.5c)

Ūx l ,m =
1

2h

�

Ul+1,m− Ul−1,m

�

, (2.6a)

V̄x l ,m =
1

2h

�

Vl+1,m− Vl−1,m

�

, (2.6b)

W̄x l ,m =
1

2h

�

Wl+1,m−Wl−1,m

�

, (2.6c)

Ūx l± 1

2
,m = ±

1

h

�

Ul+1,m± Ul ,m

�

, (2.7a)

V̄x l± 1

2
,m = ±

1

h

�

Vl+1,m± Vl ,m

�

, (2.7b)

W̄x l± 1

2
,m = ±

1

h

�

Wl+1,m±Wl ,m

�

, (2.7c)

Ūx l ,m± 1

2

=
1

4h

�

Ul+1,m±1− Ul−1,m±1+ Ul+1,m− Ul−1,m

�

, (2.8a)

V̄x l ,m± 1

2

=
1

4h

�

Vl+1,m±1 − Vl−1,m±1 + Vl+1,m− Vl−1,m

�

, (2.8b)

W̄x l ,m± 1

2

=
1

4h

�

Wl+1,m±1−Wl−1,m±1+Wl+1,m−Wl−1,m

�

, (2.8c)

Ūyl ,m =
1

2h

�

Ul ,m+1− Ul ,m−1

�

, (2.9a)

V̄yl ,m =
1

2h

�

Vl ,m+1− Vl ,m−1

�

, (2.9b)

W̄yl ,m =
1

2h

�

Wl ,m+1−Wl ,m−1

�

, (2.9c)

Ūyl± 1

2
,m =

1

4h

�

Ul±1,m+1− Ul±1,m−1+ Ul ,m+1− Ul ,m−1

�

, (2.10a)

V̄yl± 1

2
,m =

1

4h

�

Vl±1,m+1 − Vl±1,m−1 + Vl ,m+1− Vl ,m−1

�

, (2.10b)

W̄yl± 1

2
,m =

1

4h

�

Wl±1,m+1−Wl±1,m−1+Wl ,m+1−Wl ,m−1

�

, (2.10c)
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Ūyl ,m± 1

2

= ±1

h

�

Ul ,m±1− Ul ,m

�

, (2.11a)

V̄yl ,m± 1

2

= ±1

h

�

Vl ,m±1− Vl ,m

�

, (2.11b)

W̄yl ,m± 1

2

= ±1

h

�

Wl ,m±1−Wl ,m

�

. (2.11c)

Then we evaluate

F l± 1

2
,m = f
�

x l± 1

2
, ym, Ul± 1

2
,m, Vl± 1

2
,m,Wl± 1

2
,m, U x l± 1

2
,m, V x l± 1

2
,m,W̄x l± 1

2
,m,

U yl± 1

2
,m, V yl± 1

2
,m,W̄yl± 1

2
,m

�

, (2.12)

F l ,m± 1

2

= f
�

x l , ym± 1

2

, Ul ,m± 1

2

, Vl ,m± 1

2

,Wl ,m± 1

2

, U x l ,m± 1

2

, V x l ,m± 1

2

,W̄x l ,m± 1

2

,

U yl ,m± 1

2
, V yl ,m± 1

2
,W̄yl ,m± 1

2

�

. (2.13)

Further, we define

Ûl ,m = Ul ,m+
h2

4
Vl ,m , (2.14a)

V̂l ,m = Vl ,m+
h2

4
Wl ,m , (2.14b)

Ŵl ,m =Wl ,m+
h2

4ǫ
F̄l ,m , (2.14c)

Ûx l ,m = Ūx l ,m+
h

8

�

Vl+1,m− Vl−1,m

�

, (2.15a)

V̂x l ,m = V̄x l ,m+
h

8

�

Wl+1,m−Wl−1,m

�

, (2.15b)

Ŵx l ,m = W̄x l ,m+
h

4ǫ

�

F̄l+ 1

2
,m− F̄l− 1

2
,m

�

, (2.15c)

Ûyl ,m = Ūyl ,m+
h

8

�

Vl ,m+1− Vl ,m−1

�

, (2.16a)

V̂yl ,m = V̄yl ,m +
h

8

�

Wl ,m+1−Wl ,m−1

�

, (2.16b)

Ŵyl ,m = W̄yl ,m+
h

4ǫ

�

F̄l ,m+ 1

2

− F̄l ,m− 1

2

�

. (2.16c)

Finally, let

F̂l ,m = f (x l , ym, Ûl ,m, V̂l ,m,Ŵl ,m, Ûx l ,m, V̂x l ,m,Ŵx l ,m, Ûyl ,m, V̂yl ,m,Ŵyl ,m) . (2.17)

Then at each internal grid point (x l , ym) of the solution region Ω, the given system of
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differential equations (2.2a)–(2.2c) is discretised by

L [U]≡ Ul−1,m−1+ 4Ul ,m−1+ Ul+1,m−1+ 4Ul−1,m− 20Ul ,m+ 4Ul+1,m+ Ul−1,m+1

+4Ul ,m+1+ Ul+1,m+1

=
h2

2

�

Vl+1,m+ Vl−1,m + Vl ,m+1+ Vl ,m−1+ 8Vl ,m

�

+O(h6) ,

l, m = 1(1)N , (2.18a)

L [V ]≡ Vl−1,m−1 + 4Vl ,m−1+ Vl+1,m−1 + 4Vl−1,m− 20Vl ,m+ 4Vl+1,m+ Vl−1,m+1

+4Vl ,m+1+ Vl+1,m+1

=
h2

2

�

Wl+1,m+Wl−1,m+Wl ,m+1+Wl ,m−1+ 8Wl ,m

�

+O(h6) ,

l, m = 1(1)N , (2.18b)

L [W]≡ ǫ
�

Wl−1,m−1+Wl ,m−1+Wl+1,m−1+ 4Wl−1,m− 20Wl ,m+ 4Wl+1,m

+Wl−1,m+1+ 4Wl ,m+1+Wl+1,m+1

�

= 2h2
h

F l+ 1

2
,m+ F l− 1

2
,m+ F l ,m+ 1

2

+ F l ,m− 1

2

− F̂l ,m

i

+O(h6) ,

l, m = 1(1)N , (2.18c)

where the respective truncation errors are all O(h6) as shown.

3. Derivation of the Numerical Method

To derive the new method, we follow Mohanty & Singh [13, 14]. At the grid point

(x l , ym), we denote

Ui j =
∂ i+ jU

∂ x l
i∂ ym

j
, Vi j =

∂ i+ jV

∂ x l
i∂ ym

j
, Wi j =

∂ i+ jW

∂ x l
i∂ ym

j
,

α
(1)

l ,m
=

∂ f

∂ Ul ,m

, α
(2)

l ,m
=
∂ f

∂ Vl ,m

, α
(3)

l ,m
=

∂ f

∂Wl ,m

,

β
(1)

l ,m
=

∂ f

∂ Ux l ,m

, β
(2)

l ,m
=

∂ f

∂ Vx l ,m

, β
(3)

l ,m
=

∂ f

∂Wx l ,m

,

γ
(1)

l ,m
=

∂ f

∂ Uyl ,m

, γ
(2)

l ,m
=

∂ f

∂ Vyl ,m

, γ
(3)

l ,m
=

∂ f

∂Wyl ,m

, (3.1)

and at the grid point (x l , ym) define

Fl ,m = f (x l , ym, Ul ,m, Vl ,m ,Wl ,m, Ux l ,m, Vx l ,m,Wx l ,m, Uyl ,m, Vyl ,m,Wyl ,m) . (3.2)
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Then adopting (3.1) and simplifying (2.4a)–(2.16c), we obtain

U l± 1

2
,m = Ul± 1

2
,m+

h2

8
U20 +O(h3) , (3.3a)

V l± 1

2
,m = Vl± 1

2
,m+

h2

8
V20 +O(h3) , (3.3b)

W l± 1

2
,m =Wl± 1

2
,m+

h2

8
W20 +O(h3) , (3.3c)

U l ,m± 1

2
= Ul ,m± 1

2
+

h2

8
U02 +O(h3) , (3.4a)

V l ,m± 1

2
= Vl ,m+ 1

2
+

h2

8
V02 +O(h3) , (3.4b)

W l ,m± 1

2
=Wl ,m+ 1

2
+

h2

8
W02 +O(h3) , (3.4c)

U x l ,m = Ux l ,m+
h2

6
U30 +O(h4) , (3.5a)

V x l ,m = Vx l ,m+
h2

6
V30 +O(h4) , (3.5b)

W x l ,m =Wx l ,m+
h2

6
W30 +O(h4) , (3.5c)

U x l± 1

2
,m = Ux l± 1

2
,m+

h2

24
U30 +O(h4) , (3.6a)

V x l± 1

2
,m = Vx l± 1

2
,m+

h2

24
V30 +O(h4) , (3.6b)

W x l± 1

2
,m =Wx l± 1

2
,m+

h2

24
W30 +O(h4) , (3.6c)

U x l ,m± 1

2

= Ux l ,m± 1

2

+
h2

24

�

4U30 + 3U12

�

+O(h3) , (3.7a)

V x l ,m± 1

2
= Vx l ,m± 1

2
+

h2

24

�

4V30 + 3V12

�

+O(h3) , (3.7b)

W x l ,m± 1

2

=Wx l ,m± 1

2

+
h2

24

�

4W30 + 3W12

�

+O(h3) , (3.7c)

U yl ,m = Uyl ,m+
h2

6
U03 +O(h4) , (3.8a)

V yl ,m = Vyl ,m+
h2

6
V03 +O(h4) , (3.8b)

W yl ,m =Wyl ,m+
h2

6
W03 +O(h4) , (3.8c)

U yl± 1

2
,m = Uyl± 1

2
,m+

h2

24

�

3U21 + 4U03

�

+O(h3) , (3.9a)
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V yl± 1

2
,m = Vyl± 1

2
,m+

h2

24

�

3V21 + 4V03

�

+O(h3) , (3.9b)

W yl± 1

2
,m =Wyl± 1

2
,m+

h2

24

�

3W21 + 4W03

�

+O(h3) , (3.9c)

U yl ,m± 1

2
= Uyl ,m± 1

2
+

h2

24
U03 +O(h3) , (3.10a)

V yl ,m± 1

2
= Vyl ,m± 1

2
+

h2

24
V03 +O(h3) , (3.10b)

W yl ,m± 1

2

=Wyl ,m± 1

2

+
h2

24
W03 +O(h3) . (3.10c)

At the grid point (x l , ym), we may write the difference equation (2.2c) as

ǫ

�

∂ 2Wl ,m

∂ x2
+
∂ 2Wl ,m

∂ y2

�

= f (x , y, Ul ,m, Vl ,m,Wl ,m, Ux l ,m, Vx l ,m,Wx l ,m, Uyl ,m, Vyl ,m,Wyl ,m)≡ Fl ,m. (3.11)

Using a Taylor expansion, we first obtain

ǫ

�

δx
2 + δy

2 +
1

6
δx

2δy
2

�

Wl ,m

=
h2

3

h

Fl+ 1

2
,m+ Fl− 1

2
,m+ Fl ,m+ 1

2
+ Fl ,m− 1

2
− Fl ,m

i

+O
�

h6
�

, (3.12)

From the approximations (3.3a)–(3.10c), from (2.12)–(2.13), we have

F l± 1

2
,m = Fl± 1

2
,m+

h2

24
T1 ±O
�

h3
�

, (3.13a)

F l ,m± 1

2

= Fl ,m± 1

2

+
h2

24
T2 ±O
�

h3
�

, (3.13b)

where

T1 =3U20α
(1)

l ,m
+ 3V20α

(2)

l ,m
+ 3W20α

(3)

l ,m
+ U30β

(1)

l ,m
+ V30β

(2)

l ,m
+W30β

(3)

l ,m

+
�

3U21 + 4U03

�

γ
(1)

l ,m
+
�

3V21 + 4V03

�

γ
(2)

l ,m
+
�

3W21 + 4W03

�

γ
(3)

l ,m
,

T2 =3U02α
(1)

l ,m
+ 3V02α

(2)

l ,m
+ 3W02α

(3)

l ,m
+
�

3U12 + 4U30

�

β
(1)

l ,m
+
�

3V12 + 4V30

�

β
(2)

l ,m

+
�

3W12 + 4W30

�

β
(3)

l ,m
+ U03γ

(1)

l ,m
+ V03γ

(2)

l ,m
+W03γ

(3)

l ,m
.

Let

Ûl ,m = Ul ,m+ a1h2Vl ,m , (3.14a)

V̂l ,m = Vl ,m+ a2h2Wl ,m , (3.14b)

Ŵl ,m =Wl ,m+ a3h2 F̄l ,m , (3.14c)
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Ûx l ,m = U x l ,m+ b1h
�

Vl+1,m− Vl−1,m

�

, (3.15a)

V̂x l ,m = V x l ,m+ b2h
�

Wl+1,m−Wl−1,m

�

, (3.15b)

Ŵx l ,m =W x l ,m+ b3h
�

F l+ 1

2
,m− F l− 1

2
,m

�

, (3.15c)

Ûyl ,m = U yl ,m+ c1h
�

Vl ,m+1 − Vl ,m−1

�

, (3.16a)

V̂yl ,m = V yl ,m+ c2h
�

Wl ,m+1−Wl ,m−1

�

, (3.16b)

Ŵyl ,m =W yl ,m+ c3h
�

F l ,m+ 1

2

− F l ,m− 1

2

�

, (3.16c)

where a1, a2, a3, b1, b2 , b3, c1, c2, c3 are parameters to be determined. Then with the

help of the approximations (3.13a)–(3.13b) and simplifying (3.14a)–(3.16c), we obtain

Ûl ,m = Ul ,m+
h2

6
T3 +O
�

h4
�

, (3.17a)

V̂l ,m = Vl ,m+
h2

6
T3
′+O
�

h4
�

, (3.17b)

Ŵl ,m =Wl ,m+
h2

6
T3
′′ +O
�

h4
�

, (3.17c)

Ûx l ,m = Ux l ,m+
h2

6
T4 +O
�

h4
�

, (3.18a)

V̂x l ,m = Vx l ,m+
h2

6
T4
′+O
�

h4
�

, (3.18b)

Ŵx l ,m =Wx l ,m+
h2

6
T4
′′ +O
�

h4
�

, (3.18c)

Ûyl ,m = Uyl ,m+
h2

6
T5 +O
�

h4
�

, (3.19a)

V̂yl ,m = Vyl ,m+
h2

6
T5
′+O
�

h4
�

, (3.19b)

Ŵyl ,m =Wyl ,m+
h2

6
T5
′′+O
�

h4
�

, (3.19c)

where

T3 = 6a1

�

U20 + U02

�

,

T3
′ = 6a2

�

V20 + V02

�

,

T3
′′ = 6ǫa3

�

W20 +W02

�

,

T4 = U30 + 12b1

�

U30 + U12

�

=
�

1+ 12b1

�

U30 + 12b1U12 ,

T4
′ = V30 + 6b2

�

V30 + V12

�

=
�

1+ 6b2

�

V30 + 6b2V12 ,

T4
′′ =W30 + 6ǫb3

�

W30 +W12

�

=
�

1+ 6ǫb3

�

W30 + 6ǫb3W12 ,
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T5 = U03 + 6c1

�

U03 + U21

�

=
�

1+ 12c1

�

U03 + 12c1U21 ,

T5
′ = V03 + 6c2

�

V03 + V21

�

=
�

1+ 6c2

�

V03 + 6c2V21 ,

T5
′′ =W03 + 6ǫc3

�

W03 +W21

�

=
�

1+ 6ǫc3

�

W03 + 6ǫc3W21 .

Now

F̂l ,m = Fl ,m+
h2

6
T6 +O(h4) , (3.20)

where

T6 =T3α
(1)

l ,m
+ T ′3α

(2)

l ,m
+ T ′′3α

(3)

l ,m
+ T4β

(1)

l ,m
+ T ′4β

(2)

l ,m
+ T ′′4β

(3)

l ,m
+ T5γ

(1)

l ,m

+ T ′5γ
(2)

l ,m
+ T ′′5γ

(3)

l ,m
.

Substituting the approximations (3.13a)–(3.13b) and (3.20) into (2.18c) and noting

(3.12), we obtain the local truncation error

T̄l ,m = −
h2

6

�

T1 + T2 − 2T6

�

+O(h6) . (3.21)

For the proposed new difference method to be fourth-order, the coefficient of h4 in (3.21)

must be zero, such that

T1 + T2 − 2T6 = 0 . (3.22)

Then substituting the values of T1, T2 and T6 in (3.22), we obtain the parameter values

a1 =
1

4
, a2 =

1

4
, a3 =

1

4ǫ
,

b1 =
1

8
, b2 =

1

8
, b3 =

1

4ǫ
,

c1 =
1

8
, c2 =

1

8
, c3 =

1

4ǫ
,

and the local truncation error (3.21) reduces to T l ,m = O(h6).

4. Block Iterative Methods

On combining the difference equations at each internal grid point, we obtain a large

sparse matrix system to solve. At each interior mesh point, we have three unknowns u,

∇2u ≡ v and ∇2
v ≡ w — i.e. the number of bands with non-zero entries is increased,

and so is the size of the final matrix for the same mesh size. However, the values of the

Laplacian and the biharmonic that are often of interest are also computed in this new

method.

Whenever f (x , y,u,v , w,ux ,vx , wx ,uy ,vy , w y ) is linear in u, v , w, ux , vx , wx , uy , vy

and w y , the difference equations (2.18a)–(2.18c) form a linear block system. To solve such

a system, or indeed to demonstrate the existence of a solution, one can use a block iterative
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method [5,6,8,24,25,29–31]. For a block iterative method, we first write (2.18a)–(2.18c)

in the form

Au + Bv + 0= 0 , (4.1a)

0+ Av + Bw = 0 , (4.1b)

0+ 0+ Aw = c , (4.1c)

where AL = [1,4,1], AD = [4,−20,4], AU = [1,4,1] represent the lower, main and upper

tridiagonal matrices of the tri-block diagonal matrix A = [AL, AD, AU] and BL = [0,1,0],

BD = [1,8,1], BU = [0,1,0] are the corresponding tridiagonal matrices of the tri-block

diagonal matrix B = (−h2/2)[BL, BD, BU], {u,v , w } is the set of solution vectors, and c

is the vector consisting of the functions on the right-hand side and associated boundary

conditions. Although the system (4.1a)–(4.1c) can be solved by various methods, block

iterative methods work well. The block Gauss-Seidel (BGS) iterative method [24, 25, 29–

31] may be written

ADw (k+1) = −(AL + AU)w
(k)+ c , (4.2a)

ADv
(k+1) = −(AL + AU)v

(k)− Bw (k+1) , (4.2b)

ADu(k+1) = −(AL + AU)u
(k)− Bv (k+1) , (4.2c)

and this system of equations can be solved using a tridiagonal solver.

Whenever f (x , y,u,v , w,ux ,vx , wx ,uy ,vy , w y ) is nonlinear in u, v , w, ux , vx , wx , uy ,

vy and w y , the difference equations (2.18a)–(2.18c) form a nonlinear block system. To

solve such a system, one can apply the Newton nonlinear block iterative method [5, 6, 8,

24,25,29–31]. To define the nonlinear BGS method, we first write (2.18a)–(2.18c) in the

form

Au + Bv + 0= 0, (4.3a)

0+ Av + Bw = 0, (4.3b)

H(u,v , w ) = 0, (4.3c)

where A = [AL, AD, AU] and B = [BL, BD, BU] are tri-block diagonal matrices defined ear-

lier, and u, v , w are solution vectors of the linear system (4.3a), (4.3b) and nonlinear

system (4.3c). Now we compute the values of u, v from (4.3a) and (4.3b) using a linear

iterative method, and value of w from (4.3c) using a nonlinear iterative method. The

Jacobian J of H is easily found to be the block tridiagonal matrix J = [JL, JD, JU], where

JL =

�

∂ H

∂ wl−1,m−1

,
∂ H

∂ wl ,m−1

,
∂ H

∂ wl+1,m−1

�

,

JD =

�

∂ H

∂ wl−1,m

,
∂ H

∂ wl ,m

,
∂ H

∂ wl+1,m

�

,
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and

JU =

�

∂ H

∂ wl−1,m+1

,
∂ H

∂ wl ,m+1

,
∂ H

∂ wl+1,m+1

�

are N th order tridiagonal matrices. The matrix equation for the Newton BGS method is

then given by

J∆w (k) = −H(u(k+1),v (k+1), w (k)) , (4.4)

where (u(0),v (0), w (0)) is the initial approximation of (u,v , w ), ∆w (k) is any intermediate

vector and the values of u(k+1),v (k+1) are known from the previous step. We define

w (k+1) = w (k)+∆w (k), k = 0,1,2, · · · . (4.5)

We can thus represent (4.3a)–(4.3c) as follows:

ADu(k+1) = −(AL + AU)u
(k)− Bv (k) , k = 0,1,2, · · · , (4.6a)

ADv
(k+1) = −(AL+ AU)v

(k)− Bw (k) , k = 0,1,2, · · · , (4.6b)

JD∆w (k+1) = −H(u(k+1),v (k+1), w (k))− (JL + JU)∆w (k), k = 0,1,2, · · · . (4.6c)

This system can be solved by using a tridiagonal solver. By using the outer iterative method

(4.5), we can then evaluate w (k+1), k = 0,1,2, · · · . In order for this method to converge,

the initial iterate (u(0),v (0), w (0)) must be sufficiently close to the solution.

The second order approximations for the system of differential equations (2.2a)–(2.2c)

are straightforward and can be written

Ul ,m−1+ Ul−1,m− 4Ul ,m+ Ul+1,m+ Ul ,m+1 = h2Vl ,m+O(h4) , l, m = 1(1)N , (4.7a)

Vl ,m−1 + Vl−1,m − 4Vl ,m+ Vl+1,m+ Vl ,m+1 = h2Wl ,m+O(h4) , l, m = 1(1)N , (4.7b)

Wl ,m−1+Wl−1,m− 4Wl ,m+Wl+1,m+Wl ,m+1

= h2 f (x l , ym, Ul ,m, Vl ,m,Wl ,m, U x l ,m, V x l ,m,W x l ,m, U yl ,m , V yl ,m,W yl ,m) +O(h4) ,

l, m = 1(1)N . (4.7c)

Note that these second order approximations (4.7a)–(4.7c) require only 5-grid points on

a single computational cell (cf. Fig. 1), applicable to linear triharmonic problems with

singular coefficients. Similarly, we can discuss the block iterative methods for the system

(4.7a)–(4.7c).

5. Stability Analysis and Experimental Results

Let us consider the test equation

∇6u= g(x , y) , 0< x , y < 1 . (5.1)
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Applying the proposed method (2.18a)–(2.18c), we obtain

Ul−1,m−1+ 4Ul ,m−1+ Ul+1,m−1+ 4Ul−1,m− 20Ul ,m+ 4Ul+1,m+ Ul−1,m+1+ 4Ul ,m+1

+Ul+1,m+1 =
h2

2

�

Vl+1,m+ Vl−1,m+ Vl ,m+1 + Vl ,m−1+ 8Vl ,m

�

,

l, m = 1(1)N , (5.2a)

Vl−1,m−1 + 4Vl ,m−1+ Vl+1,m−1 + 4Vl−1,m− 20Vl ,m+ 4Vl+1,m+ Vl−1,m+1 + 4Vl ,m+1

+Vl+1,m+1 =
h2

2

�

Wl+1,m+Wl−1,m+Wl ,m+1+Wl ,m−1+ 8Wl ,m

�

,

l, m = 1(1)N , (5.2b)

Wl−1,m−1+ 4Wl ,m−1+Wl+1,m−1+ 4Wl−1,m− 20Wl ,m+ 4Wl+1,m+Wl−1,m+1+ 4Wl ,m+1

+Wl+1,m+1 = 2h2
h

gl+ 1

2
,m+ gl− 1

2
,m+ gl ,m+ 1

2
+ gl ,m− 1

2
− gl ,m

i

,

l, m = 1(1)N , (5.2c)

where gl ,m = g(x l , ym), gl± 1

2
,m = g(x l ± 1/2, ym) etc.. An iterative method for (5.2a)–

(5.2c) can be written as

20Iu(k+1) = Au (k)− h2

2
Bv (k)+ 0w (k)+RHU , (5.3a)

20Iv (k+1) = 0u(k)+ Av (k)− h2

2
Bw (k)+RHV , (5.3b)

20Iw (k+1) = 0u(k)+ 0v (k)+ Aw (k)+RHW , (5.3c)

where u(k), v
(k), w (k) are solution vectors and RHU , RHV , RHW are right-hand side

vectors consisting of boundary and homogenous function values. The system (5.3) can be

rewritten in matrix form as







U (k+1)

V(k+1)

W (k+1)






= G







U(k)

V (k)

W (k)






+RH , (5.4)

where

G =
1

20









A
−h2

2
B 0

0 A
−h2

2
B

0 0 A









, RH =







RHU

RHV

RHW






,

A = [P ,Q, P] , B = [T ,S, T] , P = [1,4,1] ,

Q = [4,0,4] , T = [0,1,0] , S = [1,8,1] ,
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and we denote

[a, b, c] =

















b c 0

a b c
. . .

a b c

0 a b

















N×N

as the N th order tridiagonal matrix with eigenvalues given by

λ j = b+ 2
p

ac cos

�

π j

N + 1

�

, j = 1,2, · · · , N .

The above iterative method is stable provided ρ(G)≤ 1, where ρ(G) is the spectral radius

of G. The eigenvalues of Q are given by

λk = 8 cos
kπ

N + 1
≡ 8 cos(kπh) , k = 1(1)N , (5.5)

and the eigenvalues of P are given by

µk = 4+ 2 cos
kπ

N + 1
≡ 4+ 2 cos(kπh) , k = 1(1)N . (5.6)

Consequently, the eigenvalues of A are given by

ν jk =λk + 2µk cos( jπh)≡ 8[cos(kπh) + cos( jπh)] + 4 cos(kπh) cos( jπh) ,

j = 1(1)N , k = 1(1)N , (5.7)

and the eigenvalues of G are

ξ jk =
1

20
ν jk =

1

20
[8(cos(kπh)+ cos( jπh))+ 4 cos(kπh) cos( jπh)] ,

j = 1(1)N , k = 1(1)N . (5.8)

The maximum eigenvalue of G occurs at j = k = 1. Hence

ρ(G) =max
�

�ξ jk

�

� =
cos(πh)

5
[4+ cos(πh)]≤ 1 , (5.9)

which is satisfied for all variable angles πh, so the iterative method (5.3a)–(5.3c) is stable.

In order to validate the proposed fourth-order method and test its robustness, in the

region 0 < x , y < 1 we solve the following three test problems with known exact so-

lutions. The Dirichlet boundary conditions and right-hand side homogeneous functions

are obtained from the exact solutions. We solved the linear systems using the block Gauss-

Seidel iterative method, and the nonlinear system of equations by the Newton block Gauss-

Seidel iterative method. We also compared the numerical results obtained by the pro-

posed fourth-order approximations (2.18a)–(2.18c) with the numerical results obtained
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via the second-order approximations (4.7a)–(4.7c). In all cases, we considered u(0) = 0

as the initial approximation, and stopped the iterations when the absolute error tolerance

|u(k+1)−u(k)| ≤ 10−12 was achieved. In all cases, we calculated maximum absolute errors

(l∞-norm) for different grid sizes, and all computation was performed in double precision

arithmetic.

Example 5.1. (Test problem)

Two-dimensional triharmonic problem (5.1) in a unit square. The exact solution is

u(x , y) = sin(πx) · sin(πy).

The maximum absolute errors are tabulated in Table 1.Table 1: The maximum absolute errors for Example 5.1.
h Proposed O(h4) - Method O(h2) - Method

u 0.4487(−03) 0.3935(−01)

1/8∇2u 0.7567(−02) 0.5145(+00)

∇4u 0.1238(+00) 0.5046(+01)

u 0.2791(−04) 0.9688(−02)

1/16∇2u 0.4697(−03) 0.1272(+00)

∇4u 0.7666(−02) 0.1254(+01)

u 0.1742(−05) 0.2412(−02)

1/32∇2u 0.2930(−04) 0.3173(−01)

∇4u 0.4799(−03) 0.3131(+00)

u 0.1088(−06) 0.6025(−03)

1/64∇2u 0.1830(−05) 0.7928(−02)

∇4u 0.2985(−04) 0.7824(−01)

Example 5.2. (Singular Problem)

∇6u+
1

x

�

∂ 5u

∂ x5
+ 2

∂ 5u

∂ x3∂ y2
+

∂ 5u

∂ x∂ y4

�

= f (x , y), 0< x , y < 1. (5.10)

The exact solution is u(x , y) = x2 sin(πy).

The maximum absolute errors are tabulated in Table 2.

Example 5.3. (Navier-Stokes model equation in terms of stream function ψ, see [26])

1

Re

∇6ψ=ψy(∇2ψ)x −ψx(∇2ψ)y + (∇2ψ)y(∇4ψ)x − (∇2ψ)x(∇4ψ)y

+ψx(∇4ψ)y −ψy(∇4ψ)x + G(x , y), 0< x , y < 1. (5.11)

The exact solution isψ(x , y) = ex cos(πy).

The maximum absolute errors are tabulated in Table 3, for various values of the Reynolds

number Re.
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Proposed O(h4) - O(h4) - Method

h Method discussed in [19] O(h2) - Method

u 0.7265(−04) 0.8884(−04) 0.2858(−02)

1/8∇2u 0.6715(−03) 0.8118(−03) 0.1294(−01)

∇4u 0.8106(−02) 0.1121(−01) 0.1428(+00)

u 0.4616(−05) 0.6162(−05) 0.755(7− 03)

1/16∇2u 0.4218(−04) 0.5316(−04) 0.3292(−02)

∇4u 0.5158(−03) 0.7963(−03) 0.3931(−01)

u 0.2892(−06) 0.4242(−06) 0.1891(−03)

1/32∇2u 0.2655(−05) 0.3818(−05) 0.8294(−03)

∇4u 0.3265(−04) 0.5810(−04) 0.1025(−01)

u 0.1808(−07) 0.2812(−07) 0.4731(−04)

1/64∇2u 0.1665(−06) 0.2522(−06) 0.2071(−03)

∇4u 0.2063(−05) 0.3836(−05) 0.2658(−02)Table 3: The maximum absolute errors for Example 5.3.
O(h4) - Method

Proposed O(h4) - Method discussed in [19] O(h2) - Method

h Re = 102 Re = 104, 106, 108 Re = 102 Re = 104, 106, 108 Re = 102, 104, 106, 108

ψ 0.4760(−04) 0.4740(−04) 0.8255(−04) 0.8230(−04)

1/8∇2ψ 0.4302(−03) 0.4205(−03) 0.7834(−03) 0.7624(−03) Over Flow

∇4ψ 0.4212(−02) 0.3734(−02) 0.7664(−02) 0.7112(−02)

ψ 0.3001(−05) 0.2952(−05) 0.5435(−05) 0.5216(−05)

1/16∇2ψ 0.2859(−04) 0.2620(−04) 0.4832(−04) 0.4544(−04) Over Flow

∇4ψ 0.3625(−03) 0.2334(−03) 0.5016(−03) 0.4228(−03)

ψ 0.1972(−06) 0.1820(−06) 0.3226(−06) 0.3184(−06)

1/32∇2ψ 0.2149(−05) 0.1639(−05) 0.2819(−05) 0.2787(−05) Over Flow

∇4ψ 0.4316(−04) 0.1433(−04) 0.4006(−04) 0.2582(−04)

ψ 0.1124(−07) 0.1055(−07) 0.2026(−07) 0.1892(−07)

1/64∇2ψ 0.1316(−06) 0.8378(−07) 0.1811(−06) 0.1774(−06) Over Flow

∇4ψ 0.3348(−05) 0.6102(−06) 0.2883(−05) 0.1665(−05)

6. Conclusions

In this article, we developed a new fourth-order compact finite difference method based

on off-step discretisation for the solution of 2D nonlinear triharmonic partial differential

equations. The method involves a 9-point compact stencil with the values of u, the Lapla-

cian and the biharmonic as unknowns. We obtain the Laplacian and biharmonic of u as

by-products, which are quite often of interest in many applied mathematics problems. Our

numerical experiments confirmed that the proposed fourth-order discretisation produces

oscillation-free solutions for high Reynolds number, whereas a second order discretisation

is unstable. We have compared the results obtained using the new method proposed here
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with the results obtained in Ref [19]. The results from the new method are slightly bet-

ter, but its main advantages are that it is directly applicable irrespective of the coordinate

system and we do not need to modify our method for singular problems. We are currently

working to apply the new method to 3D nonlinear triharmonic elliptic and time-dependent

parabolic partial differential equations.
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